绵羊FABP4、IGFBP3和SPP1基因遗传变异对脂肪、生长和胴体性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用候选基因策略,以FABP4、IGFBP3和SPP1基因为候选基因,应用PCR-SSCP技术检测了中国藏绵羊2个群体(欧拉羊和甘加羊)以及新西兰9个绵羊品种共11个群体的候选基因多态性。明确绵羊候选基因单核苷酸突变位点、鉴定潜在的单体型和基因重组事件、预测潜在非同义突变(cSNP)对蛋白结构和功能的影响。研究新西兰绵羊和中国藏绵羊群体候选基因遗传特征和差异。基于FABP4蛋白对动物脂肪沉积和生长的潜在作用,分析柯伯华斯绵羊多脂型和瘦肉型群体FABP4基因变异分布差异和罗姆尼羊FABP4变异对生长性状及脂肪(GR值)和胴体性状的影响,探讨FABP4基因遗传变异作为绵羊生长、脂肪和胴体性状分子标记的可能性。主要研究结果如下:
     1. FABP4、IGFBP3和SPP1基因多态性
     9个新西兰绵羊品种和2个藏绵羊群体的1469个样本中,FABP4基因外显子2-内含子区域和外显子3-内含子3区域分别检测出11种和10种不同的SSCP带型。外显子2-内含子2区域的SSCP带型为A_1A_1、B_1B_1、C_1C_1、D_1D_1、A_1B_1、B_1C_1、A_1C_1、A_1D_1、C_1D_1、B_1D_1和B_1E_1(A_1A_1、B_1B_1、C_1C_1和D_1D_1为纯合子,A_1B_1、B_1C_1、A_1C_1、A_1D_1、C_1D_1、B_1D_1和B_1E_1为杂合子。外显子3-内含子3区域SSCP带型为A_2A_2、B_2B_2、C_2C_2、D_2D_2、A_2B_2、A_2C_2、B_2C_2、C_2D_2、B_2D_2和A_2D_2(A_2A_2、B_2B_2、C_2C_2和D_2D_2为纯合子,A_2B_2、A_2C_2、B_2C_2、C_2D_2、B_2D_2和A_2D_2为杂合子)。9个新西兰绵羊品种和2个藏绵羊群体的384只个体中,IGFBP3和SPP1均为相同的SSCP带型。
     绵羊FABP4基因共检测出9条不同的变异序列,分别为A_1、B_1、C_1、D_1、E_1、A_2、 B_2、 C_2和D_2(GenBank accesson number: JX290313-JX290317和JX409931-JX409934)。鉴定8处单核苷酸变异位点,分别为c.246+33位置碱基C缺失、c.246+37位置A>G转换、c.246+46位置C>T转换、c.246+47位置G>A转换、c.317位置A>G转换、c.348+166位置T>C转换、c.348+298位置T>C转换和c.348+356位置C>T转换。c.317位置A>G转换造成氨基酸突变,即106位Lys(AAG)>Arg(AGG)。
     2.绵羊FABP4基因SNPs连锁不平衡、单体型和重组分析
     对483只绵羊两多态区域SNPs进行连锁不平衡分析。结果表明绵羊FABP4基因两多态区域SNPs间连锁不平衡程度较低(D′=0.548,r2=0.119),发生重组的概率较高且存在14种潜在的单体型。单体型分别为A_1A_2、A_1B_2、A_1C_2、A_1D_2、B_1A_2、B_1B_2、B_1C_2、C_1A_2、C_1B_2,、C_1C_2、D_1A_2、D_1B_2、D_1C_2和E_1A_2。
     绵羊FABP4基因两多态区域分别鉴定一条Chi-like序列(5′GTTGGTGA3′和5′GCTGGTGA3′)以及多条8碱基反向重复序列,表明其可能促进绵羊FABP4重组发生。5个不同家系后代观察到多种单体型,且利用定位绵羊不同染色体DQA_2、ADRB3和PRNP基因证实各单体型个体与父代遗传关系正确,表明绵羊FABP4基因曾经发生重组事件。,
     3.绵羊FABP4蛋白三级结构模拟及Lys106Arg氨基酸突变效应预测
     采用同源建模方法构建FABP4蛋白三级结构模型,其基本单元主要由2个α螺旋和10个β链组成。模型可靠性打分为0.73(0-1之间),表明预测模型结构可靠性较高。基于建模结果,预测106位Lys(AAG)>Arg(AGG)突变不直接影响绵羊FABP4蛋白结构和功能,但c.317A>G非同义突变可能存在变异连锁效应影响绵羊FABP4蛋白和功能。
     4.新西兰绵羊和中国藏绵羊群体FABP4基因遗传特征及差异
     10个绵羊群体共575只个体中,10个绵羊群体均检测出A_1、B_1和C_1。除无角陶赛特和甘加羊群体外,8个绵羊群体检测出D_1,而E_1仅在无角陶赛特和考力代群体检出。A_1频率为38.4%,为优势等位基因且A_1B_1为优势基因型。10个绵羊群体均检测出A_2、B_2和C_2,但考力代、美利奴、欧拉羊和甘伽羊群体未检测出D_2。B_2频率为48.3%,为优势等位基因且A_2B_2为优势基因型。新西兰绵羊FABP4基因两多态区域偏离Hardy-Weinberg平衡状态(P﹤0.01),而藏绵羊FABP4基因两多态区域处于Hardy-Weinberg平衡状态(P>0.05)。罗姆尼群体与派仑代群体基因型分布无差异(P>0.05),美利奴群体与考力代群体基因型分布有差异(P<0.05)。新西兰绵羊群体FABP4基因两个多态区域均为高杂合度,且多态信息含量(PIC)多为高度多态(PIC>0.5)。中国藏绵羊群体均为高纯合度,且多态信息含量(PIC)均为中度多态(0.25     5新西兰柯泊华斯绵羊瘦肉型和多脂型群体FABP4基因变异分布差异
     在本研究瘦肉型和多脂型群体间,FABP4基因变异分布差异显著(P<0.001)。在外显子2-内含子2区域,多脂型绵羊群体观察到5种等位基因且A_1为优势等位基因(0.51),瘦肉型绵羊观察到3种等位基因且C_1为优势等位基因(0.89)。在外显子3-内含子3区域,多脂型绵羊观察到2种等位基因且B_2为优势等位基因(0.83),瘦肉型绵羊观察到3种等位基因且C_2为优势等位基因(0.59)。
     6.罗姆尼绵羊FABP4基因变异对生长性状的影响
     分别建立3种不同的效应模型评估等位基因(单体型)存在/缺失、等位基因拷贝数和基因型对4个生长性状(初生重、断尾重、断奶重和断奶前生长率)的影响。
     单体型A_1-A_2和C_1-C_2均与低初生重存在关联(P<0.1)。单体型C_1-A_2与高初生重存在关联(P<0.1)。单体型C_1-A_2与低断尾重存在关联(P<0.1)。单体型C_1-C_2与低断奶重存在关联(P<0.1)。基因型对断尾重、断奶重和断奶前生长率有显著影响(P<0.05)且基因型A_2C_2断尾重(12.831±0.273Kg)、断奶重(28.849±0.452Kg)和断奶前生长率(265.668±4.779g/d)均最低。
     7.罗姆尼绵羊FABP4基因变异对脂肪和胴体性状的影响
     分别建立3种不同的效应模型评估等位基因(单体型)存在/缺失,等位基因拷贝数和基因型对脂肪性状(GR值)和胴体性状(热胴体重、腿部肉产量、腰部肉产量、肩部肉产量、总产肉量、腿部肉比例、腰部肉比例和肩部肉比例)的影响。
     等位基因A_1与高GR值、低腿部肉产量、低腰部肉产量和低总肉产量存在关联(P<0.05/0.1)。等位基因A_2与低热胴体重存在关联(P<0.1)。等位基因B_1与高腿部肉比例和低肩部肉比例存在关联(P<0.1)。等位基因D_1与高肩部肉产量存在关联(P<0.1)。单体型A_1-A_2与低热胴体重、低腿部肉产量、低腰部肉产量、低总肉产量、低腰部肉比例和高肩部肉比例存在关联(P<0.05/0.1)。基因型对肩部肉产量有影响(P<0.1)且基因型A_1B_1肩部肉产量(16.296±0.133Kg)最低。
In this study, polymorphisms of the FABP4, IGFBP3and SPP1genes in1853sheepsourced from ten breeds (NZ Romney, Poll Dorset, Corriedal, Merino, Perendale, Dorper,Dorset Down, Suffolk, Coopworth, Ola and Ganjia) in New Zealand and China werestudied using PCR-SSCP technology. The aim was to indentify polymorphic sits,haplotypes and recombination event in candidate genes, as well as to assess the effect ofthe putative cSNP on structure and function of the protein. The diversity of geneticcharacter at FABP4locus among various population were also analysed. Given that theFABP4protein plays potential role in fat deposition and growth in the livestock, the fatand lean sheep from coopworth breed were used to analyse the association of FABP4variations with the fat/lean phenotype. To search for molecular markers, the association ofproduction traits for the fat trait (GR value), growth traits (birth weight, tailing weight,weaning weight and pre-weaning growth rate) and carcass traits (hot weight, leg yield,loin yield, shoulder yield, total yield, proportion leg yield, proportion loin yield andproportion shoulder yield) were also analysed in Romney sheep. The main results show asfollows:
     1. Polymorphism of ovine FABP4, IGFBP3and SPP1A total of1469samples were typed in two polymorphic regions of FABP4gene. In theexon2-intron2region, eleven different SSCP patterns were observed (A_1A_1,B_1B_1,C_1C_1,D1D1,A1B1,B1C1,A1C1,A1D1,C1D1,B1D1and B1E1), SSCP patterns (A1A1,B1B1,C1C1,D1D1) represent homozygous and SSCP patterns (A1B1,B1C1,A1C1, A_1D1,C1D1,B1D_1and B_1E_1) represent heterozygous. In the exon3-intron3region, ten elevendifferent SSCP patterns were observed (A_2A_2,B_2B_2,C_2C_2,D2D_2,A2B_2,A2C_2,B_2C_2,C_2D_2,B_2D_2and A_2D_2), SSCP patterns (A_2A_2,B_2B_2,C_2C_2,D_2D_2) represent homozygousand SSCP patterns (A2B2,A2C2,B2C2,C2D2,B2D2and A2D2) represent heterozygous.In384samples, no different SSCP patterns were observed in IGFBP3and SPP1generespectively.
     In1469sheep, different nine sequence variants (A1,B1,C1,D1,E1,A2,B2,C2,D_2) were identified(Genbank accesson number: JX290313-JX290317; JX409931-JX409934). Eight polymorphic sites including c.246+33C deletion, c.246+37A>Gsubstitution, c.246+46C>T substitution, c.246+47G>A substitution, c.317A>Gsubstitution, c.348+166T>C substitution, c.348+298T>C substitution, c.348+356C>Tsubstitution were identified. c.317A>G substitution results in the amino acid change:Lys(AAG)106Arg(AGG).
     2. The analysis of the linkage disequilibrium, haplotypes and recombination ofFABP4gene
     The linkage disequilibrium of SNPs spanning both regions was analysed in483sheep.Theresults indicated that the relationship of SNPs in two regions was not disequilibriumcompletely (D′=0.548,r2=0.119). Fourteen different haplotypes were identified includingA_1A_2, A_1B_2, A_1C_2, A_1D_2, B_1A_2, B_1B_2, B_1C_2, C_1A_2, C_1B_2, C_1C_2, D_1A_2, D_1B_2, D_1C_2,E_1A_2.
     Two chi-like sequences in both polymorphic regions were detected respectivelyincluding5′GTTGGTGA3′and5′GCTGGTGA3′, as well as several reverse repeatsequences comprising of eight bases. This results indicated that above specific sequencesmay facilitate recombination in the ovine FABP4gene. Different haplotypes wereobserved in the progeny from five sires, suggesting that recombination occurred in theFABP4gene. To ensure the truth, DQA_2, ADRB3and PRNP gene located at differentchromosomes were used to confirm the genetic relationship between the sire and theirprogeny.
     3. The reconstruction of three-dimensional model of the FABP4protein and theeffect of Lys106Arg change on the structure and founction
     The homology modeling method was used to construct the predicted structuresuccessfully, which was composed of two α helixes and ten β chains. The score of modelparameter was0.73(0-1), indicating a high quality for the predicted model. It is predictedthat the Lys106Arg change will not affect the structure and function of the FABP4proteinobviously, but it has the possibility for c.317A>G substitution linking with other variationsto the FABP4protein indirectly.
     4. The difference of genetic characters at FABP4locus among variouspopulations
     In five hundred and seventy five sheep from ten populations, the allele A_1, B_1and C_1were common. The allele D_1was observed in eight populations except the Poll Dorset andGanjia, the allele E_1was only observed in the Poll Dorset and Corriedal. The allele A_1with the frequency of38.4%, and genotype A_1B_1was the most common. The allele A_2, B_2and C_2were observed in ten populations and the allele B_2with the frequency of48.3%and genotype A_2B_2was the most common, but the allele D_2was not observed inCorriedale, Merino, Ola and Ganjia.2test indicated that variations were deviated to the Hardy-Weinberg equilibrium, but variations were in the Hardy-Weinberg equilibrium inTibetan sheep (P>0.05).There was not a difference for genotype between the Romney andPerendale population (P>0.05), but there was a difference for genotype between theCorriedale and Merino (P<0.05).At two polymorphic locus of FABP4, the highheterozygosity and PIC (PIC>0.5) were observed in NZ populations, but in two bitetpopulations the high homozygosity and moderate PIC (0.25     5. The difference of FABP4variations in fat and lean line from Coopworth breedin NZ
     There was a difference (P<0.001) for sequence variants in both regions between twolines. In the eoxn2-intron2, only the allele B_1, C_1and D_1were observed and C_1was themost common (a frequency of89%) in the lean line, whereas in the fat line, five sequencevariants were observed and sequence A_1with a frequency of51%was the most common.In the exon3-region3, only the sequence A_2, B_2and C_2were observed and C_2was themost common (a frequency of59%) in the lean line. However, the C_2was not observedand B_2with a frequency of83%was the most common in the fat line..
     8. Effects of FABP4variations on growth trait in Romney sheep
     Three different models were used to assess the association of sequence and haplotypepresent/absent, copy number, genotype with growth traits (birth weight, tailing weight,weaning weight and pre-weaning growth rate).
     The presence of haplotype A_1-A_2and C_1-C_2were trending to be associated with thedecreased birth weight (P<0.1), but haplotype C_1-A_2were trending to be associated withthe increased birth weight (P<0.1). The presence of haplotype C_1-A_2was trending to beassociated with the decreased tailing weight (P<0.1). The presence of haplotype C_1-C_2was trending to be associated with the decreased weaning weight (P<0.1). Genotype had asignificant effect on tailing weight (P<0.05), the lambs with genotypep A_2C_2have thelowest weaning weight (28.849±0.452Kg), tailing weight(12.831±0.273Kg) andpre-weaning growth rate (265.668±4.779g/d).
     9. Effects of FABP4variations on fat and carcass traits in Romney sheep
     Three different models were used to assess the association of sequence and haplotypepresent/absent, copy number, genotype with growth traits (hot weight, leg yield, loin yield,shoulder yield, total yield, proportion leg yield, proportion loin yield and proportion shoulder yield).
     The presence of A_1was trending to be associated with the increased GR value, legyield, loin yield and total yield (P<0.05/0.1). The presence of A_2was trending to beassociatied with the increased hot weight (P<0.1).The presence of A_1-A_2was trending tobe associated with the decreases hot weight (P<0.1). The presence of B_1was trending tobe associated with an increase in proportion leg yield(P<0.1). The presence of D_1wastrending to be associated with the increases shoulder yield (P<0.1). The presence of A_1-A_2was associated with a decrease in leg yield, hot weight, loin yield, total yield, proportionloin yield and an increase in proportion shoulder yield (P<0.05/0.1). Genotype had aneffect on shoulder yield (P<0.1), lambs possessing the genotype A_1B_1have the lowestshoulder yield (16.296±0.133Kg).
引文
[1] Barendse W, Bunch RJ et al. A splice site single nucleotide polymorphism of the fatty acidbinding protein4gene appears to be associated with intramuscular fat deposition inlongissimus muscle in Australian cattle[J]. Animal Genetics.2009,40(5):770-773.
    [2] Wang Q, Guan T et al. A novel polymorphism in the chicken adipocyte fatty acid-bindingprotein gene (FABP4) that alters ligand-binding and correlates with fatness[J]. ComparativeBiochemistry and Physiology B: Biochemistry&Molecular Biology.2009,154(3):298-302.
    [3] Ojeda AJ, Rozas et al. Unexpected high polymorphism at the FABP4gene unveils a complexhistory for pig populations[J]. Genetics.2006,174(4):2119-2127.
    [4] Sun WB. Polymorphism of insulin like growth factor binding protein-3(IGFBP-3) gene and itsrelation with beef performance of Qinchuan cattle[J]. Anim. Biotech. Bull.2002,8:95–99..
    [5] Ou JT, Tang SQ, Sun DX, Zhang Y. Polymorphisms of three neuroendocrine-correlated genesassociated with growth and reproductiv traints in the cheicken[J]. Plultry Science.2009,88:722-727.
    [6] Schnabel RD, Kim JJ, Ashwell MS, Sonstegard TS, Van Tassell CP, Connor EE et al.Fine-mapping milk production quantitative trait loci on BTA6: Analysis of the bovineosteopontin gene[J]. Proc. Natl. Acad. Sci. USA.2005,102:6896–6901.
    [7] White SN, Casas E, Allan MF, Keele JW, Snelling WM, Wheeler TL et al. Beef cattleevaluation of six DNA markers developed for dairy traits reveals an osteopontinpolymorphism is associated with postweaning growth[J]. J. Anim. Sci.2007,85:1–10.
    [8] Allan MF, Thallman RM, Cushman RA, Echternkamp SE, White SN, Kuehn LA et al.Association of a single nucleotide polymorphism in Spp1with growth traits and twinning in acattle population selected for twinning rate[J]. J. Anim. Sci.2007,85:341-347.
    [9] Kashi Y, Hallerman E Soller M.1990. Marker-assisted selection of candidate bulls for progenytesting programs[J]. Animal Production.1990,51:63-74.
    [10] Pfarrle RW, Dimattia GE, Parks JS, Brown MR, Wit JM, Jansen M et al.1992. Mutation ofthe POU-specific domain of Pit-1and hypopituitarism without pituitary hypoplasia[J].Science.1992,257:1118-1121.
    [11] Radovick S, Nations M, Du Y, Berg LA, Weintraub DB, Wondisford FE.1992. A mutationin the POU-homeodomain of Pit-1responsible for combined pituitary hormone deficiency[J].Science.1992,257:1115-1118.
    [12] Moody DE, Pomp D, Barendse W. Short communication: restriction fragment lengthpolymorphism in amplification products of the bovine growth hormone-releasing hormonegene[J]. J Anim Sci.1995a,73:3789.
    [13] Moody DE, Pomp D, Barendwe W.1995b. Restriction fragment length polymorphism inamplification products of the bovine Pit-1gene and assignment of Pit-1to bovine chromsome1[J]. Anim Genet.1995b,26:45-47.
    [14] Connor EF, Ashwell MS, Kappes SM, Dahl GE. Characterization of a parial bovine cDNAencoding pituitary growth hormone-releasing homone receptor (GHRH-R) and mapping ofthe GH-R to chromosome4using a novel PCR-RFLP[J]. BASE2.1998, Special issue:8.
    [15] Woollard J, Schmitz CB, Freeman AE, Tuggle CK. Rapid communication: Hinflpolymorphism at the bovine Pit1locus[J]. J Anim Sci.1994,72:3267.
    [16] Lee BK, Crooker BA, Hansen LB, Chester-Jones H. Polymorphism in the third intron ofsomatotropin (bST) gene and its association with selection for milk yield in Holstein cows[J].J Anim Sci.1994,72:316.
    [17] Lagziel A, Lipkin E, Ezra E, Soller M, Weller JI. An MspI polymorphism at the bovinegrowth hormone (bGH) gene is linked to a locus affecting milk protein percentage[J]. AnimGenet.1999,30:296-299.
    [18] Yao J, Aggrey SE, Zadworny D, Hayes JF Kuhnlein U. Sequence variations in the bovinegrowth hormone gene characterizaed traits in Holsteins[J]. Genetics.1996,144:1908-1816.
    [19] Falaki M, Gengler N, Sneyers M, Prandi A, Massart S, Formigoni A et al. Relationship ofpolymorphism for growth hormone and growth hormone receptor gene with production traitsfor Holstein Friesian bulls[J]. J Dairy Sci.1996,79:1446-1453.
    [20] Ge W, Davis ME, And Hines HC. Two SSCP alleles detected in the5-flanking region ofbovine IGF1gene[J]. Anim Genet.1997,28:155-156.
    [21] Andersson L, Haley CS, Ellegren H, Knott SA, Jonhanson M, Andersson K et al.1994.Genetic Mapping of quantitative trait loci for growth and fatness in pigs[J]. Science.1994,263:1771-1774.
    [22] Paszek AA, Dyas PA, Finn ST, Chen M, Buttram ST, Didion BA.1998. Allelic effects ofmiroosatellites from prtaative QTL for reproductive traits[J]. Anim Genet.1998,29Suppl:60-74.
    [23] Baldi A. Manipulation of milk production and quality by use of somatotropin in dairyruminants other than cow[J]. Dom Anim Endovrinol.1999,17:131-137.
    [24] Kuhnlein U, Ni L, Weigend S, Gavora JS, Fairfull W, And Zadworny D. DNApolymorphisms in the chicken growth hormone gene: response to selection for diseaseresistance and association with egg production[J]. Anim Genet1997,28:116-123.
    [25] Badaoui B, Serradilla JM, Toma`s A, Urrutia B, Ares JL et al. Goat acetyl-coenzyme Acarboxylase a: molecular characterization, polymorphism, and association with milk traits[J].J Dairy Sci.2007a,90:1039–1043.
    [26] Badaoui B, Serradilla JM, Toma`s A, Urrutia B, Ares JL et al. Identification of twopolymorphisms in the goat lipoprotein gene and their association with milk traits[J]. J DairySci.2007b,90:3012–3017.
    [27] Mun oz G, Alves E, Ferna′ndez A, O′vilo C, Barraga′n C. QTL detection on porcinechromosome12for fatty-acid composition and association an alyses of the fatty acidsynthase, gastric inhibitory polypeptide and acetyl-coenzyme A carboxylase alpha genes[J].Anim Genet.2007a,38:639–646.
    [28] Mun oz G, Ovilo C, Estelle J, Silio L, Fernandez A et al. Association with litter size of newpolymorphisms on ESR1and ESR2genes in a Chinese-European pig line[J]. Genet Sel Evol.2007b39:195–206.
    [29] Grisart B, Coppieters W, Farnir F, Karim L, Ford C et al. Positional candidate cloning of aQTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1gene withmajor effect on milk yield and composition. Genome Res.2002,12:222–231.
    [30] Spelman RJ, Ford CA, McElhinney P, Gregory GC, Snell RG. Characterization of theDGAT1gene in the New Zealand dairy population[J]. J Dairy Sci.2002,85:3514–3517.
    [31] Winter A, Kra¨mer W, Werner FA, Kollers S, Kata S et al. Association of alysine-232/alanine polymorphism in bovine gene encoding acyl-CoA:diacylglycerolacyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content[J].Proc Natl Acad Sci USA.2002,99:9300–9305.
    [32] Kamin′ski S, Brym P, Rus′c′A, Wo′jcik E, Ahman A et al. Associations between milkperformance traits in Holstein cows and16candidate SNPs identified by arrayed primerextension (APEX) microarray[J]. Anim Biotechnol.2006,17:1–11.
    [33] Thaller G, Kramer W, Winter A, Kaupe A, Erhardt G et al. Effects of DGAT1variants onmilk production traits in German cattle breeds[J]. J Anim Sci.2003,81:1911–1918.
    [34] Sanders K, Bennewitz J, Reinsch N, Thaller G, Prinzenberg EM et al. Characterization of theDGAT1mutations and CSN1S1promoter in German Angeln dairy cattle population[J]. JDairy Sci.2006,89:3164–3174.
    [35] Schennink A, Stoop WM, Visker MH, Heck JM, Bovenhuis H et al. DGAT1underlies largegenetic variation in milk-fat composition of dairy cows[J]. Anim Genet.2007,38:467–473.
    [36] Ku¨hn C, Thaller G, Winter A, Bininda-Emonds ORP, Kaupe B et al. Evidence of multiplealleles at the DGAT1locus better explains a QTL with major effect on milk fat content incattle[J]. Genetics.2004,167:1873–1881.
    [37] Michal JJ, Zhang ZW, Gaskins CT, Jiang Z. The bovine fatty acid binding protein4gene issignificantly associated with marbling and subcutaneous fat depth in Wagyu9limousine F2crosses[J]. Anim Genet.2006,37:400–402.
    [38] Cho S, Park TS, Yoon DH, Cheong HS, Namgoong S et al. Identification of geneticpolymorphisms in FABP3and FABP4and putative association with back fat thickness inKorean native cattle[J]. BMB Rep.2008,41:29–34.
    [39] Roy R, Ordavas L, Zaragoza P, Romero A, Moreno C et al. Association of polymorphisms inthe bovine FASN gene with milk-fat content[J]. Anim Genet.2006,37:215–218.
    [40] Morris CA, Cullen NG, Glass BC, Hyndman DL, Manley TR et al. Fatty acid synthaseeffects on bovine adipose fat and milk fat[J]. Mamm Genome.2007,18:64–74.
    [41] Zhang S, Knight TJ, Reecy JM, Beitz DC. DNA polymorphisms in bovine fatty acid synthaseare associated with beef fatty acid composition[J]. Anim Genet.2008,39:62–70.
    [42] Malveiro E, Marques PX, Santos IC, Belo C, Cravador A. Association between SSCPs atAlgarvia goat GH gene and milk traits[J]. Arch Zootec.2001,50:49–57.
    [43] Blott S, Kim JJ, Moisio S, Schmidt-Ku¨ntzel A, Cornet A et al. Molecular dissection of aquantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembranedomain of the bovine growth hormone receptor is associated with a major effect on milkyield and composition[J]. Genetics.2003,163:253–266.
    [44] Viitala S, Szyda J, Blott S, Schulman N, Lidauer M et al. The role of the bovine growthhormone receptor and prolactin receptor genes in milk, fat and protein production in FinnishAyrshire dairy cattle[J]. Genetics.2006,173:2151–2164.
    [45] Leonard S, Khatib H, Schutzkus V, Chang YM, Maltecca C. Effects of the osteopontin genevariants on milk production traits in Dairy cattle[J]. J Dairy Sci.2005,88:4083–4086.
    [46] Khatib H, Leonard SD, Schutzkus V, Luo Chang YM. Association of the OLR1gene withmilk composition in Holstein dairy cattle[J]. J Dairy Sci.2006,89:1753–1760.
    [47] Khatib H, Rosa GJ, Weigel K, Schiavini F, Santus E et al. Additional support for anassociation between OLR1and milk fat traits in cattle[J]. Anim Genet.2007a,38:308–310.
    [48] Khatib H, Zaitoun I, Wiebelhaus-Finger J, Chang YM, Rosa GJ. The association of bovinePPARGC1A and OPN genes with milk composition in two independent Holstein cattlepopulations[J]. J Dairy Sci.2007b,90:2966–2970.
    [49] Khatib H, Monson RL, Schutzkus V, Kohl DM, Rosa GJ et al. Mutations in the STAT5Agene are associated with embryonic survival and milk composition in cattle[J]. J Dairy Sci.2008,91:784–793.
    [50] Weikard R, Ku¨hn C, Goldammer T, Freyer G, Schwerin M. The bovine PPARGC1A gene:molecular characterization and association of an SNP with variation of milk fat synthesis[J].Physiol Genomics.2005,21:1–13.
    [51] Thomas MG, Enns RM, Shirley KL, Garcia MD, Garrett AJ et al. Associations of DNApolymorphisms in growth hormone and its transcriptional regulators with growth and carcasstraits in two populations of Brangus bulls[J]. Genet Mol Res.2007,6:222–237.
    [52] Brym P, Kamin′ski S, Wo′jcik E. Nucleotide sequence polymorphism within exon4of thebovine prolactin gene and its associations with milk performance traits[J]. J Appl Genet.2005,45:176–185.
    [53] Fujii J, Ostu K, Zorzato F, Leon SD, Khama VK et al. Identification of a mutation in porcineryanodine receptor associated with malignant hyperthermia[J]. Science.1991,253:448–451.
    [54] O’Brien PJ, MacLennan DH. Application in the swine industry of a DNA-based test forporcine stress syndrome[J]. Proc Am Assoc Swine Pract.1992,433-435.
    [55] Cobanoglu O, Zaitoun I, Chang YM, Shook GE, Khatib H. Effects of the signal transducerand activator of transcription1(STAT1) gene on milk production traits in Holstein dairycattle[J]. J Dairy Sci.2006,89:4433–4437.
    [56] Taniguchi M, Utsugi T, Oyama K, Manmen H, Kobayashi M et al. Genotype of stearoyl-CoAdesaturase is associated with fatty acid composition in Japanese black cattle[J]. MammGenome.2004,14:142–148.
    [57] Kgwatalala PM, Ibeagha-Awemu EM, Mustafa AF, Zhao X. Influence of stearoyl-CoAdesaturase (SCD) genotype and stage of lactation on desaturase indices and fatty acidcomposition of Canadian Jersey cows[J]. J Dairy Sci.2008.
    [58] Macciotta NPP, Mele M, Pagnacco G, Cassandro M, Conte G et al. Stearoly-CoA desaturasegene polymorphism and milk production traits in Italian Holsteins[J]. J Dairy Sci.2007,90(Suppl1):596.
    [59] Macciotta NPP, Mele M, Conte G, Serra A, Cassandro M et al. Association between apolymorphism at the stearoyl CoA desaturase locus and milk production traits in ItalianHolsteins[J]. J Dairy Sci.2008,91:3184–3189.
    [60] Barendse W, Harrison BE, Hawken RJ, Ferguson DM, Thompson JM et al. Epistasis betweencalpain1and its inhibitor calpastatin within breeds of cattle[J]. Genetics.2007a,176:2601–2610.
    [61] Barendse W, Reverter A, Bunch RJ, Harrison BE, Barris W et al. A validated whole-genomeassociation study of efficient food conversion in cattle[J]. Genetics.2007b,176:1893–1905.
    [62] Casas E, White SN, Riley DG, Smith TP, Brenneman RA et al. Assessment of singlenucleotide polymorphisms in genes residing on chromosomes14and29for association withcarcass composition traits in Bos indicus cattle[J]. J Anim Sci.2005,83:13–19.
    [63] Conde SB, Guimaraes SEF, Euclydes RF, Silva LOC, Euclides Fildo K. Marcadoresmoleculares associados com crescimento em bovinos[J]. Rev Bras Repro Anim.2000,25:485–486.
    [64] Pereira AP, de Alencar MM, de Oliveira HN, Almeida DR. Association of GH and IG-1polymorphisms with growth traits in a synthetic beef cattle breed[J]. Genet Mol Biol.2005,28:230–236.
    [65] Ge W, Davis ME, Hines HC, Irvin KM, Simmen RCM. Association of genetic marker withblood serum insulin-like growth factor-I concentration and growth traits in Angus cattle[J]. JAnim Sci.79:1757–1762.
    [66] Choudhary V, Kumar P, Bhattacharya TK, Bhushan B, Sharma A et al. DNA polymorphismof insulin-like growth factorbinding protein-3and its association with birth weight and bodyweight in cattle[J]. J Anim Breed Genet.2007,124:29–34.
    [67] Nkrumah JD, Li C, Yu J, Hansen C, Keisler DH et al. Polymorphisms in the bovine leptinpromoter associated with serum leptin concentration, growth, feed intake, feeding behaviour,and measures of carcass merit[J]. J Anim Sci.2005,83:20–28.
    [68] McPherron AC, Lee S. Double muscling in cattle due to mutations in the myostatin gene[J].Proc Natl Acad Sci USA.1997.95:12457–12461.
    [69] Sherman EL, Nkrumah JD, Murdoch BM, Moore SS. Identification of polymorphismsinfluencing feed intake and efficiency in beef cattle[J]. Anim Genet.2008a,39:225–231.
    [70] Sherman EL, Nkrumah JD, Murdoch BM, Li C, Wang Z et al. Polymorphisms andhaplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-likegrowth factor2, and uncoupling proteins2and3genes and their associations with measuresof growth, performance, feed efficiency, and carcass merit in beef cattle[J]. J Anim Sci.2008b,86:1–16.
    [71] Houston RD, Rance KA, Sutcliffe E, Archibald AL, Haley CS. The cholecystokinin type Areceptor g.179A>G polymorphism affects feeding rate[J]. Anim Genet.2008.39:187–188.
    [72] De Faria DA, Guimara es SEF, Lopes PS, Pires AV, Paiva SR et al. Association betweenG316A growth hormone polymorphisms and economic traits in pigs[J]. Genet Mol Biol.2006,29:634–640.
    [73] Franco MM, Antunes RC, de Oliveira KM, Pereira CD, Biase FH et al. Association of PIT1gene polymorphism with growth hormone mRNA levels in pig pituitary glands[J]. Genet MolBiol.2005a,28:16–21.
    [74] Franco MM, Antunes RC, Silva HD, Goulart LR. Association of PIT1, GH and GHRHpolymorphisms with performance and carcass traits in Landrace pigs[J]. J Appl Genet.2005b,46:195–200.
    [75] Kim KS, Larsen NJ, Short T, Plastow G, Rothschild MF. A missense variant of porcinemelanocortin-4receptor (MC4R) gene is associated with fatness, growth and feed intaketraits[J]. Mamm Genome.2000,11:131–135.
    [76] Kim KS, Reecy JM, Hsu WH, Anderson LL, Rothschild MF. Functional and phylogeneticanalyses of a melanocortin-4receptor mutation in domestic pig[J]. Livest Prod Sci.2004,26:75–86.
    [77] Jokubka R, Maak S, Kerziene S, Swalve HH. Association of melanocortin4receptor (MC4R)polymorphism with performance traits in Lithuanian White pigs[J]. J Anim Breed Genet.2006,123:17–22.
    [78] Van den Maagdenberg K, Stinckens A, Claeys E, Seynaeve M, Clinquart A et al. TheAsp298Asn missense mutation in the porcine melanocortin-4receptor (MC4R) gene can beused to affect growth and carcass traits without an effect on meat quality[J]. Animal.2007,1:1089–1098.
    [79] Song C, Gao B, Teng Y, Wang X, Li O et al. Msp1polymorphisms in the3rd intron of theswine POU1F1gene and their associations with growth performance[J]. J Appl Genet.2005,46:285–289.
    [80] Sherman EL, Nkrumah JD, Murdoch BM, Moore SS. Identification of polymorphismsinfluencing feed intake and efficiency in beef cattle[J]. Anim Genet.2008a,39:225–231.
    [81] Sherman EL, Nkrumah JD, Murdoch BM, Li C, Wang Z et al. Polymorphisms andhaplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-likegrowth factor2, and uncoupling proteins2and3genes and their associations with measuresof growth, performance, feed efficiency, and carcass merit in beef cattle[J]. J Anim Sci.2008b,86:1–16.
    [82] Schlee P, Graml R, Schallemberger E, Schams D, Rottmann O et al. Growth hormone andinsulin-like growth factor-1concentrations in bulls of various growth hormone genotypes[J].Theor Appl Genet.1994.88:497–500.
    [83] Tambasco DD, Paz CCP, Tambasco-Studart M, Pereira AP, Alencar MM et al. Candidategenes for growth traits in beef cattle crosses Bos taurus9Bos indicus[J]. J Anim Breed Genet.2003,120:51–54.
    [84] Pereira AP, de Alencar MM, de Oliveira HN, Almeida DR. Association of GH and IG-1polymorphisms with growth traits in a synthetic beef cattle breed[J]. Genet Mol Biol.2005,28:230–236.
    [85] Banos G, Woolliams JA, Woodward BW, Forbes AB, Coffey MP. Impact of singlenucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, anddiacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed and body energytraits of UK dairy cows[J]. J Dairy Sci.2008,91:3190–32000.
    [86] Cheong HS, Yoon DH, Kim LH, Park BL, Choi YH et al. Growth hormone-releasinghormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle[J].BMC Genet.2006,7:35.
    [87] Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Winkelman-Sim DC et al.Association of a missense mutation in the bovine leptin gene with carcass fat content andleptin mRNA levels[J]. Genet Sel Evol.2002,34:105–116.
    [88] Buchanan FC, Van Kessel AG, Waldner C, Christensen DA, Laarveld B et al. An associationbetween leptin single nucleotide polymorphism and milk and protein yield[J]. J Dairy Sci.2003,86:3164–3166.
    [89] Nkrumah JD, Li C, Yu J, Hansen C, Keisler DH et al. Polymorphisms in the bovine leptinpromoter associated with serum leptin concentration, growth, feed intake, feeding behaviour,and measures of carcass merit[J]. J Anim Sci.2005,83:20–28.
    [90] Page BT, Casas E, Heaton MP, Cullen NG, Hyndman DL et al. Evaluation ofsingle-nucleotide polymorphisms in CAPN1for association with meat tenderness in cattle[J].J Anim Sci.2002,80:3077–3085.
    [91] Page BT, Casas E, Quaas RL, Thallman RM, Wheeler TL et al. Association of markers in thebovine CAPN1gene with meat tenderness in large crossbred populations that sampleinfluential industry sires[J]. J Anim Sci.2004,82:3474–3481.
    [92] Sellick GS, McGrice H, Bouman A, Kruk B, Bottema CD. Polymorphisms within the cattlemyostatin gene[J]. Proc30th Int Congr Anim Genet.2006,30: A494.
    [93] Sellick GS, Pitchford WS, Morris CA, Cullen NG, Crawford AM et al. Effect of myostatinF94L on carcass yield in cattle[J]. Anim Genet.2007,38:440–446.
    [94] Ciobanu DC, Bastiaansen JWM, Lonergan SM, Thomsen H, Dekkers JCM et al. New allelesin calpastatin gene are associated with meat quality traits in pigs[J]. J Anim Sci.2004,82:2829–2839.
    [95] Wimmers K, Murani E, Te Pas MF, Chang KC, Davoli R et al. Associations of functionalcandidate genes derived from geneexpression profiles of prenatal porcine muscle tissue withmeat quality and muscle deposition[J]. Anim Genet.2007,38:474–484.
    [96] Jankowiak H. Effect of colipase gene (CLPS) polymorphisms on carcass and meat quality inpigs[J]. Folia Biol.2005,53:91–94.
    [97] Urban T, Kuciel J, Mikolasova R. Polymorphism of genes encoding for ryanodine receptor,growth hormone, leptin and MYC proto-oncogene protein and meat production in Durocpigs[J]. Czech J Anim Sci.2002,47:411–417.
    [98] Kijas JW, McCulloch R, Hocking Edwards JE, Hutton Oddy V, Hong Lee S et al. Evidencefor multiple alleles affecting muscling and fatness at the ovine GDF8locus[J]. BMC Genet.2007,8:80.
    [99] Boucher D, Palin MF, Castonguay F, Gariepy C, Pothier F. Detection of polymorphisms inthe ovine leptin (LEP) gene: association of single nucleotide polymorphism with musclegrowth and meat quality traits[J]. Can J Anim Sci.2006,86:31–35.
    [100] Houde AA, Murphy BD, Mathieu O, Bordignon V, Palin MF. Characterization of swineadiponectin and adiponectin receptor polymorphisms and their association with reproductivetraits[J]. Anim Genet.2008,39:249–257.
    [101] Buske B, Brunsch C, Zeller K, Reinecke P, Brockmann G. Analysis of properdin (BF)genotypes associated with litter size in a commercial pig cross population[J]. J Anim BreedGenet.2005,122:259–2623.
    [102] Buske B, Sternstein I, Brockmann G. QTL and candidate genes for fecundity in sows[J].Anim Reprod Sci.2006a,95:167–183
    [103] Buske B, Sternstein I, Rei mann M, Brockmann G. Detection of novel single-nucleotidepolymorphisms (SNPs) in the CYP21gene and association analysis of two SNPs for CYP21and ESR2with litter size in a commercial sow population[J]. J Anim Breed Genet.2006b,123:343–348.
    [104] Li N, Zhao YF, Xiao L, Zhang FJ, Chen YZ, et al. Candidate gene approach foridentification of genetic loci controlling controlling litter size in swine[J]. Proceedings of the6th World Congress on Genetics Applied to Livestock Production, Armidale, NSW, Australia,11–16January1998,26:183–186.
    [105] Toma′s A, Casellas J, Ram′rez O, Mun oz G, Noguera JL et al. High amino acid variationin the intracellular domain of the pig prolactin receptor (PRLR) and its relation to ovulationrate and piglet survival traits[J]. J Anim Sci.2006,84:1991–1998.
    [106] Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P et al. Mutation in bone morphogeneticprotein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes[J].Proc Natl Acad Sci USA.2001,98:5104–5109.
    [107] Wilson T, Wu XY, Juengel JL, Ross IK, Lumsden JM et al. Highly prolific Booroola sheephave a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor(ALK-6) that is expressed in both oocytes and granulosa cells[J]. Biol Reprod.2001,64:1225–1235.
    [108] Chu MX, Liu ZH, Jiao CL, He YQ, Fang L et al. Mutations in BMPR-IB and BMP-15genes are associated with litter size in small tailed Han sheep (Ovis aries)[J]. J Anim Sci.2007,85:598–603.
    [109] Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH et al. Mutations in the genes foroocyte-derived growth factors GDF9and BMP15are associated with both increasedovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries)[J]. Biol Reprod.2004,70:900–909.
    [110] Galloway SM, McNatty KP, Cambridge LM, Laitinen MPE, Juengel JL et al. Mutations inan oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertilityin a dosage-sensitive manner[J]. Nat Genet.2000,25:279–283.
    [111] Bodin L, Di Pasquale E, Fabre S, Bontoux M, Monget P et al. A novel mutation in the bonemorphogenetic protein15gene causing defective protein secretion is associated with bothincreased ovulation rate and sterility in Lacaune sheep[J]. Endocrinology.2007,148:393–400.
    [112] Ockner RK, Manning JA, Poppenhausen RB, Ho WK. A binding protein for fatty acids incytosol of intestinal mucosa, liver, myocardium, and other tissues[]J. Science.1972,177:56–58.
    [113] Hotamisligil GS. Inflammation and metabolic disorders[J]. Nature.2006,444:860–867.
    [114] Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipidmetabolism[J]. Nature.2001,414:799–806.
    [115] Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology[J]. Science.2001,294:1671–1875.
    [116] Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory andproresolving lipid mediators and pathways[J]. Annu Rev Immunol.2007,25:101–137.
    [117] Coe NR, Bernlohr DA. Physiological properties and functions of intracellular fattyacid-binding proteins[J]. Biochim Biophys Acta.1998,1391:287–306.
    [118] Zimmerman AW, Veerkamp JH. New insights into the structure and function of fattyacid-binding proteins[J]. Cell Mol Life Sci.2002,59:1096–1116.
    [119] Haunerland NH, Spener F. Fatty acid-binding proteins—insights from geneticmanipulations[J]. Prog Lipid Res.2004,43:328–349.
    [120] Chmurzynska A. The multigene family of fatty acidbinding proteins (FABPs): function,structure and polymorphism[J]. J Appl Genet.2006,47:39–48.
    [121] Banaszak L, Winter N, Xu Z, Bernlohr DA, Cowan S et al. Lipid-binding proteins: a familyof fatty acid and retinoid transport proteins[J]. Adv Protein Chem.1994,45:89–151.
    [122] Marcelino AM, Smock RG, Gierasch LM. Evolutionary coupling of structural andfunctional sequence information in the intracellular lipid-binding protein family[J]. Proteins,2006,63:373–84.
    [123] Falomir-Lockhart LJ, Laborde L, Kahn PC, Storch J, Corsico B. Protein-membraneinteraction and fatty acid transfer from intestinal fatty acid–binding protein to membranes:support for a multistep process[J]. J Biol Chem.2006,281:14232–40.
    [124] Liou HL, Kahn PC, Storch J.2002. Role of the helical domain in fatty acid transfer fromadipocyte and heart fatty acid–binding proteins to membranes: analysis of chimericproteins[J]. J Biol Chem.2002,277:1806–15.
    [125] Richieri GV, Ogata RT, Zimmerman AW, Veerkamp JH, Kleinfeld AM. Fatty acid–bindingproteins from different tissues show distinct patterns of fatty acid interactions[J].Biochemistry.2000,39:7197–204.
    [126] Pelton PD, Zhou L, Demarest KT, Burris TP. PPAR-γ activation induces the expression ofthe adipocyte fatty acid–binding protein gene in human macrophages[J]. Biochem BiophysRes Commun.1999,261:456–58.
    [127] Makowski L, Hotamisligil GS. The role of fatty acid binding proteins in metabolicsyndrome and atherosclerosis[J]. Curr Opin Lipidol.2005,16:543–548.
    [128] Hotamisligil GS et al. Uncoupling of obesity from insulin resistance through a targetedmutation in aP2, the adipocyte fatty acid binding protein[J]. Science.1996,274:1377–1379.
    [129] Uysal KT, Scheja L, Wiesbrock SM, Bonner-Weir S, Hotamisligil GS. Improved glucoseand lipid metabolism in genetically obese mice lacking aP2[J]. Endocrinology.2000,141:3388–3396.
    [130] Shen WJ, Sridhar K, Bernlohr DA, Kraemer FB. Interaction of rat hormone-sensitive lipasewith adipocyte lipid-binding protein[J]. Proc Natl Acad Sci USA.1999,96:5528–5532.
    [131] Masato Furuhashi, G khan S, Hotamisligil. Fatty acid-binding proteins: role in metabolicdiseases and potential as drug targes[J]. Natural Reviews.2008,7:489-501.
    [132] Fu Y, Luo N, Lopes-Virella MF, Garvey WT. The adipocyte lipid binding protein(ALBP/aP2) gene facilitates foam cell formation in human THP1macrophages[J].Atherosclerosis.2002,165:259–269
    [133] Kazemi MR, McDonald CM, Shigenaga JK, Grunfeld C, Feingold KR. Adipocyte fattyacidbinding protein expression and lipid accumulation are increased during activation ofmurine macrophages by toll-like receptor agonists[J]. Arterioscler Thromb Vasc Biol.2005,25:1220–1224.
    [134] Rolph MS et al. Regulation of dendritic cell function and T cell priming by the fattyacid-binding protein AP2[J]. J Immunol,2006,177:7794–7801.
    [135] Llaverias G et al. Atorvastatin reduces CD68, FABP4, and HBP expression inoxLDL-treated human macrophages[J]. Biochem Biophys Res Commun,2004,318:265–274.
    [136] Boord JB et al. Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesionformation in severe hypercholesterolemia[J]. Arterioscler Thromb Vasc Biol.2002,22:1686–1691.
    [137] Judith S, Betina C. The Emerging Functions and Mechanisms of Mammalian FattyAci-Binding Proteins[J]. Annu Rev Nutr.2008,28:73-95.
    [138] Lee SH, Park EW, Cho YM, Kim KH, Oh YK., Lee JH et al. Lipogenesis gene expressionprofiling on the early and late fattening stage of Hanwoo longissimus dorsi[J]. Journal ofAnimal Science and Technology (Kor).2006,48:913–20.
    [139] Everts-Van der Wind A, Kata SR, Band MR et al. A1463gene cattle and humancomparative map with anchor points defined by human genome sequence coordinates[J].Genome Research.2004,14:1424–37.
    [140] Michal JJ, Zhang ZW, Gaskins CT, Jiang Z. The bovine fatty acid binding protein4gene issignificantly associated with marbling and subcutaneous fat depth in Wagyu×Limousin F2Crosses[J]. Anim Genet.2006,37:400–2.
    [141] Lee SH, van der Werf, JHJ et al. Genetic polymorphisms of the bovine Fatty acid bindingprotein4gene are significantly associated with marbling and carcass weight in Hanwoo(Korean Cattle)[J]. Anim Genet.2010,41(4):442-444.
    [142] Hoashi S, Hinenoya T, Tanaka A et al. Association between fatty acid compositions andgentoypes of FABP4and LXR-alpha in Japanese Black cattle[J]. BMC Genetics.2008,9:84.
    [143] Wang Q, Li H, Li N, Leng L,Wang Y, Tang Z. Identification of single nucleotidepolymorphism of adipocyte fatty acid-binding protein gene and its association with fatnesstraits in the chicken[J]. Poult Science.2006,85:429–434.
    [144] Wang QT, Guan et al. A novel polymorphism in the chicken adipocyte fatty acid-bindingprotein gene (FABP4) that alters ligand-binding and correlates with fatness[J]. ComparativeBiochemistry and Physiology. B, Biochemistry&Molecular Biology.2009,154(3):298-302.
    [145] Smith WJM, Y Li et al. A genomics-informed, SNP association study reveals FBLN1andFABP4as contributing to resistance to fleece rot in Australian Merino sheep[J]. BMCVeterinary Research.2010,6:27.
    [146] Froesch ER, Zapf J, Audhya TK, Ben-Porath E, Segen BJ, Gibson KD. Nonsuppressibleinsulin-like activity and thyroid hormones: major pituitary-dependent sulfation factors forchick embryo cartilage[J]. Proc Natl Acad Sci USA.1976,73:2904–2908.
    [147] Daughaday WH, Hall K, Raben MS, Salmon WD Jr, van den Brande JL, an Wyk JJ.Somatomedin: proposed designation for sulphation factor[J]. Nature.1972,235:107.
    [148] Firth SM, Baxter RC. Cellular actions of the insulinlike growth factor binding proteins[J].Endocr Rev.2002,23:824–854.
    [149] Phillips LS, Pao CI, Villafuerte BC. Molecular regulation of insulin-like growth factor-I andits principal binding protein, IGFBP-3[J]. Prog Nucleic Acid Res Mol Biol.1998,60:195–265.
    [150] Albiston AL, Saffery R, Herington AC. Cloning and characterization of the promoter for therat insulin-like growth factor-binding protein-3gene[J]. Endocrinology.1995,136:696–704.
    [151] Olivecrona H, Hilding A, Ekstro¨m C, Barle H, Nyberg B, Mo¨ ller C et al. Acute andshort-term effects of growth hormone on insulin-like growth factors and their bindingproteins: serum levels and hepatic messenger ribonucleic acid responses in humans[J]. J ClinEndocrinol Metab.1999,84:553–560.
    [152] Domene′HM, Bengolea SV, Jasper HG, Boisclair YR. Acid-labile subunit deficiency:phenotypic similarities and differences between human and mouse[J]. J Endocrinol Invest.2005,28(5Suppl):43–46.
    [153] Hwa V,Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP)superfamily[J]. Endocr Rev.1999,20:761–787.
    [154] Zhu W, Shiojima I, Ito Y, Li Z, Ikeda H, Yoshida M et al. IGFBP-4is an inhibitor ofcanonical Wnt signalling required for cardiogenesis[J]. Nature.2008,454:345–349
    [155] Fu P, Thompson JA, Bach LA. Promotion of cancer cell migration: an insulin-like growthfactor (IGF)-independent action of IGF-binding protein-6[J]. J Biol Chem.2007,282:22298–22306.
    [156] Kiepe D, Van Der Pas A, Ciarmatori S, Sta¨ndker L, Schu¨ tt B, Hoeflich A et al. Definedcarboxy-terminal fragments of insulin-like growth factor (IGF) binding protein-2exertsimilar mitogenic activity on cultured rat growth plate chondrocytes as IGF-I[J].Endocrinology.2008,149:4901–4911.
    [157] Modric T, Silha JV, Shi Z, Gui Y, Suwanichkul A, Durham SK rt al. Phenotypicmanifestations of insulin-like growth factor-binding protein-3overexpression in transgenicmice[J]. Endocrinology.2001,142:1958–1967.
    [158] Muzumdar RH, Ma X, Fishman S, Yang X, Atzmon G, Vuguin P et al. Central andopposing effects of IGF-I and IGF-binding protein-3on systemic insulin action[J]. Diabetes.2006,55:2788–2796.
    [159] Bail HJ, Kolbeck S, Lindner T, Dahne M, Weiler A, Windhagen HJ et al. The effect ofgrowth hormone on insulin-like growth factor I and bone metabolism in distractionosteogenesis[J]. Growth Horm IGF Res.2001,11:314–323.
    [160] Gatford KL, Dalitz PA, Cock ML, Harding R, Owens JA. Acute ethanol exposure inpregnancy alters the insulin-like growth factor axis of fetal and maternal sheep[J]. Am JPhysiol Endocrinol Metab.2007,292: E494–E500.
    [161] Gibson CA, Staley MD, Baumrucker CR. Identification of IGF binding proteins in bovinemilk and the demonstration of IGFBP-3synthesis and release by bovine mammary epithelialcells[J]. J Anim Sci.1999,77:1547–1557.
    [162] Velayudhan BT, Govoni KE, Hoagland TA, Zinn SA. Growth rate and changes of thesomatotropic axis in beef cattle administered exogenous bovine somatotropin beginning attwo hundred, two hundred fifty, and three hundred days of age[J]. J Anim Sci.2007,85:2866–2872.
    [163] Yamanaka Y, Fowlkes JL, Wilson EM, Rosenfeld RG, Oh Y. Characterization ofinsulin-like growth factor binding protein-3(IGFBP-3) binding to human breast cancer cells:kinetics of IGFBP-3binding and identification of receptor binding domain on the IGFBP-3molecule[J]. Endocrinology.1999,140:1319–1328.
    [164] Buckway CK, Wilson EM, Ahlsen M, Bang P, Oh Y, Rosenfeld RG. Mutation of threecritical amino acids of the N-terminal domain of IGF-binding protein-3essential for highaffinity IGF binding[J]. J Clin Endocrinol Metab.2001,86:4943–4950.
    [165] Firth SM, Ganeshprasad U, Baxter RC. Structural determinants of ligand and cell surfacebinding of insulin-like growth factor-binding protein-3[J]. J Biol Chem.1998,273:2631–2638.
    [166] Schedlich LJ, Le Page SL, Firth SM, Briggs LJ, Jans DA, Baxter RC. Nuclear import ofinsulin-like growth factor-binding protein-3and-5is mediated by the importin betasubunit[J]. J Biol Chem.2000,275:23462–23470.
    [167] Schedlich LJ, Graham LD, O’Han MK, Muthukaruppan A, Yan X, Firth SM et al.Molecular basis of the interaction between IGFBP-3and retinoid X receptor: role inmodulation of RAR-signaling[J]. Arch Biochem Biophys.2007,465:359–369.
    [168] LeRoith D, Roberts CT Jr. The insulin-like growth factor system and cancer[J]. Cancer Lett.2003,195:127–137.
    [169] Grimberg A, Cohen P. Role of insulin-like growth factors and their binding proteins ingrowth control and carcinogenesis[J]. J Cell Physiol.2000,183:1–9.
    [170] Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y et al. Overexpression of insulin-like growthfactor-1in mice protects from myocyte death after infarction, attenuating ventriculardilation,wall stress, and cardiac hypertrophy[J]. J Clin Invest.1997,100:1991–1999.
    [171] Barreca A, Artini PG, Cesarone A, Arvigo M, D’Ambrogio G, Genazzani AR et al.Interrelationships between follicle stimulating hormone and the growth hormone–insulin-likegrowth factor–IGF-binding proteins axes in human granulosa cells in culture[J]. J EndocrinolInvest.1996,19:35–42.
    [172] Oh Y, Muller HL, Ng L, Rosenfeld RG. Transforming growth factorbeta-induced cellgrowth inhibition in human breast cancer cells is mediated through insulin-like growthfactor-binding protein-3action[J]. J Biol Chem.1995,270:13589–13592.
    [173] Lalou C, Lassarre C, Binoux M. A proteolytic fragment of insulin-like growth factor (IGF)binding protein-3that fails to bind IGFs inhibits the mitogenic effects of IGF-I and insulin[J].Endocrinology.1996,137:3206–3212.
    [174] Butt AJ, Fraley KA, Firth SM, Baxter RC. IGF-binding protein-3-induced growth inhibitionand apoptosis do not require cell surface binding and nuclear translocation in human breastcancer cells[J]. Endocrinology.2002,143:2693–2699.
    [175] Chan SS, Twigg SM, Firth SM, Baxter RC. Insulin-like growth factor binding protein-3leads to insulin resistance in adipocytes[J]. J Clin Endocrinol Metab.2005,90:6588–6595.
    [176] Bang P, Brismar K, Rosenfeld RG. Increased proteolysis of insulin-like growthfactor-binding protein-3(IGFBP-3) in noninsulin-dependent di-abetes mellitus serum, withelevation of a29-kilodalton (kDa) glycosylated IGFBP-3fragment contained in theapproximately130-to150-kDa ternary complex[J]. J Clin Endocrinol Metab.1994,78:1119–1127.
    [177] Modric T, Silha JV, Shi Z, Gui Y, Suwanichkul A, Durham SK et al. Phenotypicmanifestations of insulin-like growth factor-binding protein-3overexpression in transgenicmice[J]. Endocrinology.2001,142:1958–1967.
    [178] Yakar S, Rosen CJ, Bouxsein ML, Sun H, Mejia W, Kawashima Y et al. Serum complexesof insulin-like growth factor-1modulate skeletal integrity and carbohydrate metabolism[J].FASEB J.2008.
    [179] Deal C, Ma J, Wilkin F, Paquette J, Rozen F, Ge B et al. Novel promoter polymorphism ininsulin-like growth factor-binding protein-3: correlation with serum levels and interactionwith known regulators[J]. J Clin Endocrinol Metab.2001,86:1274–1280.
    [180] Tamimi RM, Cox DG, Kraft P, Pollak MN, Haiman CA, Cheng I et al. Common geneticvariation in IGF1, IGFBP-1, and IGFBP-3in relation to mammographic density:across-sectional study[J]. Breast Cancer Res.2007,9: R18.
    [181] Fletcher O, Gibson L, Johnson N, Altmann DR, Holly JM, Ashworth A et al.Polymorphisms and circulating levels in the insulin-like growth factor system and risk ofbreast cancer: a systematic review[J]. Cancer Epidemiol Biomarkers Prev.2005,14:2–19.
    [182] Sun WB. Polymorphism of insulin like growth factor binding protein-3(IGFBP-3) gene andits relation with beef performance of Qinchuan cattle[J]. Anim Biotech Bull.2002,8:95–99.
    [183]沈敏,王文君,杨永林,甘尚权,何其宏等. IGFBP-3基因多态性及其与中国美利奴羊部分羊毛性状的关联分析[D].遗传.2008,9.
    [184]王文君.猪胰岛素样生长因子结合蛋白1~6基因核苷酸变异的研究[D].中国农业大学博士学位论文,2006.
    [185] Senger DR, Wirth DF, Hynes RO. Transformed mammalian cells secrete specific proteinsand phosphoproteins[J]. Cell.1979,16(4):885.
    [186] Fisher LW, Hawkins GR, Tuross N, Termine JD. Purification and partial characterization ofsmall proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineralcompartment of developing human bone[J]. J Biol Chem.1987,262(20):9702.
    [187] Craig AM, Nemir M, Mukherjee BB, Chambers AF Denhardt DT. Identification of themajor phosphoprotein secreted by many rodent cell lines as2ar/osteopontin: enhancedexpression in H-ras-transformed3T3cells. Biochem[J]. Biophys Res Commun.1988,157(1):166.
    [188] Patarca R, Freeman GJ, Singh RP, Wei FY, Durfee T, Blattner F et al. Structural andfunctional studies of the early T lymphocyte activation1(Eta-1) gene. Definition of a novelT cell-dependent response associated with genetic resistance to bacterial infection[J]. J ExpMed.1989,170(1):145.
    [189] Craig AM, Denhardt DT. The murine gene encoding secreted phosphoprotein1(osteopontin): promoter structure, activity, and induction in vivo by estrogen andprogesterone[J]. Gene.1991,100:163.
    [190] Zohar R, Lee W, Arora P, Cheifetz S, McCulloch C, Sodek J. Single cell analysis ofintracellular osteopontin in osteogenic cultures of fetal rat calvarial cells[J]. J Cell Physiol.1997,170:88–100.
    [191] Senger DR, Perruzzi CA, Papadopoulos-Sergiou A, Van de Water L. Adhesive properties ofosteopontin: regulation by a naturally occurring thrombin-cleavage in close proximity to theGRGDS cell-binding domain[J]. Mol Biol Cell.1994,5(5):565.
    [192] Denhardt DT, Guo X. Osteopontin: a protein with diverse functions[J]. FASEB J.1993,7(15):1475.
    [193] Weber GF. The metastasis gene osteopontin: a candidate target for cancer therapy[J].Biochim Biophys Acta.2001,1552(2):61.
    [194] Bautista DS, Denstedt J, Chambers AF, Harris JF. Low-molecular-weight variants ofosteopontin generated by serine proteinases in urine of patients with kidney stones[J]. J CellBiochem.1996,61(3):402.
    [195] Prince CW et al. Isolation, characterization, and biosynthesis of a phosphorylatedglycoprotein from rat bone[J]. J Biol Chem.1987,262:2900–2907.
    [196] Senger DR, Perruzzi CA. Cell migration promoted by a potent GRGDS-containingthrombin-cleavage fragment of osteopontin[J]. Biochim Biophys Acta.1996,1314(1–2):13.
    [197] McKee MD, Nanci A. Osteopontin at mineralized tissue interfaces in bone, teeth, andosseointegrated implants: Ultrastructural distribution and implications for mineralized tissueformation, turnover, and repair[J]. Microsc Res Tech.1996,33:141–164.
    [198] Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD. Osteopontin deficiency increasesmineral content and mineral crystallinity in mouse bone[J]. Calcif Tissue Int.2002,71:145–154.
    [199] Kavukcuoglu NB, Denhardt DT, Guzelsu N, Mann AB. Effects of osteopontin defficiencyand aging on nanomechanics of mouse bone[J]. J Biomed Materials Res.2007,83:136–144.
    [200] Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT, Nifuji A, NodaM. Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficientmice[J]. J Bone Miner Res.2002,17:661–667.
    [201] Chellaiah MA, Kizer N, Biswas R, Alvarez U, Strauss-Schoenberger J, Rifas L et al.Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44surfaceexpression[J]. Mol Biol Cell.2003,14:173–189.
    [202] Suzuki K, Zhu B, Rittling SR, Denhardt DT, Goldberg HA, McCulloch CA et al.Colocalization of intracellular osteopontin with CD44is associated with migration, cellfusion, and resorption in osteoclasts[J]. J Bone Miner Res.2002,17:1486–1497.
    [203] Giachelli CM, Lombardi D, Johnson RJ, Murry CE, Almeida M. Evidence for a role ofosteopontin in macrophage infiltration in response to pathological stimuli in vivo[J]. Am JPathol.1998,152:353–358.
    [204] Christian CK, Dana JU, David TD. Control of Osteoponsin Signaling and Function by Post-Translational Phosphorylation and Protein Folding[J]. Journal of Cellular Biochemistry.2007,102:912-924.
    [205] Schnabel RD, Kim JJ, Ashwell MS, Sonstegard TS, Sonstegard CP. Van Tassell EE et al.Fine-mapping milk production quantitative trait loci on BTA6: Analysis of the bovineosteopontin gene[J]. Proc Natl Acad Sci USA.2005,102:6896–6901.
    [206] White SN, Casas E, Allan MF, Keele JW, Snelling WM, Snelling TL et al. Beef cattleevaluation of six DNA markers developed for dairy traits reveals an osteopontinpolymorphism is associated with postweaning growth[J]. J Anim Sci.2007,85:1–10.
    [207] Sheehy PA, Riley LG, Raadsma HW, Williamson P, Wynn PC. A functional genomicsapproach to evaluate candidate genes located in a QTL interval for milk production traits onBTA6[J]. Animal Genetics.2009,40:492–498.
    [208] Garc′a-Ferna′ndez*M, Gutie′rrez-Gil*B, Sa′nchez JP, Mora′n JA, Garc′a-Ga′mez E,lvarez LA et al. The role of bovine causal genes underlying dairy traits in Spanish Churrasheep[J]. Animal Genetics.2010,42:415-420.
    [209] Zhou H, Hickford JG, Fang Q. A two-step procedure for extracting genomic DNA fromdried blood spots on filter paper for polymerase chain reaction amplification[J]. AnalyticalBiochemistry.2006,354(1):159-161.
    [210] Byun SO, Fang Q, Zhou H, Hickford JG. An effective method for silver-staining DNA inlarge numbers of polyacrylamide gels[J]. Analytical Biochemistry.2009,385(1):174-175.
    [211] Shi YY, He L, SHEsis. A powerful software platform for analyses of linkage disequilibrium,haplotype construction, and genetic association at polymorphism loci[J]. Cell Res.2005,15(2):97-8.
    [212] Kumar Brijesh, Francis Sue M, Suttie James M, Thompson Mary P. Expression of obeseMRNA in genetically lean and fat selection lines of sheep[J]. Comparative Biochemistry andPhysiology Part B.1998,120:543-548.
    [213]徐秋良.绵羊三个肉质候选基因的序列特征、多态性及发育表达规律研究[D].西北农林科技大学博士学位论文.2008.
    [214] Edwards J D, Lee V M, McCouch S R. Sources and predictors of resolvable indelpolymorphism assessed using the rice as a model[J]. Mol Gen Genomics.2004,271:298-307.
    [215] Wang Z, Moult J. SNPs, Proteins structer, and disease[J]. Hum Mutat.2001,17:263-270.
    [216]薛丹. G蛋白偶联受体功能位点与功能性SNPs的预测[D].上海大学博士学位论文.2008.
    [217] Smith GR. Chi hotspots of generalized recombination[J]. Cell.1983,34:709–710.
    [218] Cucca F, Muntoni F, Lampis R, Frau F, Cao A, De et al. A novel HLA-DQB1allele:evidence for gene conversion event promoted by (-like sequence at DQB1locus)[J]. TissueAntigens.1993,41:263–266.
    [219] Winderickx J, Battisti L, Hibiya Y, Motulski AG, Deeb SS. Haplotype diversity in thehuman red and green opsin genes: evidence for frequent sequence exchange in exon3[J].Hum Mol Genet.1993,2:1413–1421.
    [220] Krawinkel U, Zoebelein G, Bothwell AL. Palindromic sequences are associated with sites ofDNA breakage during gene conversion[J]. Nucleic Acids Rearch.1986,14:3871-3882.
    [221] Corva P, Soria L, Schor A, Villarreal E, Cenci MP, Motter M et al. Association of CAPN1and CAST gene polymorphism with meat tenderness in Bos taurus beef cattle fromArgentina[J]. Genetics and Molecular Biology.2007,30:1064-1069.
    [222] Byun SO, Zhou HT, Hickford JGH. Haplotypic Diversity With the Ovine Calpastatin(CAST) Gene[J]. Mol Biotechnol.2009,41:133-137.
    [223] Hayes B, Hagesaether N, Adn y T, Pellerud G, Berg PR, Lien S. Effects on productiontraits of haplotypes among casein genes in Norwegian goats and evidence for a site ofpreferential recombination[J]. Genetics.2006,174:455-464.
    [224] Carneiro M, Ferrand N. Extensive intragenic recombination and patterns of linkagedisequilibrium at the CSN3locus in European rabbit[J]. Genetics, Selection, Evolution.2007,39:341-352.
    [225] Matsuno Y, Yamashiro Y, Yamamoto K, Hattori Y, Yamamoto K, Ohba Y, Miyaji T. Apossible example of gene conversion with a common b-thalassemia mutation and Chisequence present in the b-globin gene[J]. Hum Genet.1992,88:357–358.
    [226] Smukowski CS, Noor MAF. Recombination rate variation in closely related species[J].Heredity.2011,107:496-508.
    [227] Morris CA, McEwan JC, Fennessy PF, Bain WE, Greer GJ, Hickey SM. Selection for highor low backfat depth in Coopworth sheep: Juvenile traits[J]. J Anim Sci.1997,65:93-103.
    [228] French MC, Littlejohn RP, Greer GJ, Bain WE, McEwan JC, Tisdall DJ. Growth hormoneand ghrelin receptor genes are differentially expressed between genetically lean and fatselection lines of sheep[J]. J Anim Sci.2006,84:324-331.
    [229] Francis SM, Veenvliet BA, Stuart SK, Suttie J M. Growth hormone(GH) secretory patternsin genetically lean and fat sheep[J]. Proc New Zealand Soc Anim Production.1995,55:272-274.
    [230] Suttie JM, Lord EA, Gluckman PD, Fennessy PF, Littlejohn RP. Genetically lean and fatsheep differ in their growth hormone response to growth hormone-releasing factor[J].Domestic Anim Endocrinol.1991,8:323-329.
    [231] Suttie JM, Veenvliet BA, Littlejohn RP, Gluckman PD, Corson ID, Fennessy PF. Growthhormone pulsatility in ram lambs of genotypes selected for fatness or leanness[J]. AnimProduction.1993,119-125.
    [232] Francis SM, Veenvliet BA, Littlejohn RP, Suttie JM. Insulin-like growth factor-1(IGF-1)mRNA and plasma concentrations in lean and fat genotypes of sheep[J]. Proc Endocrine SocAust.1995,38:168.
    [233] Kumar Brijesh, Francis Sue M, Suttie James M, Thompson Mary P. Expression of obeseMRNA in genetically lean and fat selection lines of sheep[J]. Comparative Biochemistry andPhysiology Part B.1998,120:543-548.
    [234] Francis SM, Venters SJ, Duxson MJ, Suttie JM. Differences in pituiatary cell mumber butnot cell type between genetically lean and fat Coopworth sheep[J]. Domestic AnimalEndocrinology.2000,18:229-239.
    [235] McEwan JC, Morris CA, Fennessy PF, Greer GJ, Bain WE, Hickey SM. Selection for highor low backfat depth in Coopworth sheep: breeding-ewe traits[J]. Animal Science.2001,73:241-252.
    [236] Woldehawariat G, Talamantes MA, Petty RR et al. A summary of genetic and environmentstatistics for growth and conformation characters in young beff cattle[J]. Texas Agr Exp StaDept Tech Rep.1977,103.
    [237] Vermorel M, Dardilat C, Vernet J et al. Energy metabolism and thermoregulation in thenewborn calf[J]. Ann Rech Vet.1983,14(4):382-389.
    [238] Forrest RH, Hickford JG, Wynyard J et al. Polymorphism at the ovine β3-adrenergicreceptor locus: Associations with birth weight, growth rate, carcass composition and coldsurvival[J]. Animal Genetics.2003,34:19-25.
    [239] Horrell A, Forrest RH, Zhou H et al. Association of the ADRB3gene with birth weight andgrowth rate to weaning in New Zealand Romney sheep[J]. Anim Genet.2009,40(2):251.
    [240] Hopkins DL, Safari E, Thompson JM, Smith CR. Video image analysis in the Australianmeat industry–precision and accuracy of predicting lean meat yield in lamb carcass[J]. MeatScience.2004,67:269-274.
    [241] Haley CS and Vissher PM. Strategies to utilise marker-quantitatibe trait loci associations[J].J. Dairy Sci,1998,8:85-97.
    [242] Spelaman R and Bovenhuis H. Moving from QTL experimental results to the utilization ofQTL in breeding programmes[J]. Anim Genet,1998,29:77-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700