锚固洞室抗爆能力现场实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,高尖端武器可以高精度命中目标,钻地深度越来越深,爆炸强度越来越强,对地下各种防护工程结构造成了巨大的威胁。为了提高防护工程地下结构以及周围岩体对钻地武器爆炸的抗破坏能力,本文通过锚固洞室现场抗爆能力实验,数值分析和锚杆锚固性能研究,希望能够为地下结构体系的安全性问题提供一些参考,本文主要研究结果有一下几个方面:
     1.对比现场多炮次各种锚杆锚固洞室抗爆炸的实验,主要包括:短密锚杆支护类型;长密锚杆支护类型;常规锚杆支护类型以及网喷支护类型。从宏观破坏的现象来看,出现了洞室顶部混凝土喷层脱落或者开裂,两侧的拱脚附近会出现剪切错动裂缝,洞室顶部和拱脚位置是受爆炸影响比较严重的位置。特别在常规锚杆支护的条件下出现多根锚杆外端和垫板外混凝土喷层震落,并且从混凝土喷层开裂程度和锚杆垫板外震落的混凝土块大小、深度上看,长密锚杆段比短密锚杆段破坏程度更为严重,长密锚杆段局部钢筋网已经外露。
     2.对比分析了洞室顶部的竖向位移,以及相对于比例距离的关系,得到了顶部的竖向位移与跨度的比值随着各炮次的比例距离的增大而呈负指数性衰减。各位移波形规律性很好,都有一个向下的最大位移峰值和一个较小的向回弹跳的较小峰值,然后是残余位移。从最大峰值位移所对应的时间看,常规锚杆为43到47ms左右,短密锚杆和长密锚杆为39到40ms左右。从顶部的位移来看,长密锚杆支护的洞室顶部竖向位移比短密锚杆支护的洞顶竖向位移要大,说明在本实验条件下,锚杆的支护效果不一定是锚杆越长越好。分析了各炮次爆炸作用下锚杆的应变特征,得到锚杆应变的波形形式。在本实验中,对比了各个位置和不同支护类型的锚杆的应变特征,锚杆应变主要是压缩的,相对而言长密锚杆支护类型的锚杆应变比短密锚杆和常规锚杆支护的条件下锚杆的最大应变要大。本文给出了各个位置锚杆峰值的包络线,发现各个锚杆最大应变位置的情况不同。网筋的应变有着相同规律性波形。网筋的应变有拉有压,情况不一。对于各个位置加速度的分析,因位置不同,规律性表现不同,顶部位置规律性较好。加速度峰值与比例距离的关系也有指数衰减的关系。
     3.利用数值分析软件分析了第五炮作用下的三种锚杆锚固形式的洞室顶部竖向位移,洞室的破坏情况,锚杆的应力应变情况。从结果上看,破坏区依然是在洞顶和拱部比较严重。从锚杆支护效果上来分析,长密锚杆支护效果比短密锚杆支护的效果也略差,这与实验结果是一致的。另外,对围岩强度和爆炸比例距离对洞室顶部竖向位移的影响作了分析。
     4.对锚杆锚固性能做了些研究。结合理论模型分析了锚杆体系在周围岩石粘弹性作用下的应力波的传播情况,以及喷层交界面的透反射情况。
As science and technology develop, hi-tech weapons can attack aims in high precision. The depth that weapons penetrate in land gets deeper and deeper. The explosion strength gets stronger and stronger. So the underground protective structures face tremendous threat. To improve the explosion resisting capacity of protective structures and surrounding rock when the land-penetrating weapons explode, this passage may supply some references to the safety problem of underground engineering projects through the research for the site explosion resisting capacity tests of underground cavern reinforced by grouted rockbolts; through the numerical analyse; and through theoretic research of rockbolts. Some conclusions are brought as follow:
     1. The explosion resisting capacity site tests of underground cavern reinforced by grouted rockbolts include: short and close rockbolts; long and close rockbolts; regular rockbolts; and grout sprayed. From the macroscopic destroyed appearances, the sprayed grout are cast and crazed. Some sheared crevices appear at the arch of carven. The positions at the top and arch are easily to be destroyed. Especially some grout at the ends of some rockbolts ruined more heavily for the long and short rockbolts type than for the short and short rockbolts type. It indicates that the destroyed situation for the long and short rockbolts is more serious.
     2. Comparing the displacements at the top of caverns and the relationships between the displacement peak values and the relative explosion distances, the ratio that the displacement peak values divided by the span decayed in negative index law. Every displacement wave has a simple regularity. It goes down to a bottom that is the maximal displacement, then it reboundes to a smaller displacement, at last the wave verges to placidity. For the time that the wave reaches maximal displacement, it is between 43 ms and 47 ms for regular rockbolts type, and it is about 39 ms or 40 ms for short and close rockbolts type or long and close rockbolts type. For the displacements at the top of caverns, the vertical displacement peak value for long and close rockbolts type is higher than for short and close rockbolts type. It suggests that the length of rockbolts may not support caverns to resisting explosion. The strain waves of every rockbolt are also brought out and analysed. The rockbolts are mainly subjected to compression. The strain value for long and close rockbolts type is higher than for short and close rockbolts. This passage also introduces rockbolts strain peak value enveloping line and the maximal strain does not appear at same position for every rockbolt. The strain of rebar has analogous regularity. The strain is not only tension but also compression. For analyse of acceleration at different positions, the regularities are different. The acceleration peak value decreases in negative index law.
     3. Making use of numerical analysing software, the vertical displacements at the top of three kinds of caverns in different protective conditions are analysed. And the strain situations of the caverns and rockblolts are also researched. The destroyed situations at top and arch of caverns are still severe. And also the short and close rockbolts have a better protective effect than the long and close rockbolts. The conclusions are same as the site tests. In addition, the influences of the rock elastic modulus to the displacement at the top of cavern are analysed. And the influences of explosion relative distance to the displacement at the top of cavern are analysed, too.
     4. Some researching jobs about rockbolts' effects are put forward. A viscoelastic model of rockbolt thinking of surrounding rock effects is analysed. The stress wave propagation situation is researched and stress wave's transmission and reflection situation at the position of prayed grout is brought out.
引文
[1]顾金才,陈安敏.岩体加固技术研究之展望[J].隧道建设,24(1) :1-2 ,5.
    [2]汪新红,魏登仿,王明洋.信息化战争条件下防护工程的发展与对策[J].解放军理工大学学报(自然科学版).2004,(6):37-40.
    [3] Hader H J. Design and Application of Reinforced Concrete 2 armoured Doors[C]. Proceeding of the 2th Symposium on the Interaction of Nonnuclear Munitions with Structures. [ S. l . ] : Panama City Beach,FL,1985 :494 - 499.
    [4]程良奎.岩土锚固研究新进展[J].岩石力学与工程学报,2005, 24(21):3 803–3 811.(CHENG Liangkui. Research and new progress in ground anchorage[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(21):3 803–3 811.(in Chinese))
    [5]方从严,卓家寿.锚杆加固机制的实验研究现状[J].河海大学学报(自然科学版),2005,33(6):696–700.(FANG Congyan,ZHUO Jiashou. Experimental study of status of rock bolts reinforcement mechanism[J]. Journal of Hohai University(Natural Science),2005, 33(6):696-700.(in Chinese))
    [6] Rober K Tener. The application of similitude to Protective construction research[M].Army Engineer Waterways Experiment Station,June 1964.
    [7] Kolsky,H. Stress waves in Solids[M].Clarendon Press,Oxford,1953.
    [8] [美]鲍亦兴,毛昭宙.弹性波的衍射与动应力集中[M].刘殿魁,苏先越译,北京:科学出版社,1993.
    [9] Yih-hsing Pao,Stephan A,Thau. A Perturbation Method for Boundary Value Problems in Dynamic Elasticity,part II [J]. Quart,J.APPI. Math.,Vol.28,1970,pl91.
    [10] Yih-hing Pao. Elastic Waves in solids Journal of Applied Mechanics[J].1983 ,50(4):1152-1164.
    [11] White,R.M. Elastic wave scattering at a Cylindrical Discontinuity in a solid[J].J. Acoust. soc. Amer,1958,(30):405-418.
    [12] Miles,J.W. Motion of a Rigid Cylinder due to a Plane Elastic Wave[J]. J.Acoust. soc. Amer, 1960,(32):1656.
    [13] M. L. Baron and A.T. Matthews. Diffraction of a Pressure Wave by a Cylindrical Cavity in an Elastic Medium[J]. J. Appl. Mech.1961,(28):347
    [14] M. L. Baron and R. Parnes. Displacements and Velocities Produced by the Diffraction of a Pressure Wave by a Cylindrical Cavity in an Elastic Medium[J].J.Appl.Mech.1962,(29):385-395.
    [15] L. A. Peralta,G. F. Carrier,and C. C. Mow. An Approximate Procedure for the Solution ofTransient wave Diffraction problems[J].J.Appl.Meeh.1966,(33):168.
    [16] Nagases,M. Diffraction of Elastic Wave by a Spherical Surface[J]. J. Phys. Soe,Japan,1956,(11):279.
    [17] Knopoff,L. Scattering of Shear Wave by a Spherical Obstacle[J].GeoPhysics,1959,(24):4.
    [18] Einspruch,N.C.,Witlerholt,E.J.,Truell,R. Scattering of a Plane Transverse Wave by a Spherical Obstacle in an Elastic Medium[J].J.Appl.Phys.1960,(31):806.
    [19] Norwood,F.R.,Miklowitz J. Diffraction of Transient Elastic Wave by a Spherical Cavity[J]. J.Appl.Mech.1967,(34):735.
    [20] Levy B.R. Diffraction by an Elliptic Cylinder[J].J. Math, Mech.,1960,(9):147.
    [21] V. W. LEE,J. Karl. Diffraction of SV waves by underground,circular, cylindrical cavities[J].Soil Dynamic sand Earthquake Engineering,1992,11:445-56.
    [22] V. W. Lee,James K. On deformations near a circular underground cavity subjected to incident Plane P waves[J].European Earthquake Engineering,1993,7(l):29-36.
    [23] V. W. Lee,Mihailo D. Trifunac. Response of Tunnels to Incident SH-waves[J].Journal of the Engineering Mechanics Division,1979,21:643 659.
    [24] V. W. Lee,Xiaoyun Wu. Application of the weighted residual method to diffraction by Z-D canyon of arbitrary shape: II. Incident P,SV and Rayleigh waves[J].Soil Dynamic sand Earthquake Engineering,1993,13:365-375.
    [25] Cao. H,V. W. Lee. Scattering of Plane P waves by circular cylindrical canyons with various depth-to-width ratio[J].Soil Dynamics and Earthquake Engineering,1990,9(3):141- 150
    [26] V. W. Lee,Xiaoyun Wu. Application of the weighted residual method to diffraction by2-D canyon of arbitrary shape: I. Incident SH waves[J].Soil Dynamics and Earthquake Engineering,1993,13:355-364.
    [27] V. W. Lee,Michael E. Manoogian,Surface motion above an arbitrary shape underground cavity for incident SH waves[J].European Earthquake Engineering,1995,Patron editor.
    [28] Lofcher R. D. A Method for the Study of Failure Mechanism in Cylindrical Rock Cavity due to Diffraction of A Pressure Wave[D].Massachusetts Institutes of Technology,Cambridge,Massachussetts,July,1962.
    [29] Baron,M. L,A. T. Matthews,Diffraction of a Pressure Wave by a Cylindrical Cavity in an Elastic Medium[J],J. appl. Mech.,1961,vol.28
    [30] Seyyed M.Hasheminejad,Reza Avazmohammadi. Harmonic wave diffraction by two circular cavities in a poroelastic formation[J].Soil Dynamic sand Earthquake Engineering ,2007(27):29-41.
    [31] Yih-hsing Pao,Stephan A,Thau. A Perturbation Method for Boundary Value Problems inDynamic Elasticity,Part II [J],Quart,J. Appl. Math.,Vol.28,1970,P191.
    [32] Yih-hsing Pao. Elastic waves in solids[J].Journal of Applied Mechanics,1983,50(4): 1152-1164.
    [33] Yih-hsing Pao , C.C. Mow. Diffraction of elastic waves and dynamic stress concentrations[M].Crane and Russak,New York,1973.
    [34] David P. Thambiratnam,S. L. Lee. Scattering of Plane SH-waves by underground cavities[J].Engineering Structures,1990,12(3):215-221.
    [35] Luco,J.E.,Debarros,F.C.P. Dynamic displacements and stresses in the vicinity of a Cylindrical cavity embedded in a half-space[J].Earthquake Engineering and Structural Dynamics,1994,(23):321-340.
    [36] Nabil EI-Akily,Datta S. K. Response of a Circular Cylindrical Shell to Disturbances in a Half-Space. Earthquake Engineering and Structural Dynamics,1980,(8):469.
    [37]易长平.爆破振动对地下洞室的影响研究〔博士学位论文〕[D].武汉大学,2005.3.
    [38]易长平,卢文波.爆破振动对砂浆锚杆的影响研究[J].岩土力学,2006,27(8):1312一1316.
    [39]易长平,卢文波,张建华.爆破振动作用下地下洞室临界振速的研究[J].爆破,2005,22(4):4-8.
    [40]刘殿魁,林宏.浅埋的圆柱形孔洞对SH波的散射与地震动[J].爆炸与冲击,2003,23(l):6- 12.
    [41]陈志刚,杨在林,刘殿魁.SH波在浅埋椭圆孔上的散射对地震动的影响[J].哈尔滨工程大学学报,2006,7(l):5-9.
    [42]林宏,史文谱,刘殿魁.SH波入射时浅埋结构的动力分析[J].哈尔滨工程大学学报,2001,22(6):83-89.
    [43]王慧文,刘殿魁,邱发强,乐胜辉.SH波入射时多个半圆形沉积谷地附近浅埋圆形孔洞的动力分析[J].地震工程与工程学报,2006,26(4):15-23.
    [44]王国庆,浏殿魁.SH波对浅埋相邻多个圆孔作用的动力分析[J].哈尔滨工程大学学报,2003,24(l):43-47.
    [45]王艳,刘殿魁.SH波入射时浅埋衬砌结构的动力分析[J].哈尔滨工程大学学报,2002,23 (6):43-47.
    [46]陈志刚,刘殿魁.SH波冲击下浅埋任意形孔洞的动力分析[J].地震工程与工程学报,2004,24(4):32-36.
    [47]杨在林,闫培雷,刘殿魁. SH波对浅埋弹性圆柱及裂纹的散射与地震动[J].力学学报,2009,41(2):229-235.
    [48]刘殿魁.各向异性介质中SH波引起的圆孔附近的动应力集中[J].力学学报,1988,20(5):443-452.
    [49]梁建文,纪晓东.地下衬砌洞室对Rayleigh波的放大作用[J].地震工程与工程振动,2006,26(4):24-31.
    [50]梁建文,张浩,Vincent W Lee.地下洞室群对地面运动影响问题的级数解答-P波入射[J].地震学报,2004,26(3):269-280.
    [51]梁建文,张浩,Vincent W Lee.地下双洞室在SV波入射下动力响应问题解析解[J].振动工程学报,2004,17(2):132-140.
    [52]纪晓东,梁建文,杨建江.地下圆形衬砌洞室在平面P波和SV波入射下动应力集中问题的级数解[J].天津大学学报,2006, 39(5):511-517.
    [53]梁建文,纪晓东,Vincent W Lee.地下圆形衬砌隧道对沿线地震动的影响(I):级数解[J].岩土力学,2005,26(4):520-524.
    [54]梁建文,张浩,Vincent W Lee.平面P波入射下地下洞室群动应力集中问题解析解[J].岩土工程学报,2004,26(6):815-819.
    [55]史文谱,刘殿魁,林宏等.半无限空间中稳态P波在衬砌周围的散射[J].地震工程与工程学报,2002,22(3):19-25.
    [56]朱瑞赓,李铮.爆破地震波作用下隧道的安全距离问题[J].地下工程,1981,(4):26-33.
    [57]朱瑞赓,李铮.爆破地震波作用下岩石隧道的临界振动速度[A].土岩爆破文集(第二辑)[C].,冶金工业出版社,1953:285-91.
    [58]王振武,牛铮铮,冯秀苓.地下矩形洞室应力分布的复变函数解[J].北华航天工业学院学报,2010,20(4).
    [59]阿兰布莱克,罗伯特卡麦伦.地下结构模型的动载响应[J].防护工程,1988,(4):89~93.
    [60] Singh P.K. Blast vibration damage to underground coal mines from adjacent open-Pit blasting[J]. International Journal of Rock Mechanics & Mining Seienees.2002,39(8): 959-973.
    [61] P. K. Rajmeny,U. K. Singhb,B. K. P. Sinha. Predicing rock failure around bore hole sand drives adjacent to stopes in Indian mines in high stress regions[J]. Intemational Journal of Rock Mechanics & Mining Seienees.2002,39(2):151-164.
    [62] Charles E Joachim,George S. Rubin,de la Borbolla. Brick model tests of shallow underground magazines[M]. Department of the Army Waterways Experiment Station Corps of Engineers,March1992.
    [63] James A Mahoney. Simulation devices for use in studies of Protectiv construction[M].Technical report NO.AFWL-TR-65-224,February1966.
    [64] T F Zahrah , D H Merkle , H E Auld. Gravity effect in small-scale structural modeling[S].1988.AD-A209252.
    [65] Rober K Tener. The application of similitude to Protective construction research[M].ArmyEngineer Waterways Experiment Station,June1964.
    [66]曹国庆.喷锚支护抗爆性能与设计[J].防护工程,1979,(2):34-51.
    [67]王学礼.锚喷支护在内爆巷道中的应用[J].建井技术.1981,2(2):17-20.
    [68]王学礼.内压巷道锚、喷、网支护参数的选择及实践效果[J].建井技术.1987,8(2):40-42.
    [69]任辉启.砂砾地层中坑道喷锚支护在顶爆和侧爆条件下的抗爆性能[J].防护工程,1986,(l):12-18.
    [70]肖峰,曾宪明.黄土坑道喷锚支护的抗爆性能-II围压分布形态闭.防护工程,1991,(4):37-45.
    [71]曹长林,曾宪明黄土坑道喷锚支护的抗爆性能-Ш支护受力变形特性;临界承载能力[J].防护工程,1992,(1):46-55.
    [72]曾宪明,杜云鹤,李世民.土钉支护抗动载原型与模型对比实验研究[J].岩石力学与工程学报,2003, 22(11):1892-1897.
    [73]李宁,陈蕴生.爆振对衬砌损伤特性影响的室内实验研究[J].工程爆破,1996,2(2):6-10.
    [74]陈剑杰,孙均,林俊德.深埋岩石洞室受爆炸应力波作用的破坏效应[J].辽宁技术工程大学学报,2001,20(4):402-404.
    [75]陈剑杰,孙均,林俊德等.强爆炸应力波作用下岩石地下洞室的破坏现象学[J].解放军理工大学学报,2007,8(6):582-588.
    [76]甄胜利,霍永基.爆破作用下隧洞动态响应及破坏分析[A].工程爆破文集(第五集)[C]:309-317.
    [77]王承树.爆炸荷载作用下喷锚支护破坏形态明.岩石力学与工程学报.1989,8(1):73-91.
    [78]徐营,张子新.块裂结构岩质地下洞室松动特征实验研究[J].岩土工程学报.2010,32(2):216-224.
    [79]王如宾,徐卫亚,石崇,周先齐.高地震烈度区岩体地下洞室动力响应分析[J].岩石力学与工程学报.2009,28(3):568-575.
    [80]张成良,李新平,曹俊峰.地下洞室群爆破地震波传播的现场实验研究[J]爆破.2007,24(4):71-76.
    [81]苏华友,张继春.紫坪铺进水口高陡边坡锚索抗爆破振动分析[J].岩石力学与工程学报.2003,22(11):1916-1918.
    [82]顾金才,陈安敏,徐景茂,赵红玲,张向阳,顾雷雨,明治清.在爆炸荷载条件下锚固洞室破坏形态对比实验研究. [J].岩石力学与工程学报.2008,27(7):1315-1320.
    [83]王光勇,顾金才,陈安敏,徐景茂,张向阳.外部连接全长黏结式锚杆和弹力式锚杆抗爆加固效果模型实验研究. [J].岩石力学与工程学报.2008,27(8) :1695-1702.
    [84] Adel M. Benselamaa,Mame J.-P.William-Louisa,Francois Monnoyera,Christophe Proust. A numerical study of the evolution of the blast wave shape in tunnel[J]. Journal of HazardousMaterials.2010,181: 609-616.
    [85]朱合华.边界元方法及其在岩土工程中的应用〔M].上海:同济大学出版社,1997.
    [86] V.R. Feldgun,A.V. Kochetkov,Y.S. Karinski,D.Z. Yankelevsky. Blast response of a lined cavity in a porous saturated soil[J]. International Journal of Impact Engineering. 35 (2008) 953-966.
    [87] Hagedorn H. Dynamic rock bolt test and UDEC simulation for a large carven under shock load[A]. In: Proceeding of International UDEC/3DEC Symposium on Numerical Modeling of Discrete Materials in Geotechnical Engineering , Civil Engineering , and Earth Sciences[C]. Bochum,Germany,2004.191-197.
    [88]孙钧.地下抗爆结构有限元数值分析的若干课题[J],岩石力学与工程学报,1983,2(l):121-129.
    [89]赵以贤,王良国.爆炸载荷作用下地下拱形结构动态分析[[J].爆炸与冲击,1995,15(3):201-211.
    [90]鞠杨,夏昌敬,谢和平,周宏伟.爆炸荷载作用下煤岩巷道底板破坏的数值分析[J].岩石力学与工程学报,2004,23(21):3664-3668.
    [91]李云鹏艾传志韩常领,霍明.小间距隧道爆破开挖动力效应数值模拟研究[J].爆炸与冲击,2007,27(l):75-81.
    [92]王昆明,唐德高,贺虎成,刘记军,杨夫礼.破碎带对地下坑道动力响应影响的数值分析[J].防灾减灾工程学报,2007,27(l):74-79.
    [93]梁建文,巴振宁, Vincent W Lee.平面P波在饱和半空间中洞室周围的散射( II ) :数值结果[J].地震工程与工程振动,2007,27(2):1-11.
    [94]李忠献,刘杨,田力.单侧隧道内爆炸荷载作用下双线地铁隧道的动力响应与抗爆分析[J].北京工业大学学报,2006,32(2):173-181.
    [95]陈勇,田东方,徐连民.大型地下洞室围岩稳定性数值分析[J].人民长江,2007,38(11):38-40.
    [96]刘国庆,军锋,建政,代平.洞库内爆炸冲击波流场的数值模拟[J].四川兵工学报,2008,29(6):5-7.
    [97]吴亮,卢文渡,章克凌,易长平,严鹏.侵彻爆炸荷载作用下坑道衬砌破坏机理及影响因素分析[J].岩石力学与工程学报,2005,24(增l):4900-490.
    [98]陶连金,张悼元,傅小敏.在地震载荷作用下的节理岩体地下洞室围岩稳定性分析[J].中国地质灾害与防治学报1998,9(l):32-40.
    [99]刘慧.近距侧爆情况下马蹄形隧道动态响应特点的研究[J].爆炸与冲击,2000,20(2):175-181.
    [100]马行东,李海波,冯海鹏.动参数对三维洞室动态特性的影响分析[J].地下空间与工程学报.2006,2(l):83-86.
    [101]朱波,赵国志,阳波.钻地炸弹近爆地下工事的动力响应数值分析[J].箭弹与制导学报,2005,60-62.
    [102]张湘冀,石少卿,尹平,刘颖芳.爆炸地震波对地面结构影响效应的数值模拟[J].爆破,2004,21(1):5-8.
    [103]劳俊,肖卫国,王肖钧,赵凯.地下空腔解耦爆炸的数值模拟[J].爆炸与冲击,2009,29(5):535-540.
    [104]刘干斌,郑荣跃,周晔.爆炸荷载作用下软土隧道动力响应数值模拟[J].宁波大学学报(理工版),2009,22(2):263-267.
    [105]王清洁,顾文彬,茼茂辉,时党勇,马海洋.半无限土介质中集团装药爆炸空腔的数值模拟[J].爆破,2002,19(3):17-19.
    [106]刘中宪,梁建文,张贺.弹性半空间中衬砌洞室对平面P波和SV波的散射( II)-数值结果[J].自然灾害学报,2010,19(4):77-88.
    [107]赵德辉,田大战,张伟成.武器爆炸作用下地下洞库坑道动力响应数值模拟分析[J].空军工程大学学报,2007,8(5):52-55.
    [108]徐祯祥.岩土锚固工程技术发展的回顾.岩石锚固技术与西部开发论文集.北京:人民交通出版社,2002.
    [109]徐年丰,陈胜宏.我国岩土预应力锚索加固技术的发展与存在的问题[J].水利水电快报,2001,22(10):20-23.
    [110]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.
    [111]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [112]漆泰岳.锚杆与围岩相互作用的数值模拟[M].徐州:中国矿业大学出版社,2002.
    [113]方从严,卓家寿.锚杆加固机制的实验研究现状团.河海大学学报(自然科学版),2005,33(6):696-700.
    [114]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护拟[M].徐州:中国矿业大学出版社,1999.
    [115] Anders Ansel. Laboratory testing of a new type of energy absorbing rock bolt[J]. Tunnelling and Underground Space Technology,2005,20(4):291-300.
    [116] Anders Ansel.Dynamic testing of steel for a new type of energy absorbing rock bolt[J].Journal of Constructional Steel Research,2006,62(5):501-512.
    [117] Holland D C.The influence of close Proximity blasting on the Performance of resin bonded rock bolts. Master of Science thesis,University of Aberdeen,U.K.1989.
    [118] Beard M.D,Lowe, M.J.S. Non-destructive testing of rock bolts using guided ultrasonic waves[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(4):527-536.
    [119] Bobet A,Einstein H.H. Tunnel reinforcement with rockbolts[J]. Tunnelling and Underground Space Technology,2011,26(1):100-123.
    [120] Ana Ivanovie,Andy Starkey,Chard D. Neilson,etal.The influence of load on the frequency response of rock bolt anchorage[J]. Advances in Engineering Software,2003,(34):697-705.
    [121] Ana Ivanovie,Chard D. Neilson,Rodger Albert A.Influence of prestress on dynamic response of ground anchorages. 2002,128(3):239-247.
    [122] Goodman R. E,Dubois J. Static and Dynamic Analysis of Rock Bolt Support[M]. United States,1971.
    [123] St-Pierre. L,Hassani F.P., Radziszewski P.H., Ouellet J. Development of a dynamic model for a cone bolt[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(1):107-114.
    [124] Harvey Sean, Ozbay Ugur,Neugebauer Erich,KoontzWendell,Anderson, Thomas,Warfleid Bill,Avery James.In-situ testing of Roofex yielding rock bolts in coal ribs[C]. Proceedings --28th International Conference on Ground Control in Mining, ICGCM,2009,181-186.
    [125] Suzuki Kohei,Midorikawa Hiroshi,Kimura Takeshi, Shimizu Nobuyuki, Harada Minoru.Seismic design of tall structures considering anchor-bolt yielding[J]. Nippon Kikai Gakkai Ronbunshu C Hen,1991,541(57)3085-3092.
    [126] Conway J. P., Dar S. S. M., Stears J. H.,McWilliams P. C. Laboratory Studies of Yielding Rock Bolts[R].1975.
    [127]杨苏杭,沈俊等.预应力锚索对洞室抗爆加固效应的三维动力分析[J].防护工程.2006,28(1):20-24.
    [128]杨苏杭,梁斌,顾金才,等.锚固洞室抗爆模型实验锚索预应力变化特性研究[J].岩石力学与工程学报,2006,25(2):3749-3756.
    [129]张永兴,陈建功.缺陷锚杆振动问题的数学模型及其求解[J].地下空间与工程学报,2005,1(l):62-66.
    [130]陈建功,张永兴,李英民.完整锚杆低应变动力响应问题的半解析解及分析[J].哈尔滨:世界地震工程,2004,3.
    [131]凌贤长,胡庆立,欧进萍.土-结爆炸冲击相互作用模爆实验相似设计方法[J].岩土力学, 2004,25(8):1249–1253.
    [132]曾宪明,杜云鹤,李世民.土钉支护抗动载原型与模型对比实验研究[J].岩石力学与工程学报,2003,22(11):1892-1897.
    [133]喻晓今.洞室土钉瞬态应力实验及粘弹性模型[J].华东交通大学学报,2007,24(2):l-3.
    [134]喻晓今,余学文,张豫.数种情形下土钉的瞬态应变累积效应分析[J].华东交通大学学报,2006,23(4):l-4.
    [135]喻晓今.土钉瞬态应力动力特性对比研究[J].合肥工业大学学报,2007,30(11):1505-1508.
    [136]喻晓今,曾宪明,陈梦成.土钉瞬态应力的实验研究[J].岩石力学与工程学报,2004,23(增1):4438-4441.
    [137]杨湖,王成.弹性波在锚杆锚固体系中传播规律的研究[J].测试技术学报,2003,17(2):145-149.
    [138]李裕春,时党勇,赵远.Ansys 11.0/LS-DYNA基础理论与工程实践[M].北京:水利电出版社,2008.
    [139]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].清华大学出版社,2005.
    [140]彭文斌.FLAC3D实用教程[M].机械工业出版社,2009.
    [141]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].中国水利水电出版社,2009.
    [142]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [143]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [144] Itasca Consultinig Group,Inc.,. Fast Lagrangian analysis of Continue in 3 Dimensions,Version 3.0,User's mannual. USA: Itasca Consultinig Group,Inc.,2005.
    [145]孔宪宾,任青文,汪洪武.土层锚杆技术的发展及研究动态[J].水利水电科技进展,1999,12(6):12-16.
    [146]张乐文,张术才.岩土锚固的现状与发展.[J].岩石力学与工程学报,2003,22(增1):2214-2221.
    [147]尤春安.压力型锚索锚固段的受力分析[J].岩土工程学报,2004,26(6):828-831.
    [148]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339-341.
    [149]张乐文,汪稔.岩土锚固理论研究现状.[J].岩土力学,2002,2 3 ( 5 ):627-631.
    [150]程良奎,范景伦,韩军等.岩土锚固[M].北京:中国建筑工业出版社,2003
    [151]水利部水利水电规划设计总院.预应力锚固技术[M].北京:中国水利水电出版,2001
    [152]尤春安,战宝玉.预应力锚索锚固段的应力分布规律及分析[J].岩石力学与工程学报,2005,24(6):925-928.
    [153] Laura Blanco Martin,Michel Tijani,Faouzi Hadj-Hassen.A new analytical solution to the mechanical behaviour of fully grouted rockbolts subjected to pull-out tests[J].Construction and Building Materials,2011,(25):749-755.
    [154]王礼立.应力波基础[M].北京:国防工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700