中华原钩虾繁殖发育生物学与生态学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用实验生态学和基础生物学的方法,对端足目中华原钩虾的生活史进行了初步观察描述;研究了中华原钩虾的胚胎发育及其与水温的关系;探讨了环境因子温度和盐度对中华原钩虾胚胎发育时间、幼体孵化、存活及生长的影响;采用生理生态学方法,研究了温度对中华原钩虾摄食率和消化酶活力的影响;在此基础上,将端足类钩虾中华原钩虾和蜾蠃蜚作为生物饵料移入对虾养殖池,比较了不同密度的饵料生物对中国对虾生长的影响。主要试验结果如下:
     1.中华原钩虾生活史的初步研究
     结合形态学、生理生态学方法,初步研究了中华原钩虾的生活周期、繁殖周期等生活史特征,为掌握中华原钩虾的繁殖生长等生物学特征奠定基础。中华原钩虾f1代在水温20℃,盐度30~33,光周期13:11(L:D)条件下,雄性最长存活时间为183d,雌性260d。抱卵数量与雌性个体大小成正相关,拟合方程为y=7.4696x-42.257,R~2=0.8147。f2代幼体性比约为1.55:1(♀:♂),幼体孵出后35~40d性成熟,性成熟后雌性约每2~3周抱卵一次,并且一定时间范围内,随着体长的增加,生产幼体数量也相应增多,其中第5批幼体数量达到最高。雌体一生产卵8~11次。
     2.中华原钩虾的胚胎发育及其与水温的关系
     观察描述了中华原钩虾的胚胎发育过程,并研究了胚胎发育与主要环境因子水温的关系。结果表明,试验水温21℃、盐度28~33和pH7.74~8.03条件下,中华原钩虾胚胎发育全程大约需要220h,卵中孵出的仔体与成体形态相似。温度对其胚胎发育时间的影响差异极显著(P <0.01),水温15~27℃范围内,随着温度的升高,胚胎发育时间缩短,最快、最慢平均发育速率分别为0.15d~(-1)及0.07d~(-1);孵出幼体个数呈先升高后降低的趋势,孵出幼体个数受温度影响差异显著(P <0.01);测定各恒温条件下培养中华原钩虾的胚胎发育时间,根据有效积温法则公式和最小二乘法计算发育阈温度C为6.02℃,有效积温K为137.30(d·℃),历期预测式N=K SK137.307.90/T (C Sc)=T (6.020.89)。
     3.中华原钩虾的存活及生长与温度和盐度的关系
     采用室内受控实验方法测定了不同温度(15,20,25和30℃)和盐度(5,10,15,20,25,30和35)以及温度(15,18,21,24,27℃)和盐度(15,20,25和30)交互作用对中华原钩虾幼体孵化、存活及生长等的影响。结果表明:1)中华原钩虾幼体孵出数量受水温影响显著(P <0.05),20℃幼体孵出率最高,平均每只亲体孵出幼体30.67个。水温对幼体生长的影响差异十分显著(P <0.01),15~25℃范围内,幼体的日增长和特定生长率随水温升高而增加,水温25℃时达到最大值,平均日增长体长为0.23mm/d、平均日增长体质量为0.20mg/d,特定生长率体长为6.40%/d、特定生长率体质量为15.79%/d;当水温高于25℃,钩虾的日增长和特定生长率降低。中华原钩虾幼体的存活率受温度的影响差异不显著(P>0.05),20℃钩虾幼体存活率最高,为98%,30℃存活率最低,为87.67%。2)温度盐度交互作用实验结果表明,在15~27℃温度范围内,中华原钩虾的胚胎发育时间随着温度的升高而呈降低的趋势。经ANOVA双因素差异显著性分析,温度对中华原钩虾的胚胎发育时间具有显著影响(P <0.001),而单独盐度(P>0.05)或盐度-温度组合(P>0.05)条件下,胚胎发育时间差异不显著;单只雌性中华原钩虾产幼数量受温度影响(P <0.001)以及温度-盐度协同影响差异显著(P <0.05),但盐度单因子对钩虾幼体孵出数量影响差异不显著(P>0.05);试验结束时,27℃水温条件下各盐度处理组个体死亡率显著高于其它水温处理组,结果显示,温度对中华原钩虾的存活率存在显著的影响(P <0.01),而单因子盐度以及温度和盐度交互作用对幼体存活率影响差异不显著(P>0.05);特定生长率在水温15~21℃范围内时随着温度的增加而增加,但在24~27℃时,生长率随着温度的升高而呈降低趋势,温度(P <0.001)以及温度-盐度组合处理(P <0.001)依然对体长特定生长率具有显著影响。中华原钩虾体长和体质量间存在明显的正相关,回归方程式BW=5E–05BL~(2.4999),R~2=0.9665。
     4.温度对中华原钩虾摄食率和消化酶活力的影响
     采用生理生态学方法,测定了不同温度下中华原钩虾的摄食率和消化酶活力。结果表明,中华原钩虾的胃蛋白酶、类胰蛋白酶及淀粉酶在15~25℃范围内随着培养温度的升高而呈现增加的趋势,其中20~25℃温度范围内,胃蛋白酶、类胰蛋白酶和淀粉酶活力较高,说明是中华原钩虾幼体生长发育所需的适宜温度。消化酶各温度处理组之间差异十分显著(P <0.01)。作为甲壳动物食性指标的淀粉酶/类胰蛋白酶活力(A/T)值波动较小,均在1.2~1.5之间,偏植物食性,此阶段钩虾幼体的食性受温度影响不明显。中华原钩虾日摄食率受温度影响显著(P <0.05),幼体在水温20~25℃之间具有最大摄食率,根据回归方程(y=-0.7544x~2+33.297x-277.57,R~2=0.9577)可计算得到最大日摄食率为89.84%,成体在20℃附近达到日摄食率的最大值,根据回归方程(y=-0.2471x2+10.463x–78.287,R2=0.9976)计算得到最大日摄食率为32.47%;中华原钩虾幼体和成体饵料吸收率同样也是随着温度升高而呈现先升后降的趋势,各温度处理组幼体的吸收率均高于成体的吸收率。根据饵料吸收率趋势线回归方程,可以计算得到最大饵料吸收率分别是幼体为59.86%,成体为56.86%,对应的温度分别是幼体为21.30℃,成体为21.24℃。
     5.钩虾的生物饵料功能初探
     将端足类钩虾中华原钩虾、蜾蠃蜚作为生物饵料移入中国对虾养殖池,结果显示,对虾投放密度很大程度上决定了其产出,对虾投放密度低,单尾对虾增重率虽然明显高于其他各组,但整池产出较低,反之,投放密度高,单尾对虾增重率明显低于其他各组,整池的产出也不十分乐观。按中国对虾生长情况的排名计分进行比较,认为中国对虾35尾-蜾蠃蜚10g-中华原钩虾40g组合为理想的投放密度。饵料生物要达到一定的量才能保证对虾的高产出,但是钩虾的生物量是否与对虾的产出呈正相关,还有待于深入的试验研究。本试验是小型的中试试验,所得的对虾和饵料生物密度的优化组合还需要生产试验进一步验证。
The amphipod Eogammarus sinensis belongs to the gammaridean crustaceanswhich is widely distributed along the coastal and estuarine ecosystems of the YellowSea and Bohai Sea in northern China. Because of its easy maintenance and the fact thatthe yield of offspring is abundant, this amphipod is a favourable choice for the diet oflarge decapod crustaceans in China, such as the shrimp Penaeus chinensis. In thecurrent study, we investigated its basic features of developmental biology and ecology.The embryonic development processes and life history were recorded usingexperimental ecology combined with basic biology methods. The influence ofenvironment factors on the growth and development were determined. Then, thepossible reason which might lead to the difference of growth was estimated. At last, thestudy was designed and Corophium sp. and E. sinensis were transplanted into farmpond-reared prawns P. chinensis. Our results will be useful in the mass production ofthis species for use in aquaculture. Details on the studies of this paper were as follows:
     1. The preliminary study on the life history of E. sinensis
     Observation described the life history including life cycle and breeding cycle wasstudied using the combination of morphological, physiological and ecological methods.It will be useful to learn about the biological characteristics of E. sinensis such asreproduction and growth. The longest survival time of f1generation female of E.sinensis recorded was179days, the male was260days under the conditions of20℃and a13h light/11h dark cycle. The number of eggs showed positive correlation to thelength of female E. sinensis and the relation can be described by equation y=7.4696x-42.257, R~2=0.8147. The sex ratio of f2infants were determined to be about1.55:1(♀:♂)
     The sexual maturity period of juveniles released was35to40days. Matured femaleand male of E. sinensis mated one time every2to3weeks. Within a certain period of time, larval quantity production increased with the increase of the body length of female.Female spawned about8to11times in her life.
     2. The embryonic development of E. sinensis and its relationship with watertemperature
     The embryonic development process was studied and the relationship between theembryonic development and the main environmental factor temperature. The resultindicated that the development process of E. sinensis embryo was about220hoursunder the conditions of21℃, salinity28~33and pH7.74~8.03. The hatched larvaewas with similar morphological characters to those of adult. Temperature showedsignificant influence to the embryonic development time (P <0.01). Within15~27℃,the embryonic development time decreased with the increase of temperature, and viceversa. The maximal and the minimal development rate were0.15d-1and0.07d-1.Hatchability was significantly influenced by temperature (P <0.01) and presented aupside-down parabolic curve with the increase of temperature. Based on thedevelopmental time under the different temperature, the developmental thresholdtemperature (C) was calculated to be6.02℃, sum of effective temperature (K) was137.30d·℃and the formula of duration calculation was N=K SK137.307.90/T (C Sc)=T (6.020.89).
     3. Effects of temperature and salinity on survival and growth of E. sinensis
     In the current study, the effects of temperature (15,20,25,30℃), salinity (5,10,15,20,25,30and35) and temperature-salinity combination (five temperatures15,18,21,24and27℃and four salinities15,20,25and30) on the development, fecundity,survival and growth rate of E. sinensis were investigated.1) The results showed that thattemperature had significant effects on the development of E. sinensis (P <0.05), butthat different salinities did not (P>0.05). As the temperature increased, the duration ofembryonic development of E. sinensis decreased. Fecundity was affected significantlyby temperature and the combination of temperature and salinity, but not by salinityalone. The number of juveniles released from each female E. sinensis was significantly influenced by the temperature and the salinity-temperature (P <0.05), but not in thesalinity treatment group. Within the temperature limits of15and30℃, the relation canbe described by equation y=–0.1958x2+7.2975x–36.037, R2=0.9952. Survival ofmatured E. sinensis was affected significantly by the temperature but not the same casein the new born organisms. There was positive correlation between the length and theweight of E. sinensis which could be described as the equation that: BW=5E–05BL2.4999, R2=0.9665. In addition, high temperature accelerated the growth rate of E.sinensis juveniles within15℃to25℃, and the largest daily growth rate and specificgrowth rate were recorded as0.23mm/d and6.40%/d respectively at25℃. Higher thanthat, growth of E. sinensis was inhibited. Whereas, high salinity reduced the growth of E.sinensis and the maximal body length and body weight were detected at salinity30and20. Between the salinity5~35, the body length and body weight showed no obviousdifference.2) The results of temperature-salinity combination showed that thattemperature had significant effects on the development of E. sinensis, but that differentsalinities did not. As the temperature increased, the duration of embryonic developmentof E. sinensis decreased. Fecundity was affected significantly by temperature and thecombination of temperature and salinity, but not by salinity alone. In addition, hightemperature accelerated the growth rate of E. sinensis juveniles, whereas high salinityreduced it. Therefore, our data suggest that the E. sinensis tolerates a wide range ofsaline conditions and that temperature has more significant effects on the embryonicdevelopment, fecundity and growth of E. sinensis than does salinity.
     4. Effects of temperature on feeding rate and digestive enzyme activity of E. sinensis
     Different temperatures on the feeding rate and digestive enzyme activity of E.sinensis were determined and analyzed by using physiological ecology methods. Theactivities of pepsin, trypsin and amylase in E. sinensis presented an increasing trendwithin the temperature scope of15to25℃. Pepsin, tryptase and amylase activity ishigher between20to25℃, which shows that the scope of temperature is the optimumtemperature. And there were significant differences on digestive enzyme activitybetween temperature treamtment groups (P <0.01). As the index to evaluate the feeding habits of crustacean, amylase/trypsin (A/T) value fluctuation is small, and the A/Tvalues are between1.2to1.5. It seems that the larvae of E. sinensis is partial to plantdiets. Consumption rate of E. sinensis juveniles was affected greatly by the temperature,and the maximal consumption rate was calculated to be89.84%according to thecorrelation equation (y=-0.7544x~2+33.297x-277.57, R~2=0.9577) within20℃to25℃. Moreover, the assimilation rates were similar between the juveniles and the adultsof E. sinensis. The maximal assimilation efficiency was59.86%and56.86%and theoptimal temperatures were21.30℃and21.24℃.
     5. The small ecological breeding test for shrimp farming by feeding biological baitgammarid amphipods
     A small ecological breeding test for shrimp farming by feeding biological bait wasdesigned. The polyculture experiment was composed of Corophium sp., E. sinensis andP. chinensis in the cylindrical tank. The results showed that the initial density of P.chinensis might be the main limiting factor to control the total output of P. chinensis.High density may bring a good total yield but with the small individuals, while lowdensity bring large individuals but with low total yield of P. chinensis. Based on theoverall consideration of growth and total yield of P. chinensis, we proposed thecombination of Corophium sp., E. sinensis and P. chinensis that of each species wasrespectively as follows:10g-40g-35individuals. Meanwhile, it seems that the biomassof living bait is an important factor to influence the yield of P. chinensis, but the detailedcorrelation need to be researched further. The proposed consists of living baits and P.chinensis was set up on the basis of pilot scale test, which would be amended in thefollowing cultivation in large scale.
引文
陈明耀.海洋饵料生物培养[M].北京:农业出版社,1979.
    邓锦松.投放双齿围沙蚕和毛蜡移对虾池的生物修复作用[D].硕士学位论文,2006:13-32.
    董双林.论海水养殖的养殖容量[J].青岛海洋大学学报,1998,28(2):253-257.
    堵南山.甲壳动物学(下册)[M].北京:科学出版社,1993a,507-508
    堵南山.甲壳动物学(下册)[M].北京:科学出版社,1993b,569-570.
    高浩,王瑞霞.水产动物胚胎学[M].北京:农业出版社,1961,60-61.
    郭登勇.南美白对虾生态调控养殖技术研究[D].硕士学位论文,2004.
    韩方训,王道和,韩丰贵,董心乐,于恩瑞.沙蚕在对虾养殖生产中的应用[J].海洋科学,1990,(3):4-6.
    韩永望,李健,陈萍,李吉涛,戴芳钰,潘鲁青.强壮藻钩虾的繁殖及胚胎发育的形态学观察[J].水生生物学报,2012.36(6):1193-1199.
    季如宝,张志南.14C示踪法测定养虾池小型底栖动物对底栖硅藻的摄食[J].青岛海洋大学学报,1994,24(83):199-205.
    李庆芬.基础生态学[M].北京:高等教育出版社,2002,25.
    李顺志,张言志,王宝捷,丛沂之,王利超,杨清明.扇贝海带间养试验研究[J].海洋湖沼通报,1983,4:70-75.
    刘玉梅,朱谨钊.中国对虾幼体和仔虾消化酶活力及氰基酸组成的研究[J].海洋与湖沼,1991,22(6):571-575.
    潘鲁青,刘泓宇,肖国强.甲壳动物幼体消化酶研究进展[J].中国水产科学,2006,13:492-501.
    潘鲁青,王克行.中国对虾幼体消化酶活力的试验研究[J].水产学报,1997,21(1):26-31.
    潘鲁青.四种虾蟹类幼体消化酶活力的比较研究[J].青岛海洋大学学报,1997,27(3):313-318.
    任先秋.胶州湾底栖钩虾类研究[J].甲壳动物学论文集(三),1992,214-317.
    任先秋.南极半岛西北部水域底栖甲壳动物端足类的研究[J].海洋科学集刊,1991,32:187-323.
    任先秋.香港及大亚湾邻近水域的钩虾类(甲壳动物、端足目)[J].海洋科学集刊,1994,35:250-270.
    任先秋.中国动物志[M].北京:科学出版社,2002,252.
    尚玉昌.普通生态学[M].北京:高等教育出版社,1993,36-37.
    施流章.温、盐度与长毛对虾卵的孵化及无节幼体发育的关系[J].水产学报,1981,5(1):57-63.
    宋鹏东.大连沿海无脊推动物实习指导[M].北京:高等教育出版社,1989,241-248.
    孙伟.龙须菜和文蛤混养互利机制的模拟研究[D].硕士学位论文,2006.
    孙晓庆,董树刚.生物饵料在水产养殖中的综合应用现状[J].齐鲁渔业,2006,23(10):31-33.
    孙修涛,李健,麻次松,赵法箴.中国对虾虾池几种动物的摄食能力和选择性研究[J].海洋科学,1995,3:1-4.
    汤鸿,李少菁,王桂忠,林琼武.锯缘青蟹幼体消化酶活力[J].厦门大学学报,1995,34(1):88-93.
    田相利,董双林,王芳.不同温度对中国对虾生长及能量收支的影响[J].应用生态学报,2004,15(4):678-682.
    王超,闫启伦,陈红星,闫吉成,王睿睿.端足类河蜾蠃蜚生活周期及其沉积物毒理敏感性研究[J].华东师范大学学报,2009,3:1-6.
    王红义,曹善茂,李应东,李春颖.4种重金属离子对中华原钩虾幼虾的急性毒性研究[J].河北渔业,2010,5:7-9.
    王克行.解决大面积养虾饲料的一点设想[J].全国海水养殖增殖发展途径学术会议论文报告汇编,1980,200-203.
    王克行,金洪生,杨利民.温度对对虾Penaeus orientalis Kishinouye生长的影响[J].海洋湖沼通报,1984,4:42-46.
    韦玮,方建光,董双林,刘瑜.贝藻混养互利机制的初步研究[J].海洋水产研究,2002,23(3):20-25.
    夏爱军,姚蕾.目前较多的对虾养殖技术[J].水产养殖,1999,5:30-33.
    肖艳琴,李翠兰,张秋华,段毅豪.镉暴露对钩虾磷酸葡萄糖异构酶基因型的致死性差异研究[J].农业环境科学学报,2006,25(2):309-311.
    薛素燕,赵法箴,方建光,孔杰,毛玉泽,张继红,张庆文.温度和盐度对中华原钩虾幼体孵化、存活及生长的影响[J].水产学报,2012,36(7):1094-1101.
    闫启伦.端足类日本大螯蜚生活史及其沉积物毒理敏感性研究[D].北京师范大学博士学位论文,2006,18.
    杨红生,王健,周毅,张涛,王萍,何义朝,张福绥.烟台浅海区不同养殖效果的比较[J].水产学报,2000,24(2):140-145.
    杨蕙萍,童圣英,王子臣.国外关于水产动物消化酶活力研究的概况[J].大连水产学院学报,1998,13(3):64-71.
    杨宇峰,王庆,聂湘平,王朝晖.海水养殖发展与渔业环境管理研究进展[J].暨南大学学报,2012,33(5):531-541.
    于书坤,张树荣.虾类及甲壳动物消化酶研究的现状[J].海洋科学,1986,10(2):60-63.
    虞为,李卓佳,朱长波,马广智.我国对虾生态养殖的发展现状、存在问题与对策[J].广东农业科学,2011,17:168-171.
    翟雪梅,张志南.虾池生态系能流结构分析[J].青岛海洋大学学报,1998,28(2):275-282
    张起信,王立超.虾藻混养技术的研究[J].海洋科学,1985,(3):32-35.
    张岩,王崇明,麻次松,赵法箴.中国对虾虾池浮游动物与对虾养殖的关系[J].海洋学报,1993,6:6-9.
    张艳红,肖艳琴,李翠兰,张秋华,段毅豪.钩虾等位酶基因型对马拉硫磷致死性响应研究[J].农业环境科学学报,2008,27(6):2447-2451.
    张志南,于子山,段榕琦,孙文林,王连华,王道本.虾池纳潮期日本刺沙蚕幼虫数量及其沉降的研究[J].海洋与湖沼,1994,25(3):248-257.
    张志南,孙文林,于子山,王连华,王道本.日本刺沙蚕大规模移植的生态学研究[J].海洋与湖沼,1993,24(5):520-526
    赵云龙,王群,堵南山,赖伟.罗氏沼虾胚胎发育的研究:Ⅰ.胚胎外部结构形态发生[J].动物学报,1998,44(3):249-256.
    郑新庆.端足类啃食作用对筼筜湖大型海藻群落影响的初步研究[D].厦门大学硕士学位论文,2008,18.
    郑重.甲壳动物生殖量和环境关系Ⅲ.其他甲壳类[J].生态学杂志,1991,10(3):41-47.
    郑重.英国几种钩虾的生殖量[M].郑重文集.北京:海洋出版社,1987,162-189.
    钟源.端足类钩虾亚目种类养殖生态学的初步研究[D].硕士学位论文.中国海洋大学,青岛.2001.
    周一兵.沙蚕移植在对虾养殖中的应用及生态效益[J].海洋学通报,1999,34(11):12-15.
    周一兵.虾池中日本刺沙蚕的初级生产力研究[J].水产学报,1995,19(2):140-150.
    Aikins S, Kikuchi E. Grazing pressure by amphipods on microalgae in Gamo Lagoon,Japan [J]. Marine Ecology-Progress Series,2002,245:171-179.
    Alongi D M. Coastal Ecosystem Processes[M]. In: Marine Science Series, CRC Press,1998.
    ASTM. Standard guide for conducting10-day static sediment toxicity tests with marineand estuarine amphipods[M]. In: Annual Book of ASTM Standards, Water andEnvironmental Technology. American Society for Testing and Material, Philadelphia.1992,1367-1390.
    Balducci C, Sfriso A, Pavoni B. Macrofarina impact on Ulva rigida C.Ag. productionand relationship with environmental variables in the lagoon of Venice[J]. MarineEnvironmental Research,2001,52:27-49.
    Balducci C, Sfriso A, Pavoni B. Macrofauna impact on Ulva rigida C. Ag. productionand relationship with environmental variables in the lagoon of Venice[J]. MarineEnvironmental Research,2001,52(1):27-49.
    Barnard J L, Karaman GS. The families and genera of marine gammaridean Amphipoda(except marine gammaroids)[J]. Rec Aust Mus Suppl,1991,13:1-866.
    Beare D J, Moore P G.. The distribution and reproduction of Pontocrates arenarius andP. altamarinus (Crustacea: Amphipoda) at Millport[J]. Scotland. J. Mar. Biol. Ass.UK.,76:931-950.
    Bernfeld P. Methods in Enzymol[M]. New York:Academic Press,1955,149.
    Biesiot P M, Capuzzo J M. Change in digestive enzyme activities during earlydevelopment of the american lobster Homarus americanus [J].Mar Biol Ecol,1990,136(2):107-122.
    Brawley S H, Adey W H. The effect of micrograzers on algal community structure in acoral reef microcosm[J]. Marine Biology,1981,61:167-177.
    Browne W E, Price A L, Gerberding M, Patel N H. Stages of embryonic developmentin the amphipod crustacean, Parhyale hawaiensis[J]. Genesis,2005,42:124-149.
    Bulnheim H P.1984. Physiological responses of various Gammarus species toenvironmental stress[J]. Limnologica,1996,15:461-467.
    Calum M, Jaimie T A D, Robert W E. The dynamics of readation on Gammarus spp.(Crustacea:Amphipoda)[J]. Biological Reviews of the Cambridge PhilosophicalSociety,1999,74(4):375-395.
    Carolin E. Arndt, Frank Beuchel. Life history and population dynamics of the Arcticsympagic amphipods Onisimus nanseni Sars and O.glacialis Sars(Gammaridea:Lysianassidae)[J]. Polar Biology,2006,29:239-248.
    Castro-Longoria E. Egg production and hatching success of four Acartia species underdifferent temperature and salinity regimes[J]. J. Crustacean Biol.,2003,23:289-299.
    Clarke A. Temperature, latitude and reproductive effort[J]. Mar. Ecol. Prog. Ser.,1987,38:89-99.
    Conlan K E.1994. Amphipod crustaceans and environmental disturbance: a review[J]. J.Nat. Hist. Lond.,1987,28:519-554.
    Costa F O, Costa M H. Life history of the amphipod Gammarus locusta in the Sadoestuary (Portugal)[J]. Acta Oecologoca-Internationa Journal of Ecology,1999,20(4):305-314.
    Costa F O, Costa M H. Review of the ecology of Gammarus locusta (L.)[J]. Pol. Arch.Hydrobiol.2000,47:351-559.
    Cruz-Rivera E, Hay M E. Can Quantity Replace Quality? Food Choice. CompensatoryFeeding, and Fitness of Marine Mesograzers[J]. Ecology,2000,81:201-219.
    Cunha M R, Moreira M H, Sorbe J C. Predicting amphipods brood size variation inbrackish environments: an empirical model for Corophium multisetosum Stock,1952(Corophiidae) in Ria de Aveiro (NW Portugal)[J]. J. Exp. Mar. Biol. Ecol.,2000,248:207-223.
    Cunha M R, Sorbe J C, Moreira M H. The amphipod Corophium multisetosum(Corophiidae) in Ria deAveiro (NW Portugal). I. Life history and aspects ofreproductive biology[J]. Mar. Biol.,2000,137:637-650.
    Dall W, David G W. Moriarty, Functional aspects of nutrition and digestion In theBiology of Cmstaeea (Ed.by L H Mante1)[M].New York:Acdemic Press,1982,5:231-241.
    Drake P, Arias A M. Distribution and production of Microdeutopus gryllotalpa(Amphipoda:Aoridae) in a shallow coastal lagoon in the Bay of Cadiz, Spain[J].Journal of Crustacean Biology,1995,15(3):454-465.
    Drake P, Arias A M. Distribution and Production of Microdeutopusgryllotalpa(Amphipoda:Aoridae) in a Shallow Coastal Lagoon in the Bay of Cadiz,Spain[J].Journal of Crustacean Biology,1995,15:454-465.
    Duffy J E, Hay M E. Strong Impacts of grazing amphipods on the organization of abenthic community[J]. Ecological Monographs,2000,70(2):237-263.
    Edgar G J, Shaw C. The production and trophic ecology of shallow-water fishassemblages in southern Australia III. General relationships between sediments,seagrasses, invertebrates and fishes [J]. Journal of Experimental Marine Biology andEcology,1995,194:107-131.
    Edgar G J, Shaw C. The production and trophic ecology of shallow-water fishassemblages in soutbern Australia Ⅲ. General relationships between sediments,seagrasses, invertebrates and fishes[J]. Journal of Experimental Marine Biology andEcology,1995,194(1):107-131.
    Extavour CG. The fate of isolated blastomeres with respect to germ cell formation in theamphipod crustacean Parhyale hawaiensis[J]. Dev Biol,2005,277:387-402.
    Fredette T J, Diaz R J. Life History of Gammarus locronatus Say(Amphipoda:Gammaridae) in Warm Temperate Estuarine Habitats, York River,Virginia[J]. Journal of crustacean biology,1986,6:57-78.
    Galgani F.Radioimnmnoassay of shrimp trypsin:application to the lanai developmentof Penaeus japonicus Bate [J] Mar Biol Ecol,1985,87:145-151.
    Gasca R, Haddock SHD. Associations between gelatinous zooplankton and hyperiidamphipods (Crustacea: Peracarida) in the Gulf of California[J]. Hydrobiologia,2004,530/531:529-535.
    Gerberding M, Scholtz G. Cell lineage of the midline cells in the amphipod crustaceanOrchestia cavimana (Crustacea, Malacostraca) during formation and seperation of thegerm band[J]. Dev Genes Evol,1999,209:91-102.
    Goecker M E, Kail S E. Grazing preferences of marine isopods and amphipods on threeprominent algal species of the Baltic Sea [J]. Journal of Sea Research,2003,50:309-314.
    Hauxwell J, McClelland J, Behr P J, Valiela I. Relative importance of grazing andnutrient controls of macroalgal biomass in three temperate shallow estuaries[J].Estuaries and Coasts,1998,21(2):347-360.
    Hirche H J, Anger K.Digestive enzyme activities during larval development of Hyasaraneus [J].Comp Biochem Physiol,1987,87B(2):297-302.
    Jeong S J, Yu O H, Suh H L. Life history and reproduction of Jassa slatteryi(Amphipoda, Ischyroceridae) on a seagrass bed (Zostera marina L.) in southernKorea[J]. Journal of Crustacean Biology,2007,27(1):65-70.
    Jeong S J, Yu O H, Suh H-L. Secondary production of Jassa slatteryi (Amphipoda,Ischyroceridae) on a Zostera marina seagrass bed in southern Korea[J]. Mar. Ecol.Prog. Ser.,2006,309:205-211.
    Kaiser M J, Gibson R N, Hughes R N.The effect of prey type on the predatorybehaviour of the fifteen-spined stickleback, Spinachia spinachia(L.)[J].AnimalBehaviour,1992,43:147-156.
    Kamaltynov RM. On the evolution of Lake Baikal Amphipods[J]. Crustaceana,1999,72:921-931.
    Kamarudin M S, Jones D A, Vay L I, Abidin A Z. Ontogenetic change in digestiveenzyme activity during larval developnent of Macrobrachium rosenbergii[J].Aquaculture,1994,123:323-333.
    Liao I C, Chien Y H. Evaluation and comparison of culture practices for Penaeusjaponicus, P. penicillatus and P. chinensis in Taiwan. In: Main KL and Fulks W. eds.Proceedings of An Asian-U. S. Workshop on Shrimp Culture[M]. The OceanicInstitute, Hawaii,1990, p49-63.
    Lindeman D. Natural history of the terrestrial amphipod Cerrorchestia hylorainaLindeman (Crustacea: Amphipoda; Talitridae) in a Costa Rican cloud forest[J]. J NatHist,1991,25:623-638.
    Liu N, Pan L Q, Wang J, Yang H Z, Liu D. Application of the biomarker responses inscallop (Chlamys farreri) to assess metals and PAHs pollution in Jiaozhou Bay, China.Mar. Environ. Res.,2012,80:38-45.
    Lovett D L, Flder D L. Ontogenetic change in digestive enzyme activity of larval andpostlarval white shrimp Penaeus setiferus [J].Biol Bull,1990,178(2):144-159.
    Magniette F, Ginsburger-Vogel T. établissement d'une table chronologique dudéveloppement embryonaire. A différentes températures, chez Orchestiagammarellus (Pallas)(Crustacé, Amphipode).Bulletin de la Societe Zoologique deFrance,1982,107:101-110.
    Manfred Pockl. Success of the invasive Ponto-Caspian amphipod Dikerogammarusvillosus by life history traits and reproductive capacity[J]. Biology Invasions,2009,11:2021-2041.
    Maranh o P, Bengala N, Pardal M, Marques J C.2001. The influence of environmentalfactors on the population dynamics, reproductive biology and productivity ofEchinogammarus marinus Leach (Amphipoda, Gammaridae) in the Mondego estuary(Portugal)[J]. Acta Oecol.,22:1-14.
    Maranh o P, Marques J C. The influence of temperature and salinity on the duration ofembryonic development, fecundity and growth of the amphipod Echinogammarusmarinus Leach (Gammaridae)[J]. Acta Oecol.,2003,24:5-13.
    Martins I, Maranh o P, Marques J C. Modelling the effects of salinity variation onEchinogammarus marinus Leach (Amphipoda, Gammaridae) density and biomass inthe Mondego Estuary (Westem Portugal)[J]. Ecological Modelling,2002,152(2-3):247-260.
    McCabe J, Dunn A M. Adaptive significance of environmental sex determination in anamphipod[J]. J Evol Boil,1997,10:515-527.
    McKenney Jr C L. The combined effects of salinity and temperature on various aspectsof the reproductive biology of the estuarine mysid Mysidopsis bahia[J]. Invert. Reprod.Develop.,1996,29:9-18.
    Mclusky D S. Salinity preference in Corophium Voluta tor[J]. Journal of the MarineBiological Association of the United Kingdom,1970,50(3):747-752.
    Miao S and Tu S. Modling thermal effect on growth of Chinese shrimp, Penaeuschinensis (Osbeck)[J]. Ecol. Model.,1993,80:187-196.
    Michele S R. Preliminary culture and life cycle experiments with the benthic AmphipodAmpelisca abdita[J]. Environ Toxicol Chem,1994,8:1355-1365.
    Milione M, Zeng C. The effects of temperature and salinity on population growth andegg hatching success of the tropical calanoid copepod[J]. Acartia sinjiensis.Aquaculture,2008,275:116-123.
    Morritt D, Stevenson TDI. Factors influencing breeding initiation in the beachfleaOrchestia gammarellus (Pallas)(Crustacea: Amphipoda)[J]. J Exp Mar Biol ecol.,1993,165:191-208.
    Nagaraj M. Combined effects of temperature and salinity on the development of thecopepod Eurytemora affinis[J]. Aquaculture,1992,103:65-71.
    Naylor R L, Goldburg R J, Mooney H, Beveridge M, Clay J, Folke C, Kautsky N,Lubchenco J, Primavera J, Williams M. Nature’s subsides to shrimp and salmonfarming[J]. Science,1998,282:883-884.
    Nelson W G.. Reproductive pattems of gammaridean amphipods[J]. Sarsia,1980,65:61-71.
    Neuparth T, Costa F O, Costa M H.Effects of Temperature and Salinity on Life Historyof the Marine Amphipod Gammams locusta.Implications for EcotoxicologicaiTesting[J]. Ecotoxicology,2001, Ⅱ:61-73.
    Normant M, Lamprecht I. Does scope for growth change as a result of salinity stress inthe amphipod Gammarus oceanicus?[J]. Journal of Experimental Marine Biology andEcology,2006,334:158-163.
    Ok Hwan Yu, Hae-Lip Suh. Life history and reproduction of the amphipodSynchelidium trioostegitum (Crustacea, Oedicerotidae) on a sandy shore in Korea[J].Marine Biology,2006,150:141-148.
    Panov V E, McQueen D J. Effects of temperature on individual growth rate and bodysize of a freshwater amphipod[J]. Can. J. Zool,1998,76:1107-1116.
    Pardal M A, Marques J C, Metelo I, Lilleb A I, Flindt M R. Impact of eutrophicationon the life cycle, population dynamics and production of Ampithoe valida (Amphipoda)along an estuarine spatial gradient (Mondego estuary, Portugal)[J]. MarineEcology-Progress Series,2000,196:207-219.
    Pardal M A, Marques J C, Metelo I, Lilleb A I, Flindt M R. Impact of eutrophicationon the life cycle, population dynamics and production of Ampithoe valida (Amphipoda)along an estuarine spatial gradient (Mondego estuary, Portugal)[J]. Mar. Ecol. Prog.Ser.,2000,196:207-219.
    Pinkster S, Broodbakker N W. The influence of environmental factors on distributionand reproductive success of Eulimnogammarus obtusatus (Dahl,1938) and otherestuarine gammarids[J]. Crustaceana,1980,6:225-241.
    Poltermann M, Hop H, Falk-Peterson S. Life under Arctic sea ice reproductionstrategies of two sympagic (ice-associated) amphipod species, Gammarus wilkitzkiiand Apherusa glacialis[J]. Mar Biol,2000,136:913-920.
    Reish D J. Effects of metals and organic compounds on survival and bioacumulation intwo species of marine gammaridean amphipod, together with a summary oftoxicological research on this group[J]. J. Nat. Hist., Lond.,1993,27:781-794.
    Ren X Q. Fauna sinica invertebrate vol.41Crustacea Amphipoda Gammaridea[M].Science press.2006,250-252.
    Ren X Q. Studies on the Gammaridea (Crustacea: Amphipoda) from Jiaozhou bay(Yellow sea)[J]. Transactions of the Chinese Crustacean Society, Qingdao OceanUniversity press,1992,3:214-317.
    Sainte-Marie B. A review of the reproductive bionomics of aquatic gammarideanamphipods: variation of life history traits with latitude, depth, salinity andsuperfamily[J]. Hydrobiologia.,1991,223:189-227.
    Sheader M, Van Dover CL, Shank TM. Structure and function of Halice hesmonectes(Amphipoda: Pardaliscidae) swarms from hydrothermal vents in the eastern Pacific[J].Mar Biol,2000,136:901-911.
    Sheader M. Factors influencing egg size in the gammarid amphipod Gammarusinsensibilis[J]. Marine Biology,1996,124:519-526.
    Sheader M. Factors influencing egg size in the gammarid amphipod Gammarusinsensibilis[J]. Mar. Biol.,1996,124:519-526.
    Sherbakov DY, Kamaltynov RM, Ogarkov OB, Vainola R, Vainio JK, Verheyen E. Onthe phylogeny of Lake Baikal amphipods in the light of mitochondrial and nuclearDNA sequence data[J]. Crustaceana,1999,72:911-919.
    Sinervo B, Doyle R W. Life-history analysisi in “physiological” compared with“sidereal” time: an exemple with an amphipod (Gammarus lawrencianus) in a varyingenviroment[J]. Mar.Biol.,1990,107:129-139.
    Steele D H, Steele V J. Effects of salinity on the survival, growth rate and reproductiveoutput of Gammarus lawrencianus (Crustacea, Amphipoda)[J]. Mar. Ecol. Prog. Ser.,1991,78:49-56.
    Steinberg P D, van Altena I. Tolerance of Marine Invertebrate Herbivores to BrownAlgal Phlorotannins in Temperate Australasia [J].Ecological Monographs,1992,62:189-222.
    Stoner A W, Livingston R J. Distributional ecology and food habits of the bandedblenny Parclinus fasciatus (Clinidae): a resident in a mobile habitat[J]. Mar. Ecol.,1980,56:239-246.
    Stottrup J G.. Production and nutritional value of copepods[M]. In: Stottrup, J.G.,McEvoy, L.A.(Eds.), Live Feeds in Marine Aquaculture. Blackwell Science, Oxford,2003,145-196.
    Subida M D, Cunha M R, Momim M H. Life history, reproduction, and production ofGammarus chevreuxi (Amphipoda: Gammaridae) in the Ria de Aveiro, northwesternPortugal[J]. Journal of the North American Benthological Society,2005,24:82-100.
    Subida M D, Cunha M R, Moreira M H. Life history, reproduction, and production ofGammarus chevreuxi (Amphipoda:Gammaridae) in the Ria de Aveiro, northwesternPortugal[J]. Journal of the North American Benthological Society,2005,24(1):82-100.
    Sun S, Li Y H, Sun X X. Changes in the small-jellyfish community in recent decades inJiaozhou Bay, China[J]. Chin. J. Oceanol. Limnol.,2012,30:507-518.
    Takeuchi I, Hirano R. Growth and reproduction of Caprella danilevskii (Crustacea:Amphipoda) reared in the laboratory[J]. Mar. Biol.,1991,110:391-397.
    Theodoros K. Life history, aspects of reproductive biology and production ofCorophium orientale (Crustacea: Amphipoda) in Monolimni lagoon (Evros Delta,North Aegean Sea)[J]. Hydrobiologia,2005,537:53-70.
    Tomikawa K, Morino H, Toft J, Mawatari S F. A revision of Eogammarus Birstein,1933(Crustacea, Amphipoda, Anisogammaridae), with a description of a newspecies[J]. J. Nat. Hist.,2006,40:1083-1148.
    Uye S, Fleminger A. Effect of various environmental factors on egg development ofseveral species of Acartia in southern California[J]. Mar. Biol.,1976,38:253-262.
    Vainola R, Kamaltynov RM. Species diversity and speciation in the endemic amphipodsof Lake Baikal: molecular evidence[J]. Crustaceana,1999,72:945-956.
    Valentine J, Duffy J. The Central Role of Grazing in Seagrass Ecology[J]. Seagrasses:Biology, Ecology and Conservation,2006.463-501.
    Wang H Y, Cao S M, Li Y D, Li C Y. Acute toxicity of four heavy metal ions toEogammarus sinensis juvenile[J]. Hebei fisheries,2010,5:7-9.
    Wildish D J. Evolutionary ecology of reproduction in gammaridean Amphipoda[J]. Int.J. Invert. Reprod.,1982,5:1-19.
    William E. Browne, Alivia L. Price, Matthias Gerberding, and Nipam H. Pate. Stages ofEmbryonic Development in the Amphipod Crustacean, Parhyale hawaiensis[J].Genesis,2005,42:124-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700