柑橘及其近缘属植物DNA条形码研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA条形码技术(DNA Barcoding)是一种利用短的DNA片段对物种进行识别和鉴定的分子生物学技术,它作为一种新兴的分类学研究技术,近年来引起了越来越多的生物学家的关注。DNA条形码技术的原理是根据基因序列的种间遗传变异大于种内遗传变异而实现准确快速的物种鉴定。自2003年加拿大科学家Paul Hebert等提出该技术以来,已在昆虫、鸟类、鱼类等动物及硅藻类和原核生物中成功应用。在动物的DNA条形码研究中,线粒体细胞色素c氧化酶亚基Ⅰ(COI)基因片段已被最成功地用于新种的发现和隐性种的鉴定。然而,COI基因在高等植物中进化速率相对较慢,并不适合作为植物DNA条形码。目前,国内外植物DNA条形码研究还处于寻找合适的基因片段的阶段,许多学者进行了积极的探索,报道了多种植物条形码候选片段或片段组合,但迄今仍没有找到能满足所有标准的DNA条形码特征片段。
     柑橘属(Citrus L.)由林奈1753年订立,系芸香科(Rutaceae)、柑橘亚科(Aurantioideae)植物。根据雄蕊数目及汁胞构造的不同,Swingle和Reece(1967)将柑橘属及其近缘的五个属,枳属(Poncirus Raf.)、金柑属(Fortunella Swingle)、澳枳檬属(Microcitrus Swingle)、澳沙檬属(Eremocitrus Swingle)和多蕊橘属(Clymenia Swingle)一起划归为真正柑橘果树类。在过去250余年的时间里,国内外学者对柑桔及其近缘属植物的分类和系统发生问题从形态到分子开展了一系列研究。然而,由于研究方法和使用的证据的不同,不同学者得到了不同的研究结论,造成了柑橘分类在亚属划分和种的数目等关键问题上分歧依然很大。准确地弄清柑橘及其近缘属植物之间的系统进化关系,对有关的物种进行准确、快速的识别和鉴定,对未来柑橘属植物的遗传育种,种质资源的深入研究、保护和利用都具有重要的理论和实践价值。
     本论文以真正柑橘果树类6属植物59个生物类型为研究材料,用matK、rpoB、rpoC1、trnG-trnS、psbH-petB、trnL-trnF等六个叶绿体片段和细胞核ITS序列作为候选基因片段,分别分析了这些候选片段在真正柑橘果树类6属间和柑橘属内物种的识别能力,试图为植物界的DNA条形码研究提供新信息。基于遗传距离分析了真正柑橘果树类属间及柑橘属内种间种内变异,讨论了各片段及片段组合作为该类群植物条形码的适应性。结果显示,在遗传距离方面,ITS序列表现出作为该类群植物条形码的潜力。我们还以九里香(Murraya paniculata L.)、蚝壳刺(Severinia buxifolia (Poir.) Tenore)和酒饼簕(Atalantia buxifolia (Poir.) Oliv.)作为外类群,利用PAUP计算机软件分别用MP法、NJ法和UPGMA法,使用七个单片段和三个组合(ITS+matK、matK+trnG-trnS+psbH-petB、matK+rpoB+rpoC1)分别构建了系统进化树,讨论了候选片段鉴定属的能力;以枳(P. trifoliata(L.)Raf.)、富民枳(P. polyandra S. Q. Ding, X. N. Zhang, Z. R.Bao & M. Q. Liang)和飞龙枳(P.trifoliata var. monstrosa (T. Ito) Swing.)为外类群,讨论各候选片段鉴定柑橘属内种的能力。结果显示,所有候选条码的属和属内种的物种鉴定率都较低,不能完成对该类群植物的准确鉴定。最后,我们重点讨论了ITS、matK和片段组合等作为柑橘及其近缘植物条形码的可能性。
DNA barcoding is a technique for identifying and characterizing species of organisms using a short DNA region. It is becoming more and more attractive to biologists as a new method to aid in species identification. DNA barcoding can identify species rapidly and accurately based on the principle of inter-specific divergence is greater than intra-specific divergence. Since 2003, Paul Hebert have suggested that we should choose one standard gene fragment as new "taxonomy character" to help traditional taxonomy, the mitochondrial cytochrome c oxidase subunit 1 (COI or coxl) sequence as DNA barcode has been successfully employed for species identification and revealing cryptic species or new species in diverse groups of animals such as insects, fishes, birds, diatoms and prokaryotes. However, COI gene is not suitable candidate for plant DNA barcoding because of its slow substitution rate in higher plant. Plant DNA barcode technique is still in the stage of searching for a suitable DNA region. Although different candidate single region or combination of regions from chloroplast genome were reported in the existing literature. we still lack an obvious well-characterized plant locus that meets all the necessary criteria of a DNA barcoding region.
     The genus Citrus L. established in 1753 by Carl Linnaeus belongs to the subfamily Aurantioideae of the family Rutaceae. Swingle and Reece (1967) classified the genus Citrus and its five close relatives, Poncirus, Fortunella, Microcitrus, Eremocitrus and Clymenia into the true citrus fruit trees group based mainly on the number of stamen and structure of pulp-vesicles of the genera. A series of study from morphology to molecular markers on the taxonomy and evolution of the genus Citrus and its close relatives has been carried out both in China and abroad in the past more than 250 years. The taxonomic and evolutionary relationships between Citrus and its close relatives have remained unresolved. A better understanding of the phylogenetic relationship between Citrus and its closely related genera is needed for future variety breeding, germplasm conservation and utilization of the genus Citrus.
     In the present study, six candidate plant barcoding regions of chloroplast genome、rpoC1、trnG-trnS、psbH-petB and trnL-trnF, and nuclear ITS region of 59 biological types collected from the six genera of the true citrus fruit trees group were tested in an attempt to develop DNA barcoding makers for species identification and taxonomy of the genus Citrus and its closely related genera. To test the potential of the candidate makers being used as DNA barcoding of the true citrus fruit trees group, firstly, the inter-generic divergence of all genotypes and inter- and intra-specific divergence of Citrus L. were analyzed in present study based on genetic distances. The results of this study showed that none of the candidate markers proposed in the exsiting literature provided unique identifiers for all the species tested. The results of analysis of genetic distances show that ITS sequences have the potential as DNA barcoding of Citrus. And then, the maximum parsimony (MP), neighbor-joining (NJ) and unpaired group mean averages algorithm (UPGMA) trees of all genotypes were constructed with PAUP* version 4.10b software by using the DNA sequences obtained and Murraya paniculata (L.) Jack., Atalantia buxifolia Correa., and Severinia buxifolia (Poir.) Tenore as outgroups. In addition, the MP, NJ and UPGMA trees of 47 accessions of Citrus L. were constructed with PAUP* version 4.10b software by usingon the Citrus DNA sequences and P. trifoliata (L.) Raf., P. polyandra S. Q. Ding, X. N. Zhang, Z. R.Bao & M. Q. Liang, P. trifoliata var. monstrosa (T. Ito) Swingle as outgroups. Finally, the potential of using ITS, matK, or a combination of regions of cpDNA as the true citrus fruit trees group DNA barcoding was discussed in details.
引文
[1]Hebert PDN, Ratnasingham S, Dewaard JR (2003b). Barcoding animal life:cytochrome coxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B (Suppl.).,270: S96-S99.
    [2]Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2002). DNA points the way ahead in taxonomy. Nature 418:479.
    [3]Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2003). A plea for DNA taxonomy. Trends in Ecology & Evolution 18 (2):70-74.
    [4]Hebert PDN, Cywinska A, Ball SL et al. (2003a). Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B.,270:313-321.
    [5]Hebert PDN, Penton EH, Burns JM, Janzen DH and Hallwachs W(2004b). Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. PNAS 101:14812-14817.
    [6]肖金花,肖晖,黄大卫(2004).生物分类学的新动向——DNA条形编码.动物学报50(5)
    852-855.
    [7]王鑫,黄兵(2006).DNA条形编码技术在动物分类中的研究进展.生物技术通报(4)67-72.
    [8]Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004a). Identification of birds through DNA barcodes. PLoS Biol 2(10):e312 DOI:10.1371/joumal.pbio.0020312.
    [9]Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005). DNA barcoding Australia's fish species. Philos. Trans. R. Soc. Lond. B 360,1847-1857.
    [10]Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. U.S.A.103,968-971.
    [11]Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN (2007). Comprehensive DNA barcode coverage of North American birds. Mol. Ecol. Notes 7,535-543.
    [12]Yoo HS, Eah JY, Kim JS, Kim YJ, Min MS, Paek WK, Lee H, and Kim CB (2006). DNA Barcoding Korean Birds. Mol. Cells, Vol.22, No.3, pp.323-327.
    [13]Newmaster SG, Fazekas AJ, and Ragupathy S (2006). DNA barcoding in land plants:evaluation of rbcL in a multigene tiered approach. Can. J.Bot.84:335-341.
    [14]Taberlet P, Coissac E, Pompanon F et al. (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research,2007,35 (3):e14.
    [15]陈士林,姚辉,宋经元,李西文,刘昶,陆建伟(2007).基于DNA barcoding(条形码)技术的中药材鉴定.世界科学技术-中医药现代化9,7-12.
    [16]Valentini A, Pompanon F, Taberlet P (2009). DNA barcoding for ecologists. Trend Ecol Evol 24, 110-117.
    [17]Chen SL, Yao H, Han JP, Liu C, Song JY, Shi LC, Zhu YJ,Ma XY, Gao T, Pang XH, Luo K, Li Y, Li XW, Jia XC, Lin YL, Leon C (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5, e8613.
    [18]Meyer C.P. and Paulay G (2005). DNA Barcoding:Error Rates Based on Comprehensive Sampling[J /OL]. PLoS Biol.3 (12):2229~2238.
    [19]Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA and Janzen DH (2005). Use of DNA barcodes to identify flowering plants. Proc. Natl Acad. Sci. USA 102,8369-8374.
    [20]Kress WJ and Erickson DL (2008). DNA barcodes:Genes, genomics, and bioinformatics. PNAS vol. 105 no.82761-2762.
    [21]Stoeckle MY and Hebert PDN (2008). Barcode of life. Science American, Oct.82-88.
    [22]Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008a). DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105:2923-2928.
    [23]Lahaye R, Savolainen V, Duthoit S, Maurin O and van der Bank M (2008b). A test of psbK-psbl and atpF-atpH as potential plant DNA barcodes using the flora of the Kruger National Park as a model system (South Africa). Nature Preceding.
    [24]Newmaster SG, Fazekas AJ, Steeves RAD, Janovec J (2008). Testing candidate plant barcode regions in the Myristicaceae. Molecular Ecology Resources.8,480-490
    [25]Kress WJ, Erickson DL (2007). A two-locus global DNA barcode for land plants:the coding rbcL gene complements the non-coding trnH-psbA spacer region. PloS One 2, e508.
    26 Saunders GW (2005). Applying DNA barcoding to red macroalgae:a preliminary appraisal holds promise for future applications. Phil. Trans. R. Soc. B 360,1879-1888.
    [27]Evans KM, Wortley AH, Mann DG (2007). An assessment of potential diatom "barcode" genes (coxl, rbcL,18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158,349-364.
    [28]Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madrin~a n S, Petersen G et al. (2007). A proposal for a standardised protocol to barcode all land plants. Taxon 56:295-299.
    [29]Remigio, E.A., Hebert, P.D.N., (2003). Testing the utility of partial COI sequences for phylogenetic estimates of Gastropod relationships. Mol. Phylogenet. Evol.29,641-647.
    [30]Hogg, I.D., Hebert, P.D.N. (2004). Biological identification of springtails (Hexapoda:Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Can. J. Zool.82,749-754
    [31]Elias M, Hill RI, Willmott KR, Dasmahapatra KK, Brower AVZ, Mallet J, Jiggins CD (2007). Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proc Biol Sci 274, 2881-2889.
    [32]Tavares ES, Baker AJ (2008). Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol Biol 8,81-81.
    [33]Ball, S.L., Hebert, P.D.N., Burian, S.K., Webb, J.M. (2005). Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. J. North Am. Benthol. Soc.24,508-524.
    [34]Greenstone, M.H., Rowley, D.L., Heimbach, U., Lundgren, J.G., Pfannenstiel, R.S., Rehner, S.A. (2005). Barcoding generalist predators by polymerase chain reaction:carabids and spiders. Mol. Ecol. 14,3247-3266.
    [35]Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005). Towards writing the encyclopedia of life:an introduction to DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360, 1805-1811.
    [36]Smith, M.A., Fisher, B.L., Hebert, P.D.N., (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group:the ants of Madagascar. Philos. Trans. R. Soc. B 360, 1825-1834.
    [37]Costa, F.O., deWaard, J.R., Boutillier, J., Ratnasingham, S., Dooh, R.T., Hajibabaei, M., Hebert, P.D.N., (2007). Biological identifications through DNA barcodes:the case of the Crustacea. Can. J. Fish. Aquat. Sci.64,272-295.
    [38]Will KW, Mishler BD, Wheeler QD (2005). The perils of DNA barcoding and the need for integrative taxonomy.Syst Biol 54,844-851.
    [39]Rubinoff D, Cameron S, Will K (2006a). A genomic perspective on the shortcomings of mitochondrial DNA for "Barcoding" identification. J Hered 97,581-594.
    [40]Rubinoff D, Cameron S, Will K (2006b). Are plant DNA barcodes a search for the Holy Grail? Trend Ecol Evol 21,1-2.
    [41]王剑峰,乔格侠(2007).DNA条形编码在蚜虫类昆虫中的应用.动物分类学报32,153-159.
    [42]潘程莹,胡婧,张霞,黄原(2006)斑腿蝗科Catantopidae七种蝗虫线粒体CO Ⅰ基因的DNA条形码研究.昆虫分类学报Vol.28.103-110
    [43]王莹,苏成勇,潘鸿春,郝家胜(2007).基于线粒体COⅠ基因序列分析宝贝科主要类群的系统发生关系.动物分类学报.32(1):124-130.
    [44]高玉时,屠云洁,童海兵,王克华,陈宽维,顾荣(2007).6个地方鸡种线粒体COⅠ基因的DNA条形码.农业生物技术学报,15(6):924-930.
    [45]梁刚,李涛,尹祚华,雷富民(2008).利用CoⅠ基因序列对雀科鸟类的分子系统发育关系初探.动物学研究.29,465-475.
    [46]Sass C, Little DP, Stevenson DW, Specht CD (2007). DNA barcoding in the Cycadales:testing the potential of proposed barcoding markers for species identification of Cycads. PLoS One 2, el 154.
    [47]Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M,Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE,Kim KJ, Kress WJ, Schneider H, van AlphenStahl J,Barrett SCH, van den Berg C, Bogarin D, Burgess KS,Cameron KM, Carine M, Chacon J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TAJ,Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim YD, Lahaye R, Lee HL, Long DG,Madrinan S, Maurin O, Meusnier I, Newmaster SG, Park CW, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi DK, Little DP (2009). A DNA barcode for land plants. Proc Natl Acad Sci USA 106,12794-12797.
    [48]Hollingsworth PM (2008). DNA barcoding plants in biodiversity hot spots:Progress and outstanding questions. Heredity 101,1-2.
    [49]Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG et al. (2008). Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well. PLoS ONE3 (7):e2802.
    [50]Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N and Savolainen V (2005). Land plants and DNA barcodes:short-term and longterm goals. Phil. Trans. R. Soc. B 360, 1889-1895.
    [51]Liu Y, Yan HF, Cao T, Ge XJ (2010). Evaluation of ten plant barcodes in Bryophyta (Mosses). J Syst Evol 48,36-46.
    [52]Shaw J, Lickey EB, Beck JT, Farmer SB, Liu WS, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005). The tortoise and the hare. Ⅱ. Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany,92,142-166.
    [53]Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG et al. (2008). Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well. PLoS ONE 3(7):e2802.
    [54]Vischi M, Arzenton F, De Paoli E, Paselli S, Tomat E, Olivieri AM (2006). Identification Of Wild Species Of Sunflower By A Specific Plastid DNA Sequence. HELIA,29, Nr.45,11-18.
    [55]Logacheva MD, Valiejo-Roman CM, Pimenov MG (2008). ITS phylogeny of West Asian Heracleum species and related taxa of Umbelliferae-Tordylieae W.D.J.Koch, with notes on evolution of their psbA-trnH sequences. PI Syst Evol 270:139-157.
    [56]Gao T, Chen SL (2009). Authentication of the medicinal plants in Fabaceae by DNA barcoding technique. Planta Med 75,417-417.
    [57]Chen SL, Yao H, Han JP, Liu C, Song JY, Shi LC, Zhu YJ,Ma XY, Gao T, Pang XH, Luo K, Li Y, Li XW, Jia XC, Lin YL, Leon C (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5, e8613.
    [58]Ren BQ, Xiang XG, Chen ZD (2010). Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers. Mol Ecol Resour doi:10.1111/j.1755-0988.2009.02815.x.
    [59]Pennisi E (2007). Wanted:A barcode for plants. Science.,318:190-191.
    [60]Swingle, W.T., and Reece, P.C. (1967). The botany of citrus and its wild relatives of the orange subfamily. In W. Reuther, H. J. Webber, and L. D. Batchelor, The citrus industry, revised 2nd ed., vol. 1, History, world distribution, botany, and varieties,190-430. University of California, Berkeley, California, USA.
    [61]周志钦(1991).真正柑橘果树类植物的分支学研究.武汉植物学研究.,9(2):130~134
    [62]Tanaka T.(1977). Fundamental discussion of Citrus classification. Studia Citrogia.,14:1-6.
    [63]Mabberley, D.J.(1998). Australian Citreae with notes on other Aurantioideae (Rutaceae). Telopea.,7: 333~344.
    [64]Pang, X.M., Hu, C.G., and Deng, X.X.(2007). Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Gene. Res. Crop Evol..54:429~436.
    [65]Morton CM, Grant M, Blackmore S.(2003). Phylogenetic relationships of the aurantioideae inferred form chloroplast DNA sequence data. American Journal of Botany.,90:1463~1469.
    [66]Federici, C.T., Fang, D.Q., Scora, R.W, and Roose, M.L.(1998). Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet.96:812-822.
    [67]Kozaki I and Hirai M.(1981). Pollen ultrastructure of citrus cultivars. Proc.Int. Soc. Citriculture., 1:19~22.
    [68]Herrero R., Asins M.J., Carbonell E.A., Navarro L.(1996a). Genetic diversity in the orange subfamily Aurantioideae.I.Intraspecies and intragenus genetic variability. Theor Appl Genet.,92:599~609.
    [69]庞晓明,胡春根,邓秀新.用SSR标记研究柑橘属及其近缘属植物的亲缘关系.遗传学报.2003.30(1):81-87
    [70]Swingle W.T.(1915) A new genus, Fortunella, comprising four species of kumquat orange. Journal of Washington Academy of Sciences.,5:165~176.
    [71]Nicolosi E., Deng Z.N., Gentile A., Malfa S.L., Continella G., Tribulato E.(2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet.,100: 1155~1166.
    [72]朱立武(1988).中国柑橘数量化学分类研究.植物分类学报.,26(5):353~361.
    [73]Araujo E.F.D., Luciano Paganucci de Queirozl, Marcos Antonio Machado(2003). What is Citrus? Taxonomic implications from a study of cpDNA evolution in the tribe Citreae (Rutaceae subfamily, Aurantioideae). Organisms Diversity and Evolution.,3(1):55~62.
    [74]Swingle W T. The botany of citrus and its wild relatives of the orange subfamily. In:Reuther W ed. The Citrus lndustry,Berkely:University of California Press,1967(1):190-430
    [75]Herrero R., Asins M.J., Pina J.A., Carbonell E.A., Navarro L. (1996b) Genetic diversity in the orange subfamily Aurantioideae. Ⅱ. Genetic relationships among genera and species. Theor Appl Genet.,93: 1327~1334.
    [76]Green R.M., Vardi A., Galun E.(1986). The plastome of Citrus Physical map, variation among Citrus cultivars and species, and comparison with related genera. Theor Appl Genet.,72:170~177.
    [77]Yamamoto M., Kobayashi S., Nakamura Y., Yamada Y.(1993). Phylogenic relationships of Citrus revealed by diversity of cytoplasmic genomes. In:Hayashi T, Omura M, Scott NS (eds) Techniques on gene diagnosis and breeding in fruit trees. Fruit Trees Research Station., Okitsu Japan 39~46.
    [78]Bayer, R.J., Mabberley, D.J., Morton, C., Miller, C.H., Sharma,I.K.;, Bernard E., Rich, S., Hitchcock, R., Sykes, S.(2009). A molecular phylogeny of the orange subfamily (Rutaceae:Aurantioideae) using nine cpDNA sequences. Am .J. Bot.96(3):668~685.
    [79]Asad Asadi Abkenar, Shiro Isshiki, Yosuke Tashiro (2004). Phylogenetic relationships in the true citrus fruit trees revealed by PCR-RFLP analysis of cpDNA. Scientia Horticulturae.,102:233~242.
    [80]曲泽洲,孙云蔚(1990).果树种类论.北京:农业出版社285~313.
    [81]蒋聪强(1983).论柑橘三属左右线分类系统.西南农学院学报.,(4):10~23.
    [82]曾勉(1960).对柑橘分类的认识体会和整理意见.中国果树.,(2)
    [83]李润唐(2000).湖南几种野生宽皮柑桔的植物学性状调查.湖南农业科学.,(5):30~31.
    [84]叶荫民(1982).柑橘花粉形态的研究.中国农业科学.,(5):62~66.
    [85]刘庚峰,李文斌,张映南等(1992).宽皮橘类野生种花粉形态的研究.园艺学报.,(3):203~208.
    [86]范眸天,梁明清,浦卫琼(1998).富民枳与枳的花粉形态与分类位置探讨.云南农业大学学报.,13(3):298~300.
    [87]李润唐(1998).湖南野生宽皮柑橘花粉形态研究.湖南农业大学报.,(5)24:365~370.
    [88]张映南,李润唐,蒋开军(2003).几种柑橘属植物花粉外壁的超微结构.果树学报.,(2):165~168.
    [89]Barrett H.C. and Rhodes A.M.(1976). A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst. Bot.,1:105~136.
    [90]Takashi Handa, Chiaki Oogaki(1985). J.Japen Sac Hort.Sol.,54(2):145~154.
    [91]刘勇,孙中海,刘德春,吴波,江东(2006).部分柚类品种数值分类研究.果树学报.,23(1)35-40.
    [92]Rqghuvanshi,S.S.(1968). Proc.First International Citrus Symposium.,Vol(I):207~214.
    [93]熊兴耀,李润唐(1982).柑橘染色体组型及Giemsa带型研究初报.湖南农学院学报.,(2)61-67.
    [94]梁国鲁(1988).部分柑橘属及其近缘属Giemsa C一带带型研究.遗传学报.,15(6):409~415.
    [95]梁国鲁(1990).柑橘类的细胞分类学研究.武汉植物学研究.,8(1):1-7.
    [96]Handa T, Ishizawa Y, Oogaki C(1986). Phylogenetic study of fraction I protein in the genus Citrus and its close related genera. Jpn J Genet.,61:15-42.
    [97]李润唐(2000).湖南野生宽皮柑橘核型研究.湖南农业大学学报.,26(1):54~58.
    [98]胡昌序,车娇兰.现代植物分类学的几种新方路.生物科学参考资料,第22集.,1986:1-2.
    [99]Samaan, L.G. (1982). Euphytica.(31):167~173.
    [100]Morimoto,J(1977). Pros.Int.Soc Citriculture., (2):625~631.
    [101]TakashiHanda, Yuri Ishizawa, Chiaki Oogaki(1986). Jpn J. Genet., (61):15~24.
    [102]Esen. A and Scora.R W. Distribution of enzymatic browning of Young shoot homogenates in the Aurantioideae. Amet J.Bot.,1975,(62):1078-1083.
    [103]Button,J.A., Vardi and Spiegel-Roy, P.(1976). Theoretical and Apphed Cneticzs. (471):119~123.
    [104]Esen, A. and Scora, R.W., Ainer.(1977). Amylase polymorphism in Citrus and some related genera. J. Bot.,64(3):305~309.
    [105]吴安仁,张进仁,王大元,叶荫民(1985).用过氧化物同工酶对柑橘分类的探讨.园艺学报.,12(2):80~87.
    [106]李文斌,贺善文,刘庚峰(1987).湖南野生柑橘类种质过氧化物同工酶分析.园艺学报.,14(3):153~159.
    [107]钟广炎,叶荫民(1991).柑橘种质资源过氧化物同工酶分析.植物分类学报.,29(5):418~423.
    [108]陈力耕,大村三男,日高哲志(1991).应用GOT同工酶进行柑橘分类的研究.,园艺学报.,18(1):27~30.
    [109]方德秋,章文才(1992).应用同工酶进行宽皮柑橘分类及其进化研究.武汉植物学研究.,10(4):305~312.
    [110]方德秋,章文才,萧顺元(1993).应用同工酶进行柑橘分类和进化研究.植物分类学报.,31(4):329-352.
    [111]方德秋,章文才,萧顺元(1994).柑橘同工酶及其在分类中应用的研究.植物学报.,(36)124~138.
    [112]方德秋,章文才,萧顺元(1995).温州蜜柑起源新探一同工酶证据.果树科学.,12(增刊):16~20.
    [113]李润唐(1992).湖南野生宽皮柑橘同工酶分析.湖南农学院学报.,18(4):923~929.
    [114]Dass,H.C.,Randhawa,G.S.and Praksh,D(1977).,Indian J.Exp.Biol.(151):158~160.
    [115]Ortioz,J.M.,Kumamoto,J.,Scora,R.W.(1978).IFFA:224-226.
    [116]Malix,M.N.,ScoraR.W.,Soost,R.K.(1974).Hilgardia.,(42):361-382.
    [117]Piermger,A.P.,Edwards,G.F.(1964).Amer.Soc Hort Sci.(841):204~212.
    [118]Kesterson,J.W. et a1.(1964),Proc.Amer.Soc Hoft Sci.,(84):199~203.
    [[119]黄远征,陈全友(1998).110个种和品种的柑橘属植物叶精油的化学成分.,植物学报.,40(9):10~15.
    [120]林正奎,华映芳(1992).柑橘属11个类群叶精油成分与系统进化关系.,植物学报.,34(2):133~139.
    [121]周延清(2000).遗传标记的发展.生物学通报.,35(5):17-18.
    [122]Botstein D,White RL,Skolnick M,Davis RW(1980).Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms.Am J Hum Genet,32:314-331.
    [123]Roose,M.L(1988).Laoxymes and DNA reatriction length polymorphisma in citrus breeding and systematica.,Proceedings of the Sixth International Citrus Congress.,Margraf Scientifi Books., Germany,57~67.
    [124]Jarrell,D.C.,Roose,M.L.,Traugh,S.N.et al(1992).A genetic map of citrus based on aegregation of isorymes and RFLPs in an intergeneric cross.,Theor Appl Genet.,1992(84):49~56.
    [125]Durham,R.E.,Liou,PC.,Gmitter.F.G. et al(1992).Linkage of reatriction fragment length polymorphisma and isozymes in citrus.,Theor Appl Genet.,1992(84):39~48.
    [126]萧顺元,章文才(1995).RFLP在柑桔遗传多样性研究上的应用.,果树科学.,12(1):1-4.
    [127]Jeffreys,A.J.,Wilson,V.,Thein,S.L.(1985),Hypervariable "minisatellite" region in human DNA., Nature(London).,314:67~73.
    [128]刘勇,孙中海,刘德春,吴波,陶建军(2005).柚类种质资源AFLP与SSR遗传多样性分析.,中国农业科学.,38(11):2308~2315.
    [129]Fang D.Q.,Krueger R.R,Roose M.L.(1998).Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repat(ISSR)markers.,J Amer Soc Hort Sci., 123(4):612~617.
    [130]SankarA.A.,Moore GA.(2001).Evalution of inter-simple sequence repat analysis for mapping in Citrus and extension of the genetic linkage map.,Theor Appl Genet,2001(102):206~214.
    [131]吴兴恩,范眸天,龚洵,杨杨(2006).22份柑橘资源的ISSR分析.,云南农业大学学报.,21(1):36~43.
    [132]邹喻苹,葛颂,王晓东(2001).系统进化植物学中的分子标记.,北京:科学出版社.2001,44-66.
    [133]Omura M.,Hidaka T.,Nesumi H.et al(1993).PCR markers for Citrus identification and mapping techniques on gene diagnosis and breeding in fruit trees[J].Japan F T Rs.,1993:66~73.
    [134]王三红,陈力耕,陈大明(1999).RAPD在柑橘珠心苗鉴定上的应用.[J]南京农业大学学报.22(3):17~20.
    [135]张太平,彭少麟,王峥峰,凌定厚,甘廉生(2001).柚类品种遗传互相关系的RAPD标记研究.热带亚热带植物学报.,9(4):322~328.
    [136]范眸天,高俊,吴兴恩,李文祥,龙雯虹,许明辉(2002).十五种柑橘种质资源的RAPD分析.中国南方果树.,31(6):3~6.
    [137]Zabeau M,Vos P(1993).Selective restricton frament amplification:a general method for DNA fingerpring.Application No.0534858.European Patent office,Munich,Germany.
    [138]熊光明(2002).应用AFLP分子标记对柑橘属(Citrus)植物进行鉴别与系统分类研究.[硕士
    学位论文].重庆.西南农业大学.
    [139]谢让金,周志钦,邓烈(2008).真正柑橘果树类植物基于AFLP分子标记的分类与进化研究.植物分类学报.,46(5):682-691.
    [140]安新民,张上隆,徐昌杰(2004).柑桔酸性转化酶基因家族成员的克隆及特性分析.林业科学.,40(4):58~62.
    141安新民,张上隆,徐昌杰,陶俊,秦巧平(2004).甜橙液泡转化酶基因(CSVI)的分离及全序列分析.林业科学.,40(5):99~104.
    [142]Scora R.W.(1975). On the history and origin of Citrus. Bull. Torr Bot. Club.,102(6):369~375.
    [143]周志钦.柑橘属植物的系统演化研究.西南农业大学学报.1992,4(2):95-100.
    [144]谢让金,邓烈(2007).一种适合AFLP分析的柑橘DNA提取方法.生物技术.,2007,17(6):27~28.
    [145]Robinson J P, Harris S A, Juniper B E. Taxonomy of the genus Malus Mill(2001). (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh [J]. Plant Systematics and Evolution.2001, 226:35-58.
    [146]Tamura K., Dudley J., Nei M. and Kumar S.(2007). MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution.24(8):1596~1599.
    [147]Swofford D.L.(2002). PAUP*:Phylogenetic analysis using parsimony (*and related methods). version 4.0b10.2002, Sinauer Associates, Sunderland, MA.
    [148]Felsenstein, J.(1985). Confidence limits on phylogenies:an approach using the bootstrap [J]. Evolution.39:783-791.
    [149]Thompson J.D., Gibson T.J., Plewniak F.(1997). The Clustal-X Windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res., (25):4876~4882.
    [150]Blaxter M (2003). Molecular systematics-counting angels with DNA. Nature.,421:122~124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700