三种经济植物遗传多样性的ISSR和RAPD分析、fad基因克隆和农杆菌介导的遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在:Ⅰ.建立河南三种主栽经济植物地黄、山药和大豆种质遗传多样性的ISSR和RAPD标记分析体系,为利用DNA分子标记技术合理利用、保护、鉴定和改良这三种植物品种提供理论和技术依据。Ⅱ.建立发根农杆菌对怀地黄的转化及毛状根的植株再生体系。Ⅲ.分离克隆大豆油酰基-△12-去饱和酶基因fad 2-1和构建反义基因表达载体,为利用农杆菌介导的遗传转化技术培育大豆和怀地黄新品种提供理论和技术依据。
     Ⅰ.利用ISSR和RAPD标记技术对这三种经济植物种质遗传多样性进行了检测。其中,ISSR标记技术首次用于这一研究。所取得的主要进展如下:(1).用CTAB法提取了10个地黄品种、28个山药品种和10个大豆品种以及16个怀地黄单株的基因组DNA,建立了适用于山药基因组DNA提取的改良CTAB方法。(2).以怀地黄基因组DNA为模板,优化出了适宜于地黄ISSR分析的合适的退火温度(53-55℃)和扩增体系:25μL PCR反应体积,包含1×Taq DNA酶缓冲液(10mmol/L Tris-HC l,50mmol/L KCl,0.1%Trion X-100,pH9.0),2.5 mmol/L MgCl_2,1.0-1.5U Taq酶,60ng模板DNA,0.4μmmol/L引物,dATP、dGTP、dCTP和dTTP各0.4 mmol/L。(3).在此基础上,从44个ISSR引物中分别筛选出了适合于地黄、山药和大豆ISSR标记分析的引物10条、7条和8条;从80条RAPD引物中分别筛选出了适合于地黄和山药RAPD标记分析的引物17条和2条。(4).10条ISSR引物对10个地黄品种(系)扩增出110条带,多态条带比率(PPB)为71.82%,平均多样性指数(Ⅰ)为0.3577,遗传相似系数(GS)在0.557~0.979,平均GS为0.665;17条RAPD引物对10个地黄品种(系)扩增出177条带,多态条带比率(PPB)为61.58%,平均多样性指数(Ⅰ)为0.3135,遗传相似系数(GS)在0.63~0.93,平均GS为0.7545。两种分子标记的分析结果呈极显著正相关(r=0.649);利用2条ISSR引物对16个怀地黄单株扩增出17条带,多态条带比率(PPB)为64.71%。使用3条RAPD引物对16个怀地黄单株扩增出7条带,多态条带比率(PPB)为57.14%。(5).7条ISSR引物对28个山药品种扩增出65条带,多态条带比率(PPB)为83.01%,平均多样性指数(Ⅰ)为0.4379,遗传相似系数(GS)在0.33~0.96,平均GS为0.6246。2条RAPD引物对28个山药品种扩增出23条带,多态条带比率(PPB),为82.6%。(6).8个ISSR引物对10个大豆品种扩增出89条带,多态条
The objectives of this dissertation are: Ⅰ .to establish an efficient ISSR and RAPD-based genetic diversity detection system of three economic plants (Rehmannia glutinosa Libosch, Dioscorea opposita Thunb and Glycine max Merr); Ⅱ .to establish an appropriate transformation and regeneration protocol for Rehmannia glutinosa Libosch .f. hueichingensis(Chao et schih) Hsiao; Ⅲ.to clone the Oleoyl- △12-desaturase gene from Glycine max Merr and to construct its antisense expression vector in order to lay the theoretical and technological foundation for the DNA marker-based cultivar identification and improvement in three plants as well as the genetic breeding via Agrobacterium-mediated transformation in Glycine max Merr and Rehmannia glutinosa Libosch .f. hueichingensis(Chao et schih) Hsiao.Ⅰ .RAPD and ISSR markers were used to investigate the genetic diversity of three economical plants, ISSR marker of which was used for the first time.The main progresses obtained are as follows: (1).By means of CTAB method, the DNAs were extracted from 10 cultivars (lines) in Rehmannia glutinosa Libosch, 28 cultivars in Dioscorea opposita Thunb, 10 cultivars in Glycine max Merr and 16 individuals in Rehmannia glutinosa Libosch .f. hueichingensis(Chao et schih) Hsiao, respectively. CTAB method for the DNA extraction from Dioscorea opposita Thunb was improved. (2).The genomic DNA, from a young regenerated plant of Rehmannia glutinosa Libosch .f. hueichingensis (Chao et schih) Hsiao, was used as a template to optimize ISSR-PCR amplification conditions for Rehmannia glutinosa Libosch as follows: proper annealing temperatures from 53℃ to 55 ℃ and a PCR reaction volume of 25μL, including 1.0-1.5 U Taq DNA polymerase, 3.0 mmol/L MgCl2, 1 x Taq DNA polymerase buffer (10mmol/L Tris-HCl, 50mmol/L KCl, 0.1% Trion X-100, pH9.0 ), 60ng template DNA, 0.4μm mol/L primer, 0.4 m mol/L each of dATP、 dGTP、 dCTP and dTTP. (3). Based on the optimized conditions, among 44 ISSR primers and 80 RAPD primers tested, the 10,7 and 8 ISSR primers were selected for the ISSR analyses in Rehmannia glutinosa Libosch, Dioscorea opposita Thunb and Glycine max Merr, respectively; 17 and 2 RAPD primers were done for the RAPD analyses in Rehmannia
    glutinosa Libosch and Dioscorea opposita Thunb. (4).Among the 10 cultivars in Rehmannia glutinosa Libosch, the 10 ISSR primers amplified 110 bands with a percentage of polymorphic bands (PPB) of 71.82% and 17 RAPD primers amplified 177 bands with one (PPB) of 61.58%. The genetic diversity, estimated by Shannon's index, was 0.3577 by ISSR markers and 0.3135 by RAPD markers. Genetic similarity (GS) value was from 0.557 to 0.979, whose mean value was 0.665 by ISSR markers. GS value range was from 0.63 to 0.93, whose mean value was 0.7545 by RAPD markers. Furthermore, the correlation coefficient of 0.649 between RAPD and ISSR markers indicated that both markers were significantly correlated. Among the 16 individuals, the 2 ISSR primers amplified 17 bands with one (PPB) of 64.71% and 3 RAPD primers amplified 7 bands with one (PPB) of 57.14%. (5). Among the 28 cultivars, the 7 ISSR ISSR primers amplified 65 bands with one (PPB) of 83.01% and 2 RAPD primers amplified 23 bands with one (PPB) of 82. 6%. The genetic diversity, estimated by Shannon's index, was 0.4379 by ISSR markers. GS value range was from 0.33 to 0.96, whose mean value was 0.6246 by ISSR markers. (6). Among the 10 cultivars in Glycine max Merr, the 8 ISSR primers amplified 89 bands with one (PPB) of 62.5%. The genetic diversity, estimated by Shannon's index, was 0.2865. GS value range was from 0.60 to 0.75, whose mean value was 0.6912 by ISSR markers. (7). 10 Rehmannia cultivars (lines) could be divided into two similar groups by the dendrograms performed by both markers; 28 yam cultivars 10 soybean cultivars could be divided into four groups and 10 soybean cultivars could be done into two groups by the dendrograms performed by ISSR markers. (8). Primary content analysis was employed to evaluated the resolving power of the markers to differentiate between the cultivars.,whose results were very consistent to that of the above dendrograms.The results revealed that the quality of the extracted DNAs reached to the standads of both markers .the optimized reaction system was appropriate for ISSR analysis; Both markers could not only detect a quite high PPB and Shannon'index (I) among different cultivars in each of these three plants but among different individuals in Rehmannia glutinosa Libosch .f. hueichingensis (Chao et schih) Hsiao. However, different plants had different PPBs, Is,GS value ranges and mean GS values.The genetic diversity
    (PPB and I) among different cultivars in Rehmannia glutinosa Libosch was higher that among different individuals in Rehmannia glutinosa Libosch .f. hueichingensis (Chao et schih) Hsiao. Among the three plants' PPBs and Is by ISSR markers, Yam's PPB and I were the biggest,and Rehmannia's PPB and I were gigger than soybean's; Yam's PPB and I were higher than Rehmannia's by RAPD markers. While the result "yam GS value range > Rehmannia GS one>soybean GS one" was revealed , the result "yam mean GS value range < Rehmannia mean GS one    15 to 75 mg/L, 30mg/L was favorable to the catalpol production in hairy roots. When hairy roots were cultured in liquid 1/2 MS medium for 35 days , a catalpol content of 0.557mg/g.FW in them was obtained, which was higher than that (0 mg/g.FW) in non-transformed roots,48.5% that in fresh Rehmannia root and 18% that in dried Rehmannia root, respectively.(4). A good hormone combination of 3.0m g / L 6-BA and 0.2 m g /L KT was selected. After hairy root segments were cultured for 40d on solid 1/2 MS medium plus the hormone combination, calluses were induced from them at a percentage of 100%, from which shoots were re-differentiated at one of 51.49%. (5).The shoots could take root on a solid 1/2 MS medium at a frequency of 100%. (6).Transgenic plantlets showed such phenotypic alterations as winkled leaves, shortened internodes, dwarfing of plant height, numerous adventitious roots and fewer stomata and dispersed chloroplasts in the leaf lower epidermis in comparison to the corresponding non-trangenic plants. The observed differences may reflect the modification of morphological root characters by integration of rol genes. Survival rate of the transplanted plantlets was up to 82.4%. The stable introduction of rol genes into this kind of medical plant and its transformed roots was confirmed by opine detection and PCR analysis.Ⅲ.One of key ways to improve soybean fatty quality is the increasement of oleic acid content by antisense gene technology. Oleoyl- A 12-desaturase plays an important role in the control of the production of polyenoic acids from oleic acid in soybean, one of whose two genes is named as fad2-1genz. Firstly, genomic DNA of the soybean cultivar Jidou6 was extracted by CTAB method.Then, the fad2-1gene fragment was amplified with polymerase chain reaction (PCR) with primers designed according to the retrieved soybean fad2-1gene sequence from NCBI. It was sequenced after cloned into the BamHI and SalI sites of the pMD18-T vector and transferred to E.coli JM109. The result of DNA sequence analysis indicated that the cloned fragment was approximately 660 base pairs (bp) in size, having a complete base identity to its original gene. In order to down-regulate the expression of soybean fad2-1gene, the cloned fragment was inserted in an antisense orientation into the BamHI and SalI sites between the CaMV35S promoter and the Nos terminator of binary vector pbt .The antisense fad2-1gene
    fragment was transferred into Agrobacterium tumefaciens strain LBA4404. PCR detection and double digestion test showed that the gene fragment had been in E.coli JM109 and the strain LBA4404.The positive LBA4404 transformants are now being used in soybean transformation. To our knowledge, this is the first report in soybean Oleoyl- A 12-desaturase gene cloning in our country.
引文
1.周延清.遗传标记的发展.生物学通报,2000,35(5):17~18
    2.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报.1999,4:19~22
    3.张德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报,1998,(5):15~22
    4.Clark MS主编,顾红雅,瞿礼嘉主译,陈章良主校.植物分子生物学实验手册,北京:高等教育出版社:海德堡:施普林格出版社,1998,8~150
    5.林忠平,走向21世纪的植物分子生物学.北京:科学出版社,2000,348~357
    6.邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社。2001,1~100
    7.王志林,赵树进,吴新荣,分子标记技术及其发展.生命化学,2001,21(4):39-42
    8.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001,12~90
    9.罗文永,胡骏,李晓方.微卫星序列及其应用。遗传25(5):615~619,2003
    10.舒艳群,白守梅,陈毓亨.RAPD技术在药用植物学研究中的应用.中草药,1999,30(2):147~150
    11. Welsh, J. and McClell. M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic. Acids Res., 1990, 18: 7213~7218.
    12. Williams J. G Kubelik A R. DNA polmorphisms amplifide by arbitrary primers are useful as genetic marker. Nucleic Acids Res., 1990, 18: 6531~6535
    13.张利达,袁德军,张建伟,王石平,张启发.一种新的EST聚类方法.遗传学报 2003,30(2):147~153
    14.钟华,谢婷婷,刘中来.EST的应用现状与前景.生物技术 2003,13(1):32~33
    15. Admas M D, Kelley J. M, Gocayne J D, et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252 (5013): 1651~1656
    16. Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res., 1995, 23(21): 4407~4414
    17.李珊,赵桂仿.AFLP分子标记及其应用.西北植物学报,2003,23(5):830~836
    18.郑先云,郭亚平,马恩波.AFLP标记技术的发展.生命的化学,2003,23(1):65~67
    19. Zietkiewicz E. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomes, 1994, 20: 176~183
    20. Antoni Rafalski J. Novel genetic mapping tools in plants: SNPs and LD-BAsed approaches. Plant Science, 2002, 162: 329~333
    21. Brookes A J. The essence of SNPs, Gene,. 1999, 234: 177~186.
    22. Li G, Quiros C F. Squence-related amplified polymorphism(SRAP). A new marker system BAsed on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455~461
    23. Hu J, Vick B A. target region amplified polymorphism: A novel marker technique for plant genotyping. Plant molecular biology reporter, 2003, 21: 289~294
    24.车永和.几种代表性分子标记技术.江苏农业科学,2003,2:3~5
    25.曹仪植.植物分子生物学.北京:高等教育出版社,2002,120~123
    26. Lalitha Sunil Kumar. DNA markers in plant improvement. Biotech. Advances, 1999, 17: 143~182
    28. Masumi Yamagishi, Hiromi Abe, Michiharu Nakano, Akira Nakatsuka PCR-BAsed molecular markers in Asiatic hybrid lily. Scientia Horticulturae, 2002, 96 225~234
    29. Srivastava, P. S., Narula, Srivastava, A. S.. Plant biotechnology and molecular markers, Kluver Academic Publishers, Dordrecht, 2004, 420
    30.齐小辉,马玺,李姗姗,周东坡.基于PCR的基因差异表达分析技术.生物技术通讯,2004,15(4):389~391
    31.[英]J.M.沃克,R.拉普勒编,谭天伟,黄留玉,苏国富等译.分子生物学与生物技术.北京:化学工业出版社,2003,18~44,148~152
    32.齐小辉,马玺,李姗姗,周东坡.基于PCR的基因差异表达分析技术.生物技术通讯,2004,15(4):389~391
    33. Welsh J, Honeycutt R J, McClelland M et al. Parentage determination in maize hybrids using the arbitrarily primed polymerase chain reaction AP-PCR. Theor Appl Genet, 1991, 82: 473~476
    34.刘纯杰,张兆山.任意引物PCR及其应用研究进展.生物技术通讯,2003,14(4):320~323
    35.艾斯卡尔·依米提,哈木拉提·吾甫尔,伊力哈木江·沙比提.用任意引物PCR进行基因多态性分析时最佳反应条件的建立.生物化学与生物物理进展,2001,28(4):591~594
    36.汪莉,易平,万翠香,朱英国.红莲型细胞质雄性不育水稻线粒体DNA的AP-PCR分析.武汉植物学研究,2002,20(6):405~408
    37.许仁林,国伟,汪训明,师素云,杨树青,毛裕民.杂交水稻及其“三系”线粒体DNA的AP-PCR指纹图谱.植物学报,1994,36(1):1~6
    38.孟祥文,李璞.AP-PCR技术及其应用.国外医学遗传学分册,1995,18(3):117~120
    39.高大威.采用任意引物PCR技术进行基因组差异显示.黄牛杂志,2000,26(3):1~3
    40.苏应娟,朱建明,王艇,李雪雁,曾庆文,夏念和.厚朴的任意引物PCR指纹图谱分析.中草药,2002,33(6):545~548
    41.杜光伟.运用AP-PCR对中国慈姑属内亲缘关系的研究,植物分类学报,1998,36(3):216
    42. Gustavo Caetano-Anolles, Robert N. Trigiano, Mark T. Windham. Sequences signiatures from DNA amplification fingerprints reveal fine population structure of the dogwood pathogen Discula destructiva. FEMS Microbiology Letters, 1996, 145: 377~383
    43.张海英,许勇,王永健.分子标记技术概述(上).长江蔬菜,2001,2:4~6
    44.王倩,王斌.DNA分子标记在果树遗传学研究上的应用.遗传,2002,22(5):339
    45.夏铭,栾非时,李景鹏.RAPD影响因素的研究及实验条件优化.植物研究,1999,19(2):195~201
    46. Dela Rosa. R, Angiolillo. A., Guerrero. C., Pellegrini. M., Rallo. L., Besnard. G.., Berville. A., Martin. A. and BAldoni. L. A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet, 2003, 106: 1273~1282
    47.薛淮,刘敏,张纯花,潘毅.RAPD分子标记在园艺植物遗传学研究中的应用.生物技术,2003,13(2):42~43
    48.崔章林,盖钧镒.中国育成大豆品种与谱系分析.北京:中国农业出版社,1998,25~27
    49.马小军.人参不同栽培群体遗传关系的RAPD分析.植物学报,2000,42(6):587~590
    50.吴卫,鱼腥草种质资源的RAPD分析.药学学报2002,37(12):986~992
    51.方芳.浙江产香茶菜属植物8个居群的RAPD分析.中草药2003,34(6):553—556
    52.梁月荣,田中村一,武田善行.应用RAPD分子标记分析“晚绿”品种的杂交亲本.茶叶科学,2000,20(1):22
    53. Heinkel R, Hartmann W, Stosser R, On the origin of the plum cultivars Cacaks Beauty, Cacaks Best, Cacaks Early, Cacaks Fruitful as investigated by the inheritance of random amplified polymorphic DNA(RAPD) fragments. Scientia Horticulturae, 2000, 83(2): 149
    54.蔡从利,王建波,朱英国,等.山羊草属二倍体物种亲缘关系的RAPD分析.遗传,2001,23(3):229
    55. Martins. M., Tenreiro. R., Oliveim. M. M. Genetic relatedness of Portuguese almond cultivars assessed by RAPD and ISSR markers. Plant Cell Rep., 2003, 22: 71~78
    56. Liu. J., Cordes. J. F. DNA marker technologies and their applications in aquaculture. Genetics Aquaculture, 2004, 238: 1~37
    57.张增艳,辛志勇,陈孝,王晓萍,刘景芳,杜丽璞.源于L1的小麦抗黄矮病基因的特异PCR标记及辅助育种的研究.作物学报,2002,28(42):486~491
    58.刘堰,欧阳克清,赵虎成,李新平,蔡绍皙.随机扩增多态性DNA技术在生命科学中的应用重庆大学学报(自然科学版),2001,24(4):26~30
    59.刘保申,孙其信,孙兰珍,高庆荣,解超杰,窦秉德,倪中福,魏艳玲,张延传.K型小麦细胞质雄性不育恢复基因的RAPD and ISSR标记,植物学报,2002,44(4):446~450
    60.王志伟,向长萍,梅时勇,黄来春,罗卜细胞质雄性不育恢复基因的RAPD标记.植物遗传资源学报,2004,5(2):153~155
    61.索广力,黄占景,何聪芬.利用RAPD-BSA技术筛选小麦耐盐突变位点的分子标记.植物学报,2001,43(6):598~602
    62. Hernandez. P., Hemmat. M., Weeden. N. F., et al. Development and characterization of Hordeum chilense chromosome-specific STSmarkers suitable for wheat intogression and markers-assisted selection, Theor. Appl. Genet., 1999, 98(5): 721~727
    63.张露,蔡友铭,诸葛强,楼炉焕,邹惠渝,黄敏仁,王明庥.石蒜属种间亲缘关系RAPD分析.遗传学报,29(10):915~921,2002
    64.张志永,陈受宜.栽培大豆品种间RAPD标记的多态性分析及聚类分析.大豆科学,1998.17(2):1~7
    65.陈亮,梅明华,徐才国,李子银,陈睦传,沈明山.RFLP、RAPD、AFLP在水稻农垦58S和1514中多态性比较.植物学通报,2000,17(5):424~428。
    66. Chengxin Fu, RAPD analysis for genetic diversity in Changium smymioides (Apiaceae), an endangered plants. Bot. Bull. Acad. Sin., 2003, 44 (13): 13~18
    67. Choi H S. Evaluation of genetic diversity of callus-derived plantlets of Rehmannia glutinosa using randomly amplified polymorphic DNA(RAPD). J. Agric. Development Research, 1997, 2: 143~147.
    68. Pillay. M., Ogundiwin. E., Nwakanma. D. C., Ude. G., Tenkouano. A. Analysis of genetic diversity and relationships in East African banana germplasm. Theor Appl Genet., 2001, 102: 965~970
    69.张菊平,RAPD技术快速鉴定辣椒杂种纯度的研究.种子,2003,2:7~10
    70.欧阳新星,许勇,张海英等.应用RAPD技术快速进行西瓜杂交种纯度鉴定的研究.农业生物技术学报,1999,7(1):23~27
    71.朱海山,张宏,毛昆明,李洪涛,汪安云.RAPD标记鉴定番茄杂交种子纯度的研究.云南农业大学学报.2003,18(3):270~272
    72.栾雨时,苏乔,李海涛等.利用RAPD技术快速鉴定番茄杂种纯度.园艺学报,1998,25(3):247~251
    73.张菊平,张兴志,张长远.碧绿3号苦瓜种子纯度的RAPD检测研究.种子,2004,23(1):25~27
    74.蔡雪飞,赵云,李江,周云涛,胡远辉,李华鹏,王茂林.甘蓝型杂交油菜“蜀杂9号”种子纯度的RAPD鉴定.四川大学学报(自然科学版),2004,42(4):874~876
    75.陈洪,钱前,朱立煌等.杂交水稻汕优63杂种纯度的RAPD鉴定.科学通报,1996,41(9):833~836
    76.曹后男,宗成文,赵成日等.RAPD标记在核桃品种鉴定中的应用.延边大学农学学报,2003.25(2):79~85
    77.赵洪锟,李启云.RAPD标记在大豆品种鉴定中的应用初探.吉林农业科学,1998.4:6~8
    78.杨美华.正品和伪品大黄的RAPD指纹图谱鉴定研究.中草药,2003,34(6):557~56
    79.周子静.商品厚朴中几种混用品的原植物调查及其生药的鉴定研究.药学通报,1964,10:261~269
    80.许春泉,曹立稳,向飞军.厚朴混淆品-4种木莲属植物树皮的生药学鉴定.中国中药杂志,1994,19(10):597~583.
    81.李汝刚;分子标记在苹果品种鉴定中的应用.生物技术通报,1997,1:17~20
    82.张荣,张步振,叶浩.用RAPD分析法鉴定木蓝属中药.中国中药杂志,1997,22(2):72~76
    83. Mattioni C. Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species, Theor Appl Genet, 2002, 104: 1064~1070.
    84.曹晖,刘玉萍,邵鹏柱.DNA分子指纹图谱与测序技术在中药品质研究中的现状及展望.中国中药杂志,1998,13(5):202~205
    85.陈林娇,陈月琴,屈良鹄,等.中药溪黄草及其药用近缘种的RAPD分析.中山大学学报(自然科学版),1999,38(1):102~106
    84 Hatano M. Genetic diagnosis of Rehmannia species micropropagated by tip tissue culture and an F1 hybrid by RAPD analysis, Plant Breeding, 1997, 116, 589~591
    85.陈新露,RAPD技术在园艺植物种质资源研究中的应用.张上隆,陈昆松主编;园艺学进展:北京:农业出版社,1994,67~70
    86.史永忠,邓秀新,郭文武,等;RAPD技术与果树种质资源及育种研究.中国果树,1997,(2):46~48
    87. He Yingjun, Zou Yuping, Wang Xiaodong, et al. Assessing the germplasm Laminaria (Phaeophyceae) with Random Amplified Polymorphic DNA(RAPD) Method. Chinese Journal of Oceanology and Limnology, 2003, 21 (2): 141~148
    88.陈京荔,黄璐琦,邵爱娟,等.地黄不同品种的RAPD分析.中国中药杂志,2002,27(7):505~50.
    89.周爱芬,向凤宁,夏光敏,陈惠民,黄粤,翟晓灵.单倍体小麦与簇毛麦的不对称体细胞杂交山东大学学报(自然科学版),1999,34(2):224~229
    90. Hormaza J I. Identification of a RAPD maker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor Appl Genet, 1994, 89(1): 9~13
    91. Shirkot P, Sharma D R, Mohapatra T, et al. Molecular identification of sex in Actinidia deliciosa var. deliciosa by RAPD markers. Scientia Horticulturae, 2002, 94(12): 33
    92.谭冬梅,罗淑萍,李疆,韩海涛.阿月浑子性别鉴定的RAPD分析.果树学报,2003,20(2):124~126
    93.许占友,邱丽娟,常汝镇,李向华,郑翠明,刘立宏,郭蓓.利用SSR标记鉴定大豆种质.中国农业科学,1999,32(增刊):40~48
    94.宋启建.大豆SSR分子标记的创制及其应用.大豆科学,1999,18(3):248~254
    95. Brown-Guedira G L,Thompson J A, Nelson R L, Warburton M L. Evalution of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers. Crop Science, 2000, 40 (3): 815~823
    96. Choi-Ik Yong, Kang-Jung Hoon, Song-HiSup, Kim-NamSoo. Genetic diversity measured by simple sequence repeat variations among the wild soybean (Glycine soja) collected along riverside of five major rivers in Korea. Genes and Genetic Systems, 1999, 74 (4): 169~177
    97. Diwan N, Cregan P B. Automated sizing of fluorescent -labeled simple sequence repeat (SSRs)markers to assay genetic variation in soybean. Theor Appl Genet, 1997, 95: 723~733
    98. Doldi M L, Wollmann J, Lelley T. Genetic diversity in soybean as determined by RAPD and microsatellite analysis. Plant Breeding, 1997, 16 (4): 331~335
    99. Maughan P J, Saghai Maroot M A, Buss G R. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome, 1995, 38: 715~723
    100. Morgante M, Olivieri A M. PCR-amplified microsatellites as markers in plant genetics. The Plant Journal, 1993, 3: 175~182
    101. Mudge J, Cegan P B, Kenworthy J P, Kenworthy W J, Orf J H, Yong N D. Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Science, 1997, 37 (5): 1611~1615
    102. QiJian Song, Kyo-Moon Shim, Nam-Soo Kim. Genotype fingerprinting differentiation and association between morphological traits and SSR information of soybean landraces. Plant Resources, 1998, 1 (2): 81~91
    103. QiJian Song, Nam-Soo Kim. SSRFING: A BAsic computer program for DNA fingerprinting analysis with microsatellite SSR information. Korean Journal of Genetics, 1998, 20 (1): 29~34
    104. Rongwen J, Akkaya M S, Bhagwat A A, Lavi U, Cregan P B, 1995. The use of microsatellites DNA markers for soybean genotype identification. Theoretical and Applied Genetics, 90 (1): 43~48
    105. Yu-Yg, Maroof M A S, Buss G R, Maughan P J, Tolin S A. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology, 1994, 84 (1): 60~64
    106. Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theor Appl Genet, 1994, 88: 1~6
    107. ZhengCui Ming, ChangRu zhen, QiuLi Juan. Progress on the study of the disease soybean mosaic virus. Acta Phytothologica Sinica, 2000, 33 (2): 97~105
    108. Song Q J, Quingley C V, Nelson R L, Carter T E, Boerma H R, Strachan J L, Cregan P B. A selected set of trinucleotide simple sequence repeat markers for soybean cultivar identification. special issue: cultivar group classification. Plant Varieties and Seeds, 1999, 12 (3): 207~220
    109.吴晓雷,贺超英,陈受益,等.用SSR分子标记研究大豆属种间亲缘进化关系.遗传学报,2001,28(4):359~366
    110. Peakall R, Gilmore S, Kevs W, Moreante M, Rafalski A. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus anf other leglume genera: implications for the transferability of SSRs in plants. Mol Biol Evol, 1998, 15(10): 1275~1287
    111. Powell W, Morgante M. Genepool variation in genus Glycine subgenus Soja revealed by polymorphic nuclear and chloroplast microsatellites. Genetics, 1996, 144 (2): 793~803
    112.张阿英,胡宝忠,姜述君,胡国富,陈晓红,王亚玲.DNA分子标记及其在大豆抗病育种中的应用.大豆科学,2002,21(1):62~67
    113.许占友,李磊,邱丽娟,常汝镇,汪茂斌,李智,郭蓓.大豆三系的选育及恢复基因的SSR初步定位研究.中国农业科学,1999,32(2):32~38
    114.段红梅,王文秀,常汝镇,张孟臣,邱丽娟。大豆SSR标记辅助遗传背景选择效果分析.植物遗传资源学报,2003,4(1):36~42
    115.宋启建.大豆SSR分子标记的创制及其应用.大豆科学,1999,18(3):249~254
    116.张博,邱丽娟,常汝镇.利用大豆育成品种的SSR标记遗传距离预测杂种优势的初步研究.大豆科学,2003,22(3):166~171
    117.关荣霞,刘燕,刘章雄,常汝镇,邱丽娟.利用SSR方法鉴定大豆品种纯度.分子植物育种,2003,1(3):357~360
    118. M eesang N, Ranamukhaarachchi S L, Petersen M J, Andersen S B. Soybean cultivar identification and genetic purity analysis using microsatellite DNA markers. Seed Sci & Technol, 2001, 29: 637~645
    119.闫哲,常汝镇,关荣霞,刘章雄,邱丽娟.不同来源大豆同名品种“满仓金”表现型及SSR标记的异同性分析.植物遗传资源学报,2003,4(2):128~133
    120.张博,邱丽娟,常汝镇.中国大豆部分获奖品种与其祖先亲本间SSR标记的多态性比较和遗传关系分析.农业生物技术学报,2003,11(4):351~358
    121.贺超英,张志永,王永军等.利用微卫星标记评估大豆重组近交系NJRIKY.遗传学报,2001,18(2):171~181
    122.崔艳华,邱丽娟,常汝镇,吕文河.利用SSR分子标记检测黄淮夏大豆(Glycine max)初选核心样本的代表性.植物遗传资源学报,2003,4(1):9~15
    123.刘峰,东方阳,邹继军等.应用SSR进行大豆种质多样性和遗传变异性分析.遗传学报,2000,27(7):628~633
    124.许占友,邱丽娟,常汝镇,李向华,郑翠明,刘立宏,郭蓓.利用SSR标记鉴定大豆种质.中国农业科学,1999,32(增刊):40~48
    125.邱丽娟,常汝镇,许占友,等.利用分子标记评价大豆种质的研究进展.大豆科学,1999,18(4):347~350
    126.刘峰,陈受宜.大豆基因组中的微卫星标记.大豆科学,1998,17(31):256~261
    127 赵洪锟,王玉民,李启云等.中国不同纬度野生大豆和栽培大豆SSR分析大豆科学,2001,20(3):172~176.
    128.海林,王克晶,杨凯.半野生大豆种质资源SSR位点遗传多样性分析.西北植物学报,2002,22(4):751~757
    129.王彪,邱丽娟.大豆SSR技术研究进展.植物学通报,2002,19(1):44~48
    130.周晓馥,庄炳昌,王玉民,赵洪琨.利用RAPD和SSR技术进行野生大豆种群内分化的研究.中国生态农业学报,2002,10(4):6~9
    131.王永军,东方阳,王修强,杨雅麟,喻德跃,盖钧镒,吴晓雷,贺超英,张劲松,陈受宜.大豆5个花叶病毒株系抗性基因的定位.遗传学报,2004,31(1):87~90
    132.李明芳,郑学勤.开发SSR引物方法之研究动态.遗传,2004,26(5):769~776
    133.张增翠,侯喜林.SSR分子标记开发策略及评价.2004,26(5):763~768
    134.陈佩度,作物育种生物技术.北京:中国农业出版社,2001,134
    135. Andersen, S. B. 2000. Inter Simple Sequence Repeats (http://www.agsci.kvl.dk/breed/kortlegl/BAckground/Markertypes/issr_markers.htm.accessed 5/2/01)
    136. Wolfe, A. D., and A. Liston. 1998. Contributions of PCR-BAsed methods to plant systematics and evolutionary biology. In: Plant Molecular Systematics Ⅱ Soltis, D. E., Soltis, P. S., and Do.
    137. Blair M W, Panaud O, McCouch S R. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryzasativa L.). Theor Appl Genet, 1999, 98: 780~792
    138.王建波.ISSR分子标记及其在植物遗传学研究中的应用.遗传,2002.24(5):613~616
    139.张青林,罗正荣.ISSR及其在果树上的应用.果树学报,2004,21(1):54~58
    140. Kojima. T., Nagaoka. T., Noda. K., ogihara. Y., Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theor Appl Genet, 1998, 96(1): 37~45
    141. Sankar. A. A., Moore. G. A. Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theor Appl Genet, 2001, 102: 206~214
    142.易克,徐向利,卢向阳,许勇,肖浪涛,王永健,康国斌.利用SSR和ISSR标记技术构建西瓜分子遗传连锁图谱.湖南农业大学学报(自然科学版),2003,29(4):333~337
    143.张德水,董伟,惠东威,陈受益,庄炳昌.用栽培大豆与半野生大豆间的杂种F_2群体构建基因组分子标记连锁框架图.科学通报,1997,42(12):1326~1330
    144. Ratnaparkhe. M. B., Tekeoglu. M., Muehl Bauer. F. J. Inter simple sequence repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor. Appl. Genet. 1998, 97(4): 515~519
    145. Fang. D. Q and Roose. M. L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl. Genet. 1997, 95(3): 408~417
    146. Prevost. A, Wilkinson. M. J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet, 1999, 98(1): 107~112
    147.邱英雄,傅承新,何云芳.乐昌含笑不同类型鉴定的ISSR-PCR分析.林业科学,2002,38(6):49~52
    148.宣继萍,章镇.适合于苹果ISSR反应体系的建立.植物生理学通讯,2002,38(6):549~550
    149.宣继萍,章镇,房经贵,高志红,车胜利.苹果品种ISSR指纹图谱构建.果树学报,2002,19(6):421~423
    150.李进波,牟同敏,方宣钧.12个水稻光温敏核不育系的ISSR标记鉴定及遗传分析.中国农学通报.2002,18(1):6~9
    151.邱英雄,傅承新,孔航辉.杨梅不同品种的ISSR分析.农业生物技术学报,2002,10(4):343~346
    152.孙岳,李景鹏,金元昌,等.南、北五味子ISSR鉴定研究.中医药学报,2003,31(1):29~30
    153. Scarano. M. T., Abbate. L., Ferrante. S., Lucretti. S., Tusa. N. ISSR-PCR technique: a useful method for characterizing new allotetraploid somatic hybrids of mandarin. Plant Cell Rep. 2002, 20: 1162~1166
    154.王心宇,陈佩度,亓增军,张政值,马正强.ISSR标记在小麦指纹图谱分析中的应用研究初探.农业生物技术学报,2001,9(3):261~263
    155. Masumi Yamagishi, Hiromi Abe, Michiharu Nakano, Akira Nakatsuka. PCR-based Molecular markers in Asiatic hybrid lily. Scientia Horticulture, 2002, 96: 225~234.
    156. Huang J C, Sun M. Genetic diversity and relationships of sweptotato and its wild relatives in Jpomoea series batatas (Convolvlaceae) as revealed by ISSR and restriction analysis of chloroplast DNA. Theoretical and Applied Genetic, 2000, 100: 1050~1060.
    157.钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报,2000,42(7):741~750
    158.何予卿,张宇,孙梅,等利用ISSR分子标记研究栽培稻和野生稻亲缘关系.农业生物技术学报,2001,9(2):123~127
    159.刘万勃,宋明,刘富中,王怀松.RAPD和ISSR标记对甜瓜种质遗传多样性的研究.农业生物技术学报,2002,10(3):231~236
    160.葛永奇.邱英雄.丁炳扬.傅承新.孑遗植物银杏群体遗传多样性的ISSR分析.生物多样 性,2003,11(4):276~287
    161.祁建民,周东新,吴为人,等.用ISSR标记检测黄麻野生种与栽培种遗传多样性.应用生态学报,2003,14(9):1473~1477
    162.马朝芝,傅廷栋,Stine Tuevesson,BoGertsson.用ISSR标记技术分析中国和瑞典甘蓝型油菜的遗传多样性.中国农业科学,2003,36(11):1403~1408
    163.李进波,江良荣,李春海,等.水稻光温敏核不育系的ISSR和SSR遗传分析比较.分子植物育种,2003,1(1):42~47.
    164.李海生,陈桂珠.中国卵叶海桑遗传多样性的研究.广西植物,2004,(1):17~22
    165.李海生,ISSR分子标记技术及其在植物遗传多样性分析中的应用.生物学通报,2004,39(2):19~21
    166.谢佳燕,张知彬.ISSR标记技术及其在遗传多样性研究中的应用.兽类学报,2004,24(1):71~77
    167. Tsumura Y, Ohba K, Strauss SH. Diversity and inheritance of inter simple sequence repeat polymorphisms in douglasfir (Pseudotsugamenziesii) and sugi(Cryptomeriajapoica). Theor. Appl. Genet, 1996, 92: 40~45
    168. Duvila J A, S anchez de la Hoz MP, Larce Y, Ferrer E. The use of random amplified microsatellite polymorphic DNA and coefficients of parentage to deterimine genetic relationship in barley. Genome, 1998, 41: 477~486
    169. Nagaoka T, Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet., 1997, 94 : 597~602
    170.杜金昆,姚颖垠,倪中福,彭惠茹,孙其信.普通小麦、斯卑尔脱小麦、密穗小麦和轮回选择后代材料ISSR分子标记遗传差异研究.遗传学报,2002,29(5):445~452
    171.余爱丽,张木清,陈如凯.ISSR分子标记在甘蔗及其近缘属分类上的应用.福建农林大学学报(自然科学版).2002,31(4):484~489
    172. Irvine J E. Saccharum species as horticultural classes. Theor. Appl. Genet, 1999, 98: 186~194.
    173. Jiang Jing, Yang Chum-ping, Liu Gui-Feng, Wu Jin-hua, Li Tong-hua. Genetic relationship of interspecies for eight birch species Journal of Forestry Research, 2002, 13 (4): 281~284
    174. Ju-Yu Wu. Co-dominant RAPD markers closely linked with two morphological genes in rice (Oryza sativa L.). Bot. Bull. A cad. Sin., 2002, 43: 171~180.
    175. Chengxin Fu, RAPD analysis for genetic diversity in Changium smymioides (Apiaceae), an endangered plants. Bot. Bull. Acad. Sin., 2003, 44 (13): 13~18.
    176. Choi H. S l. "Callus-derived plantlets of Rehmannia glutinosa using RAPD", SABRAO, 1997, 8: 144.
    177. Mignouna HD, Asiedu R (1999) A genetic linkage map of Guinea yam (Dioscorea rotundata Poir) based on isozyme, RAPD and AFLP markers. Abstract P287 PAG Ⅶ, San Diego, California http://www.intl-pag.org
    178. Ramser J, Lopez-Peralta C, Wetzel R, Weising K, Kahl G. Genomic variation and relationships in aerial yam (Dioscoreabulbifera L.) detected by random amplified polymorphic DNA. Genome, 1996, 39: 17~25
    179.肖小河.中药DNA分子标识鉴定研究进展.中草药,2000,31(8):561~565
    180.赵洪锟,庄炳昌,王玉民,李启云.中国不同纬度野生大豆和栽培大豆AFLP分析.高技术通讯,2000,7:32~35
    181.史锋.张耀洲.曾广文.利用RAPD分子标记图谱鉴别大豆栽培品种.浙江农业学报.1998. 10(4):220~222
    182.许东河,高忠,盖钧镒,张志永,陈受宜,北岛俊二,福士泰史,阿部纯,岛本义也。中国野生大豆与栽培大豆等位酶、RFLP和RAPD标记的遗传多样性与演化趋势分析。中国农业科学,1999,32(6):16~22
    183.邱丽娟,Randall.L.Nelson,Lila O.Vodkin.利用RAPD鉴定大豆种质.作物学报,1997,23(4):408~417
    184.张志永,张劲松,巩学千,陈受宜,盖钧镒,胡蕴珠,智海剑.抗SMV栽培大豆种质资源的SCAR标记指纹图谱分析.高技术通讯,1998,10:49~52
    185.张志永,盖钧镒.RAPD在大豆种质资源及遗传连锁研究中的应用.大豆科学,1997,16(1):60~65
    186.邱丽娟,常汝镇,王文辉,Perry Cre,Dechun Wang,Yiwu Chen,马凤鸣.大豆抗胞囊线虫病种质rhgl和Rhg4位点的单核苷酸多态性(SNPs).植物遗传资源学报,2003,4(2):89~93
    187.许占友,常汝镇,邱丽娟,李向华.大豆表达序列标记(EST)研究进展 大豆科学,19(2):165~173
    188.田清震,盖钧镒,喻德跃,贾继增,大豆DNA扩增片段长度多态性(AFLP)研究.大豆科学,2000,19(3):210~217
    189.田清震,盖钧镒,喻德跃,吕慧能,贾继增,我国野生大豆与栽培大豆AFLP指纹图谱研究.中国农业科学,2001,34(5):465~468
    190.金燕,王文驹,付大熙,卢宝荣.利用ISSR技术研究野大豆居群内遗传变异及其取样策略.植物学报,2003,45(8):995~1002
    191.任小俊,马俊奎,章彦,刘学义.应用ISSR标记分析灰布支黑豆与晋豆23的F_3群体的遗传多样性.分子植物育种,2003,1(5/6),629~632
    192.蒙忻,刘学义,方宣钧,利用大豆分子连锁图定位大豆孢囊线虫4号生理小种抗性QTL,分子植物育种,2003,1(1):6~21
    193.温学森,杨世林,魏建和,郑俊华.地黄栽培历史及其品种考证.中草药,2002,946~949
    194.冯德培,谈家桢,王鸣歧,简明生物学词典,上海:上海辞书出版社,1982,430~431
    195.周俊英.中药地黄的染色体研究.山东科学,2002,15(1):20~22.
    196.丁自勉.地黄.北京:中国中医药出版社,2001:1~2
    197.明·李时珍.本草纲目 校正本北京:人民卫生出版社,1982:1019
    198.徐国钧.生药学.北京:人民卫生出版社,1987:373~375
    199.国家中医药管理局 中华本草编委会.中华本草 第7卷 上海:上海科学技术出版社,2001:376~388
    200.江苏新医学院.中药大辞典.上海:上海科学技术出版社,1975:74~76.
    201.问学森,赵华英,李先恩.地黄病毒病在不同品种中的症状表现.中国中药杂志,2002,27(3):225~227
    202.刘红彦,陈玉红,杨贵军.85-5怀地黄优质栽培管理技术.河南农业,2004,3:25~26
    203.杨素霞,樊克峰,白雁.地黄资源状况分析.中药研究与信息,2003,5(5):25~26
    204.吴国芳,冯志坚,马炜梁,周秀佳,朗奎昌,胡人亮,王策箴,李茹光.植物学(第二版)下册。北京:高等教育出版社,1992,352~353
    205.徐道东,赵章忠,王统正等.薯芋类蔬菜栽培技术.上海:上海科学技术出版社,150
    206.黄晓玲,李海燕.山药栽培技术.园艺杂谈,1999,(2):29
    207.中国农业百科全书.蔬菜.北京:北京出版社,1990,184~185
    208.张发春,赵庆云,彭凤梅,杨冰,黄荣春,谢世清.不同山药地方品种的特征特性分析.种子,2001,3:55~56
    209.王元梁,赖剑锋.怀山药的伪品参薯、脚板苕的鉴别.海峡药学,2002,14(4):28-30
    210.于倩,李明军.怀山药微型块茎愈伤组织的诱导形成及高频率再生.生态学报,2004,24(5):1022~1026
    211.叶明远.常用饮片山药的真伪鉴别.中国药业,2002,11(7):68
    212.李耀卿,王晓梅.怀山药及其混淆品天花粉的比较鉴别.山西中医学院学报,2001,2(2):45~46
    213.吴皎玉.山药及其常见伪品的显微鉴别.时珍国医国药,2003,14(2):90
    214.苗兴满,郑秀芬.山药及伪品的鉴别.时珍国医国药,1999,10(5):356
    215.谢彩侠,高山林,张重义,黄晓书.山药地方品种的化学成分和淀粉酶同工酶分析。植物资源与环境学报,2004,13(2):21~24
    216. Terauchi R, Konuma. A. Microsatellite polymorphism in Dioscorea tokoro, a wild yam species. Genome. 1994, 37 (5): 794~801
    217. Mignouna H. D., Mank. R. A., Ellis. T. H. N., van den Bosch. N, Asiedu. R., Ng. S. Y. C., Peleman. J. A genetic linkage map of Guinea yam (Dioscorea rotundata Poir.) based on AFLP markers. Theor Appl Genet, 2002, 105: 716~725
    218. Mignouna H. D., R. A. Mank, T. H. N. Ellis, N. van den Bosch, R. Asiedu, Abang. M. M., Peleman. J. A genetic linkage map of water yam (Dioscorea alata L.) BAsed on AFLP markers and QTL analysis for anthracnose resistance. Theor Appl Genet, 2002, 105: 726~735
    219.刘玉萍,何报作,曹晖.基因测序技术在中药质量研究中的应用(Ⅱ).山药基原的DNA测序鉴别。中草药,2001,32(11):10~26
    220. Gupta M, Y S Chyi, J Romero-Severson& J L Owen. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple sequence repeat. Theor. Appl. Gent, 1994, 89: 998~1006
    221.周延清,苑保军,张根发,杜启艳,路淑霞,卢龙斗.外源DNA(基因)导入大豆的研究.生物技术,2000,10(3):41~44
    222.王连铮,王金陵.大豆遗传育种学.北京:科学出版社,1992.1~81
    223.周延清,王娜,苑保军,贾敬芬,孟祥春.大豆遗传转化研究进展.武汉植物学研究 2004,22(2):163~170
    224.惠东威,庄炳昌,顾京等.利用RAPD对大豆属植物系统学研究的初报.科学通报,1994,39(2):175~178
    225. HymowitzT, and NewellCA. The approach of Glycine identification studies. Economic Botany, 1981, 35(2): 272~2783
    226.王罡等.限制性内切酶片段长度多态性(RFLP)及其在植物育种的应用.中国农业科学,1994,27(6):67~72
    227. Zhang J, McDonald. M B, Sweeney. P M. Soybean cultivar identification using RAPD. Seed Sci. & Technol, 1996, 24: 589~592
    228. Thompson JA, Nelson. R L, Vodkin. L O. Identification of diverse soybean germplasm using RAPD markers. Crop Sci., 1998, 38(5): 1348~1355
    229. Apuya N R, Frazier. B L, Keim P, Roth E J, Lark K G. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.). Merrill Theor Appl Genet, 1988, 75: 889~901
    230. Keim P, Beavis. W, Schupp. J, etal. Evaluation of soybean RFLP markers diversity in adapted germplasm. Theor. Appl. Genet. 1992, 85: 205-212
    231. Keim P, Shoemaker R C, Palmer R G. Restriction fragment length polymorphism diversity in soybean. Theor Appl Genet, 1989, 77: 786~792
    232. Jiang RW, Akkaya. M S, Bhagwat. A. A, etal. The use of microsatellite DNA markers for soybean genotype identification. Thero. Appl. Genet, 1995, 90: 43~48
    233.A.J.哈伍德主编 盛小禹等译 盛祖嘉等校.DNA及RNA基本实验技术.北京:科学出版社,2002,120~124
    234.王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998,426
    235.周延清,景建洲,李振勇,贾敬芬.怀地黄ISSR扩增条件优化的研究.西北植物学报,200,4,24(1):6~11.
    236.周延清,景建洲,李振勇,张宝华,贾敬芬.利用RAPD和ISSR分子标记分析地黄种质遗传多样性.遗传,2004,26(6):331~336
    237.段会军,张彩英,张丽娟等.河北省大豆种质资源同工酶及RAPD标记多样性研究.中国油料作物学报,2003,25(2):15~20
    238. Bruford M W. Microsatellites and their application to conservation genetics. Smith TB, Wayne R K. Molecular genetic approaches in conservation. Oxford: Oxford University Press, 1996, 237
    239. Charters Y M. PCR analysis of oilseed rope cultivars (Brassica napus L. ssp. oleifera) using 5'-anchored simple sequence repeat (SSR)primers. Theoretical and Applied Genetics, 1996, 92: 442~447.
    240. Qian W. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers, Theoretical and Applied Genetics, 2001, 102: 440~449.
    241. ZHOU Yan-Qing, JING Jan-Zhou, LI Zhen-Yong, JIA Jing-feng. Optimization of ISSR-PCR amplification in Huai Rehmannia glutinosa. Acta Bot Boreal Occident Sin, 2004, 24 (1): 6~11
    242.陈其军,韩玉珍,傅永福,赵德刚,国凤利,孟繁静,刘卫平.大麻性别的RAPD和SCAR分子标记.植物生理学报,2001,27(2):173~178
    243.奥斯伯F等(颜子颖等译).精编分子生物学实验指南.北京:科学出版社,1998,831~835
    244.周延清.转基因油菜研究进展.生物学通报,1994,29(5):1~4
    245.王萍,王罡,季静,曾凡亭,黄彬城,曹江,吴颖.大豆体细胞胚胎发生与农杆菌介导的遗传转化.遗传,2004,26(5):695~700
    246.赵桂兰,刘艳芝,李俊波,徐洪志,刘莉,尹爱平.影响农杆菌介导的大豆基因转化因素的研究.大豆科学,2001,20(2):84~88
    247. Hu C Y, Wang. L Z. In planta soybean transformation technologies developed in China: Procedure, confirmation and field performance. In Vitro Cell Dev Bio Plant, 1999, 35: 417~420
    248. Annette Droste, Giancarlo Pasquali, MariaHelenaBodanese-Zanettini. Integrated BomBArdment and AgroBActerium transformation system: an alternative method for soybean transformation. Plant Mol Biol Reporter, 2000, 18: 51~59
    249. Meuver CA, Dinkins RD, Collins GB: Factors affecting soybean cotyledenary node transformation. Plant Cell Reps, 1998, 18: 180~186
    250. Ke J, Khan R, Johnsen T, Somers DA, Das A. High efficiency gene transfer to recalcitrant plants by Agrobacteriumtumefaciens. Plant Cell Reps, 2001, 18: 150~156.
    251. DhirSK, DhirS, Widholm JM. Regeneration of fertile plants from protoplasts of soybean (Glycine max L. Merr.): genotypic differences in culture response. Plant Cell Reps, 1992, 11: 285~289.
    252. Stewart CN, Adang MJ, All JN, Boerma HR, Cardineau G, Tucker D, Parrott WA. Genetic transformation, recovery, and characterization of fertile soybean transgenicfor a synthetic BAcillus thuringiensis cryl AC gene. Plant Physio, 1996, 112: 121~129.
    253. Maughan PJ, PhilipR, Cho MJ, Widholm, Vodkin LO. Biolistic transformation, expression, and inheritance of bovine beta-casein in soybean(Glycinemax). In Vitro Cell Dev Biol Plant, 1999, 35(4): 344~349.
    254. Santarem Eliane R. FinerJohn J. Transformation of soybean (Glycine max(L.)Merrill) using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell Dev Biol Plant, 1999, 35(6): 451~455.
    255. Trick HN, FinerJJ: Sonication-assisted AgroBActerium-mediated transformation of soybean[Glycinemax(L.)Merrill] embryogenic suspension culture tissue. Plant Cell Reps, 1998, 17: 482~488.
    256.胡忠,李庆云,曹军.药用植物基因工程的研究进展.热带亚热带植物学报,2002,10(4):371~380
    257.曹冬梅,韩振海,许雪峰.发根农杆菌Ri质粒研究进展.中国生物工程杂志,2003,23(2):74~78
    258. Rhberta H S, Elizabeth E H. Agrobacteriumtumefaciens transformation of monocotyledons. Crop Sci, 1995, 35: 301~309
    259.王从丽,陆柏方,张学成,李广旭,王劲波,李延军,彭友良,潘申权.农杆菌-植物间基因转移的分子基础.生命科学.2002,14(1):1~5
    260. Simmonds D H, Donaldson P A. Genotype screening for proliferative embryogenesis and biolistic transformation of short season soybean genotypes. Plant Cell Reps, 2000, 19: 485~490.
    261.王罡,王萍,蔺宇,张领兵,吴颖.大豆基因型对根癌农杆菌菌株敏感性的研究.遗传,2002,24(3):297-300.
    262. Ishicla Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zeamays L.) mediated by AgroBActerium tumefaciens. Nature Biotechnology, 1996, 14: 745~750
    263. Cheng M, Fry J, Pany S, et al. Genetic transformation of wheat mediated by Agrobacterium tume faciens. Plant Physiol, 1997, 115: 971~980
    264. Mahalakshmi A, Khurana P. AgroBActerium-mediated gene delivery in various tissues and genotypes of wheat (Triticumaestivum L.). Journal of plant biochemistry and biotechnology, 1995, 4(2): 55~59
    265.陶余敏,唐锡华.农杆菌转化单子叶植物的可能性及问题.植物生理学通讯,1992,28(6):402~406
    266.向阳,朱冬雪,夏雨,吕立堂,赵德刚.植物基因工程中Ti质粒的研究与应用进展.生物学通报.2003,38(2):7~9
    267.陈章良等.植物基因与分子操作.北京:北京大学出版社,第1版,1995,191~230.
    268.王自章,张树珍,李阳瑞.T-DNA转移研究进展.生命科学研究,2001,5(3):120~122
    269. Tzfirat, CitovskYV, From host recognition to T-DNA integration: The function of BActerial and plant genes in the AgroBActerium plant cell interaction. Mol plant Pathol, 2000, 1 (4): 15~38
    270. Tang Wei, Ross Whetten, RonSederoff. Advances on genetic transformation in conifers. Dev Rep Biol, 2001, 10: 77~85
    271. Peter Raven, Ray F Evert, Susan E Eichnon. Biology of Plants. 6thed. NewYork: WH Freeman and Company/Worth Publishers, 1999, 696~698
    272. Zupan JR, Zambryski PC. Transfer of T-DNA from AgroBActerium to the plant cell. Plant Physiol, 1995, 107: 1041~1047
    273. Doty S L, Yu N C, Lundin JI. Mutation alanalysis of the input domain of the virA protein of AgroBActerium turnefaciens. J BActeriol, 1996, 178: 961~970
    274.李卫,郭光沁,郑国铝.根癌农杆菌介导遗传转化研究的若干新进展.科学通报,2000,45(8):798~807
    275.徐明良,杨金水,葛扣麟.植物转基因的整合机制.植物生理学通讯,1996,32(3):234~240
    276. Mayerhofer R, Koncz-Kalman Z, Nawrathc, et al. T-DNA integration: a mode of illegitimate recombination in plants. The EMBO Journal, 1991, 10(3): 679~704
    277.徐春晖,夏光敏,贺晨霞.农杆菌转化系统研究进展.生命科学.2002,14(4):223~225
    278.梁机,陈晓阳,林善枝,谢响明.发根农杆菌Ri质粒rol基因研究进展及在林木改良上的应用.植物学通报.2002,19(6):650~658
    279.李用芳,周延清.发根土壤杆菌及其应用研究进展.微生物学通报,2001,28(3):79~82
    280. Zambryski P, Joos H, Genetello C, et al. EMBO J, 1983, 2: 2143~2150
    281.陈士云.农杆菌介导的大豆高频遗传转化.植物学报,2004,46(5):610~617
    282.郑光宇.根癌农杆菌在植物基因工程中的应用.喀什师范学院学报,2004,25(3):51~54
    283.孔英珍,周功克,王根轩,王亚馥.影响根癌农杆菌转化的因素及其在单子叶作物上的应用.应用生态学报,2000,11(5):791~794
    284.周延清,张根发,苑保军.发根农杆菌研究进展.遗传,1996,18(4):45~48
    285.孙敏,汪洪,王颖等.长春花转化毛状根诱导及培养条件的优化.西南师范大学,2002,27(4):549~552
    286.刘峻,丁家宜,徐红等.Ri质粒人参转化系统的建立及鉴定.中国中药杂志,2001,26(2):95~98
    287. Hamill J D, et al. New routes to plant secondary products. Biotechnology, 1987, 5: 800~804
    288.李博华,张汉明,范国荣等.四倍体菘蓝毛状根的培养及其抗内毒素成分分析.中药学杂志,2000,35(11):728~731
    289.张汉明,许铁锋,丁如贤等.发根农杆菌RiT-DNA对墨旱莲的遗传转化.中药草,2001,18(1):69~73
    290.王莉,于荣敏,张辉等.何首乌毛状根培养及其活性成分的产生.生物工程学报,2002,18(1):69~73
    291.许铁锋,张汉明,丁如贤等.粟米草毛状根的研究,第二军医大学学报,999,20(10):764~766
    292.胡忠,杨军,郭光泌等.宁夏枸杞发根农杆菌转化系的建立及影响转化因素的研究.西北植物学报,2000,20(5):767~771
    293.龚玉莲,施和平,李玲等.少花龙葵毛状根的诱导和此生代谢物的产生..热带亚热带植物学报,2002,10(1):58~62
    294. Yamazaki T, Flores H E. Examination of Steviol Glucosides production by hairy root and shoot cultures of Stivia reBAudiana. Nat Ptof, 1991, 54(4): 986
    295. Kvmar A, Jones B, Davey M R. Transformation by AgroBActerium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea. Plant Cell Rep, 1991, 10: 135~138
    296.刘传飞,李玲,潘瑞枳等,发根农杆菌T-DNA基因对3种葛属植物毛状根形态和葛根素含量的影响..应用于环境生物学报,2001,7(2):143~146
    297.管延英,燕飞,杨小楼.发根农杆菌转化药用植物研究进展.保定师范专科学校学报,2003,16(2):24~27
    298.王冲之,丁家宜.西洋参毛状根的诱导及株系筛选.南京师范大学学报.1999,22(3):157
    299. Yoshikawa T, Furuya T. Saponia production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep, 1987, 6(6): 449.
    300.王冲之,丁家宜.Ri质粒转化西洋参的研究Ⅰ.西洋参毛状根培养系统的建立与鉴定.药用生物 技术,1999,6(2):80~84
    301.步怀宇,景建洲,郝建国,贾敬芬.不同理化因子对发根农杆菌Ri质粒转化骆驼刺的影响.西北植物学报,2000,20(4):577~584
    302. Estelle v, Frederic D, Rajbirs SN, et al. Role of host cell cycle in the AgroBActerium-mediated genetic transformation ofmpetunia: evidence of an S-phase control mechanism for T-DNAtransfer. Planta. 1997, 201: 160~172
    303.王景雪,孙毅.农杆菌介导的植物基因转化研究进展.生物技术通报.1999,1:7~13
    304. Satish M, Nalawade, Abhay P. Sagare, Chen-Yue Lee, Chao-Lin Kao, and Hsin-Sheng Tsay. Studies on tissue culture of Chinese medicinal plant resources in Taiwan and their sustainable utilization. Bot. Bull. Acad. Sin., 2003, 44: 79~98
    305.果德安.生物技术在中药现代化中的作用.国外医学-植物药分册.1998,13(6):257~260.
    306.刘伟华,姜静,谢桂芹等.Ri质粒转化桔梗再生植株的研究.生物技术,1994,4(2):24~29
    307.李伟华,徐香玲.发根农杆菌转化龙胆再生植株的研究.遗传,1992,14(5):27~29
    308.张荫麟,宋经元,祁建军等.农杆菌转化后丹参植株再生.中国中药杂志,1997,22(5):274~275
    309.许铁锋,张汉明,张威等.应用发根农杆菌RiT-DNA建立菘蓝的毛状根优质株系和植株再生系统.第二军医大学学报,2000,21(10):907~909
    310.刘长河,张留记,李更生.地黄中地黄苷A的含量测定.中草药,2002,33(8):706~707
    311.国家中医药管理局《中华本草》编委会.中华本草(第七卷).上海:上海科学技术出版社,2001,376~388
    312.周延清,景建洲,贾敬芬等.怀区地黄遗传多样性的ISSR鉴定.中草药,2005,36(2):257~260
    313.都恒青,李赵曦,刘根成.地黄质量的研究.中国中药杂志,1992,17(6):327~329
    314.杨云,苗明三,王浴铭.怀地黄多糖化学研究.时珍国医医药,1999,10(8):564~565
    315.李先恩,杨世林,杨峻山.地黄不同品种及不同块根部位中梓醇含量分析.中国药学杂志,2002,37(11):820~823
    316.王勇,吴春敏.HPLC法测定地黄及增益口服掖中梓醇的含量.海峡药学,2001,13(4):32~33
    317.温学森,李先恩,杨世林.地黄病毒病及其亟待解决的问题.中草药,2001,662~664
    318.武宗信,解红娥,冯文龙,解晓红,陈丽,李江辉,李红霞.地黄的组织培养和快速繁殖.植物生理学通讯,2002,582
    319. Wang Yumei, Jiang Bowang, Da Luo, Jingfen Jia. Regeneration of plants from callus tissues of hairy roots induced by AgroBActerium rhizogenes on Alhagi pseudoalhagi. Cell research. 2001, 11 (4): 279~284
    320.徐子勤,马洪军,郝建国,贾敬芬.发根农杆菌LBA9402Bin19转化红豆草及再生转基因植株.实验生物学报,2000,33(1):63~68
    321.王勇,吴春敏.HPLC法测定地黄及增液口服液中梓醇的含量.海峡药学,2001,13(4):32~33
    322.李先恩,杨世林,杨俊山.地黄不同品种及不同块根部位中梓醇含量分析.中国药学杂志,2002,37(11):820~823
    323.王慕邹.常用中草药高效液相色谱分析.北京:科学出版社,1999,117~119
    324.汪程远,张浩,孟莉,张承平.HPLC测定地黄及其制剂中梓醇的含量.华西药学杂志,2003,18(2):134~135
    325.张洪海,成名战.怀地黄繁殖方法研究.时珍国医国药,1999,10(10):5
    326.薛建平,张爱民,李明军,谢桂英,李友勇.怀地黄茎尖培养和植株再生技术的研究.新 乡医学院学报,2000,17(1):18~20
    327.温学森,霍德兰,杨世林,马小军,李先恩,郑俊华.地黄病优良品种“85-5”脱毒苗的快速繁殖研究.中草药,2002,452~455
    328.李明军 张嘉宝.怀地黄离体培养再生植株及其生长调控.河南师范大学学报(自然科学板),1996,24(4):60~63
    329.薛建平 李明军.怀地黄茎尖培养和植株再生技术的研究.新乡医学院学报.2000,17(1):18~20
    330.王红娟,白自伟.怀地黄组织快繁.河南农业,2002,11:12
    331.刘琴,吴震,翁忙玲,李式军.发根农杆菌质粒及其在植物学中的应用.生物技术,2002,5:21~25
    332.王毓美,王鸣刚,王江波,贾敬芬.发根农杆菌A4对骆驼刺的遗传转化.兰州大学学报(自然科学版),2000,36(1):83~87
    333.蔡国琴,李国珍,叶和春,等.Ri质粒转化的青蒿毛状根培养及青蒿素的生物合成.生物工程学报,1995,11(4):315~320
    334. Hu ZB, Alfermann A W. Diterpenoid production in hairy root cultures of Salvia miltiorrhiza. Phytochemistry, 1993, 32 (3): 91~102
    335. Morris P. Regulation of product synthesis in cell cultures of Cantharanthus raseus. Ⅱ comparison of production media. Planta med, 1986, 52: 121
    336. Schlatmann E, Koolhass C M A, Vinke J E, et al. The role of glucose in ajmalicine production by Cantharanthus raseuscell cultures. Biotechnol Bioeng, 1995, 47: 525
    337.黄遵锡,慕跃林,周玉敏等.发根农杆菌对短叶红豆杉的转化及毛状根中紫杉醇的产生.云南植物研究,1997,19(13):292~296
    338.常振战,果德安,郑俊华等.用生物反应器培养决明发根发根合成游离葸鲲化合物.北京医科大学学报,2000.32(2):142~144
    339.赵寿经,杨振堂,李昌禹等.发根农杆菌诱导人参产生发状根及立体发根种人生皂苷含量的测定.吉林农业大学学报,2001,23(2):57~63
    340.孙敏,汤绍虎,杨兰英等.转化毛状根获得萝芙木生物碱的研究.生物工程学报,1993,9(3):287~290
    341.施和平,梁朋,权宏.商陆毛状根的诱导、培养及其皂苷的产生.生物工程学报.2003,19(1):46~49
    342.刘红蕾,张玉臻,陶文沂.营养及环境因子对农杆菌诱导的长春花发根生长和生物碱生成的影响.药物生物技术,2003,10(3):155~158
    343.施和平,权宏,Spiros Kintzios.三裂叶野葛毛状根的诱导及其固体培养和液体培养.生物工程学报,2003,19(3):307~310
    344.赵寿经,李昌禹,钱延春,骆晓佩,张昕,王雪松,康波愈.人参发根的诱导及其适宜培养条件的研究.生物工程学报,2004,20(2):215~220
    345.王逸群,郑金贵,吴若菁,孙珊珊.Ri质粒介导西洋参高效转化体系的建立.福建农林大学学报(自然科学版),2004,33(1):72~74
    346.付春祥,金治平,杨睿,吴风燕,赵德修.新疆雪莲毛状根的诱导及其植株再生体系的建立.生物工程学报,2004,20(3):366~371
    347. Tepfer D. Transformation of several species of higher plants by AgroBActerium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell, 1984, 37: 959~967
    348. Hinchee MAW, Connor-Ward AV, Newell CA: Production of transgenic soybean plant using AgroBActerium-mediated gene transfer. Bio/Technol, 1988, 6: 915~922
    349.林树柱,草越平,卫志明.根癌农杆菌介导的大豆遗传转化.生物工程学报,2004,20(6):817-820
    350. Liu W N, Torisky R S, McAllister K P. Somatic embryo cycling: evaluation of a novel transformation and assay system for seed-specific gene expression in soybean. Plant Cell Org, 1996, 47: 33~42.
    351.卜云萍,王广科和胡国武,深黄被孢酶△~6-脂肪酸脱氢酶基因导入大豆.生物技术,2003,13(3):6~8
    352. Kinney A J. Development of genetically engineered soybean oils for food applications. J food lipids, 1996, 3: 273~292
    353.吴永美,毛雪,王书建,李润植.转基因改良植物的营养价值.生物工程学报,2004,20(4):471~476
    354.阎隆飞,李启明.基础生物化学.北京:农业出版社,1986,32
    355.冯德培,谈家桢,王鸣歧.简明生物学词典 上海辞书出版社,1983,854
    356.董娜,林良斌,马占强.农杆菌介导反义油酸脱饱和酶基因转化甘蓝型油菜.分子植物育种,2004,2(5):655~659
    357.马建岗.基因工程学原理.西安:西安交大出版社,2001,27~45
    358.江树业,陈启锋,方宣钧,李维明,吴为人.植物基因分离方法及其评述.福建农业大学学报,2000,29(3):261~268
    359.沈法富,尹承佾.植物基因克隆的方法和策略.大自然探索,1997,16(59):33~38
    360.李成云.植物基因的克隆与转化:(1)植物基因克隆的方法简介.云南农业科技,2000,4:43~45
    361.熊兴华,官春云,李枸,王学军,周小云,李家洋.甘蓝型油菜fad2基因片段的克隆和反义表达载体的构建.中国油料作物学报,2002,24(2):1~4
    362.反义RNA技术在培育延熟保鲜蔬菜新品种上应用.郭庆勋,陈柏杰,秦智伟.北方园艺,2004,3:88~89
    363. Hitz WD, Yadav NS, Reiter RS, et al. Reducing polyunsaturation in oils of transgenic canola and soybean. Plant lipid metabolism. Netherlands Kluwer Academic, 1995, 506~508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700