土壤抗侵蚀指标的建立及初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤本身的抗侵蚀性反映了土壤对侵蚀的敏感程度,是影响区域水蚀土壤流失量的内因。因此,对区域尺度土壤侵蚀机理进行深入研究,对于我国建立区域尺度土壤侵蚀预报模型以及进行大规模水土保持生态环境效应评价等都具有重要的理论意义和实践意义。基于此,本研究以土壤侵蚀力学、土壤物理学、水动力学等为基础,以我国最具代表性的侵蚀性土壤为研究对象,通过人工模拟试验分析侵蚀过程的特征和机理,力图建立一个土壤侵蚀学意义明确、带量纲单位且与侵蚀动力因子量纲单位相匹配的能反映土壤抗侵蚀综合性能的指标,并将这一关系式推广到区域尺度上,为区域水土流失预测模型提供依据。
     论文主要研究结果与结论如下:
     ⑴基于能耗理论的土壤抗侵蚀性指标的建立
     利用能量守恒定律分析了水流自坡面顶端到坡面上任一断面间的能量损耗,得出所观测土壤在试验坡度范围内,径流能耗越大,径流侵蚀产沙率越大;在径流能耗一定的情况下,径流侵蚀产沙率随坡度的增大而增大。以径流能耗原理为基础,提出土壤抗侵蚀指数(KE,g/J·cm-2·min-1)的概念。引入曲线平均斜率确立了土壤抗侵蚀指标均值K E的表达式, K E值越大,土壤抗侵蚀能力愈弱。四种土壤K E大小关系为:黑土(0.081)>黄绵土(0.062)>紫色土(0.047 )>红壤(0.0245)。
     ⑵土壤抗侵蚀指数与土壤可蚀性K间的关系
     四种土壤次降雨条件下土壤可蚀性K值(美国制)存在较大差异。坡面侵蚀量与降雨侵蚀力坡度、坡长因子之间存在良好的线性相关关系,四种土壤进行多次模拟降雨过程综合计算后的K值分别为0.0214 (红壤)、0.0265(紫色土)、0.0546(黑土)、0.0784(黄土),并比较了抗侵蚀指数与可蚀性K值的关系,得出两者之间主要呈现线性相关关系。
     ⑶土壤抗侵蚀指数与抗冲系数之间的关系
     不同母质发育土壤抗冲系数差异明显,主要与>0.25 mm水稳性团粒以及土壤粘粒含量等理化属性有关。土壤抗冲性随土壤类型变化由大至小依次为红壤>紫色土>黄土>黑土。土壤抗侵蚀指数KE随着抗冲系数Kc增大而减小,二者呈现良好的乘幂关系,得到了抗侵蚀指数的简易测试和计算方法。
     ⑷土壤抗侵蚀指数与土壤可蚀性估算值之间的关系
     不同模型下四种土壤的估算K值有较大差异。四种模型估算的土壤可蚀性值与抗侵蚀指数KE值之间存在较好的线性关系,并在此基础上提出了我国不同地区及不同资料情况下的土壤抗侵蚀指数的估算方法。
     ⑸土壤抗侵蚀指数在坡面上的验证
     降雨条件下四种土壤坡面土壤侵蚀量的实测值大于计算值,究其原因是由于降雨溅蚀使得坡面径流搬运相同数量的土体所需的能耗减小造成的。计算值与实测值之间呈显著的正相关,二者之间相关性较好。
     ⑹土壤抗侵蚀指数的应用
     将抗侵蚀指数输入区域水土流失模型模拟延河流域侵蚀产沙量,模拟得到1995年7月份延河流域出口输沙量为0.20亿t。根据中华人民共和国水利部2000年发布的《中国河流泥沙公报》显示:延河流域甘谷驿站多年平均输沙量为0.4656亿t,证明了抗侵蚀指数应用在较大区域上的可行性。
Soil as the erosion object, its anti-erosion capability reflects the sensitivity degree of soil to erosion and is the inherent factor influencing the process of soil erosion.So researching on the soil erosion mechanism and regulation of regional scale has important significance for building soil erosion prediction model of regional scale and massive work of soil and water conservation and environment construction. Based on involved scientific theory of soil erosion science, soil physics, and hydrodynamics, this research analyzed the character and mechanism of soil erosion progress of four typical soil types through artificial simulation experiments. The objective of our research is to build a comprehensive index which can reflect soil anti-erosion capability, and apply it to the regional soil erosion resrarch. Main results are as follows:
     1. Proposition of soil anti-erosion index based on energy consumption theory.
     The relationship between the soil detachment and the runoff energy consumption is studied by using the law of conservation energy in this part. The soil erosion rate increases as runoff energy consumption increases, and it also tends to increase with increasing slope gradient under same runoff energy consumption. The soil erosion rate model is built, and a new erosion critical index is put forward. Based on the energy consumption theory of run-off, the concept of soil anti-erosion index (KE, g/J·cm-2·min-1) is proposed. And the expression of mean erosion index value is also built according to mean curve slope. The mean anti-erosion index values of four soils are black soil (0.081) >loess soil (0.062) > purple soil (0.047) > red soil (0.0245).
     2. The relationship between soil anti-erosion index and soil erodibility
     Under simulated rainfall conditions, soil erodibility K values are diverse, which shows that error will exist when soil erodibility (K-factor) is directly applied to the soil erosion calculation under single rainfall event. Slope erosion quantity showes a linear correlation with rainfall erosivity, slope gradient and slope length. Combined the course of simulated rainfall on many occasions, the K values of red soil, purple soil, black soil and loess soil are 0.0214, 0.0265, 0.0546 and 0.0784, respectively. And the relationship between soil anti-erosion index and soil erodibility is described quantitatively.
     3. The relationship between soil anti-erosion index and soil anti-scourability coefficient.
     Soil anti-scourability coefficients are evidently different from different parent material, which is due to difference of >0.25 mm water-stable aggregates and soil clay content. Soil anti-scourability ability is red soil > purple soil > loess soil > black soil. Soil anti-erosion index decreases as soil anti-scourability coefficient increases under different slope gradients and flows, and the both show a fine correlation of power.
     4. The relationship between soil anti-erosion index and simulated erodibility K values
     Simulated erodibility K values of four soil types show a great difference under different models, and simulated K values are generally bigger than that of soil anti-erosion index. There is a fine linear correlation between simulated K values and soil anti-erosion index. A new method is advanced for estimating soil anti-erosion index of the soils in China despite of difference in geographic region and availability of data.
     5. The test of soil anti-erosion index on the slope
     The observed values of soil erosion quantity is generally bigger than that of simulated values. However, further analysis indicates the significantly positive correlation between the observed values and the simulated values, which shows a line correlation. Coefficients of determination of the observed values and the simulated values reveal the rationality of soil anti-erosion index on the slope.
     6. Application of soil anti-erosion index
     The erosion index is primarily applied to simulate the sediment yield in July, 1995 during a case study in Yanhe River basin. The results indicate that the simulated sediment amounts are 20 million tons. The simulated results in Yanhe River basin prove that soil anti-erosion index is feasible on the regional scale.
引文
[1]王礼先.全球土地退化现状与防治对策[J].中国水土保持,1997,(5):8-10.
    [2]王礼先,孙保平,余新晓.中国水利百科全书之水土保持分册[M].北京:中国水利水电出版社,2004.
    [3]中华人民共和国水利部.全国水土流失公告[M]. 2002
    [4] Andrews, S. S., Karlen, D.L., Mitchell, J.P. A comparison of soil quality indexing methods for Vegetable production systems in Northern California [J]. Agriculture, Ecosystems & Environment, 2002, 9025-45.
    [5] Boardman, J. An average soil erosion rate for Europe: myth or reality? [J].Journal of Soil and Water Conservation, 1998, (53):46-50.
    [6] Yang, Z. S. Soil erosion under different land use types and zones of Jinsha River basin inYunnan Province,China[J].Journal of Mountain Science,2004,(1):46-56.
    [7]李锐,杨勤科,赵永安.水土流失动态监测与评价研究现状与问题[J].中国水土保持,1999,(11):31-33.
    [8]倪晋仁,李英奎.基于土地利用结构变化的水土流失动态评估[J].地理学报,2001,56(5):611-621.
    [9]王小丹,钟祥浩,范建容.西藏水土流失敏感性评价及其空间分异规律[J].地理学报,2004,59(2):183-188.
    [10]杨勤科,李锐.区域水土流失研究的科学体系[J].水土保持研究,2006,13(5):11-13.
    [11]张爱国,张平仓,杨勤科.区域水土流失土壤因子研究[M] .北京:地质出版社,2003.
    [12] Cook H L. The nature and controlling variables of the water erosion process.Soil.Sci.Soc.Am.Proc,1936,1: 60-64.
    [13] Bennet,H H.Some comparisons of properties of humid—temperate american soils with special reference to indicated relations between chemical composition and physical properties[J].Soil Sei.,1926,21:349-375.
    [14] Middleton,H E.Properties of soils which influence soil erosion[D].USDA Teeh.Bul1.,1930,1 78:1 6.
    [15] Bryan,R B.The development,use and efficiency of indices of soil erodibility[J].Geoderma,1968,2:5-26.
    [16] Lutz,J F.The physic-chemical properties of soil affecting erosion[J].Mississippi State Col1.Agr.Expt.Sta.Bul1.1934,212:1-45.
    [17] Bouyoucos,G J.The clay ratio as a criterion of susceptibility of soils to erosion[J].J.of American Society of Agronomy.1935,27:738-741.
    [18] Peele,T C,et a1.The effect of time and organic matter on the erodibility of cecil clay[J].Soil Sei.Soc.Am.Proc,1938,3:289-295.
    [19] Anderson,H W.Suspended sediment discharge as related to streamflow,topography,soil and land use[J].Trans.Am.Geophys.U nion.,1954,35:268-281.
    [20] Woodburn,R,Kozaehyn,J.Study of relative erodibility of a group of Mississippi gully soils[J].Trans.Am.Geophys.Union,1956,37:749-753.
    [21] Wischmeier,W H,Smith,D D.Rainfall-Erosion Losses From Cropland East of the Rocky Mountains , Guide for Selection of Practices for Soil and Water Conservation[A].Agricultural Handbook[M].Washington, D.C.1965.No.282.
    [22] Wischmeier W H. Cropping-management factor evaluations for a universal soil-loss equation. Soil Sci.Soc.Am.Proc, 1960, 24: 322-326.
    [23] Wischmeier, W.H. 1955. Punched cards record runoff and soil-loss data. Agric. Eng. 36:664-666.
    [24] Wischmeier, W.H. 1962. Storms and soil conservation. J. Soil and Water Conserv. 17:55-59.
    [25] Wischmeier, W.H. 1976. Use and misuse of the universal soil loss equation. J. Soil and Water Conserv. 31:5-9.
    [26]刘宝元.土壤可蚀性及其在侵蚀预报中的应用[J] .自然资源学报,1999,14(4):346-352.
    [27] Renard K G ,et a1.Revised universal soil loss equation[J].J.of Soil and Water Conservation,1991,46:3O-33.
    [28] Renard K G ,Foster G R.RUSLE——A Guide to Conservation Planning with the Revised Universal So il Loss Equation [A].USDA Agricultural Handbook[M].1997,No.703.
    [29] De Roo A P J, Wesseling C G, Ritsema C J. LISEM: A Single-Event Physically Based Hydrological and soil Erosion Model for Drainage Basins. I: Theory. Input and Output[J]. Hydrological Processes, 1996, 1107-1118.
    [30] Laflen J M,Elliot W J,Simanton J R.WEPP soil erodibility experiments for rangeland and cropland soils[J].J Soil and Water Cons.,1991,46(1):39-44.
    [31]朱显谟.黄土地区植被因素对水土流失的影响[J].土壤学报,1960,8(2):110-121.
    [32]朱显谟等.泾河流域土壤侵蚀现象及其演变[J].土壤学报,1954,2(4).
    [33]蒋定生.黄土区不同利用类型土壤抗冲刷能力的研究[J].土壤通报,1979,(4):20-24.
    [34]窦葆璋,周佩华.雨滴的观测和计算方法.水土保持通报,1982,1:44-47.
    [35]赵兴实,欣仁德,祁国贵,等.黑土侵蚀区土壤理化特性及抗冲性能初探[J].中国水土保持,1981,(6):25-29.
    [36]史德明,杨艳生,姚宗虞.土壤侵蚀调查方法中的侵蚀实验研究和侵蚀量测定问题.中国水土保持,1983,第6期.
    [37]刘秉正.土壤侵蚀[M],陕西人民出版社,1997.
    [38]李建牢,刘世德. 1987.罗玉沟流域土壤抗蚀性分析.中国水土保持,第11期.
    [39]李勇,徐晓琴,朱显谟,等.草类根系对土壤抗冲性的强化效应.科学通报,1992,37(4):366-369.
    [40]李勇,朱显谟,田积莹.1991.黄土高原植物根系提高土壤抗冲性的有效性.科学通报,36(12):935-938.
    [41]李勇,吴钦孝,等.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):1-16.
    [42]蒋定生,李新华,范兴科等. 1995.论晋陕蒙接壤地区土壤的抗冲性与水土保持措施体系的配置.水土保持学报,9(1).
    [43]周佩华,郑世清.黄土高原土壤抗冲性的实验研究[J].水土保持研究,1997,4(5):47-58.
    [44]杨文元,张奇.紫色丘陵区土壤抗冲性研究[J].土壤侵蚀与水土保持学报,1997,3(2):22-28.
    [45]唐克丽.生草灰化土与黑钙土的团粒结构一抗蚀性能. 1961.全苏土壤侵蚀会议论文集.
    [46]唐克丽.唐克丽论文选集--土壤侵蚀与水土保持研究50年. 2004.陕西人民出版社.
    [47]田积莹,黄义端. 1964.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究.土壤学报,12(3).
    [48]黄义端.我国几种主要地面物质抗侵蚀性能的初步研究[J].中国水土保持,1980,(1):41-43.
    [49]高维森.土壤抗蚀性指标及其适用性初步研究.水土保持学报,1991,5(2):60-64.
    [50]郭培才,张振中,杨开宝.黄土区土壤抗蚀性预报及评价方法研究.水土保持学报,1992,6(3):25-30.
    [51]余清珠,师明洲.半干旱黄土丘陵沟壑区人工混交林土壤抗蚀性研究初报.水土保持通报,1990,10(5):5-9.
    [52]杨玉盛.不同利用方式下紫色土可蚀性的研究.水土保持学报,1992,6(3):52-57.
    [53]王佑民,郭培才,高维森.黄土高原土壤侵蚀抗蚀性研究.水土保持学报,1994, 8(4):11-16.
    [54]吴淑安,蔡强国.内蒙古东胜地区土壤抗蚀性实验研究.干旱区资源与环境,1996,10(2):38-45.
    [55]胡建忠,张伟华,李文忠,等.北川河流域退耕地植物群落土壤抗蚀性研究.土壤学报,2004,41(6):854-863.
    [56]牟金泽.黄土土壤可蚀性研究[J].水土保持科技情报,1997,2 (12):45-50.
    [57]史学正,于东升,吕喜玺.用人工模拟降雨仪研究我国亚热带土壤的可蚀性[J].水土保持学报,1995,9 (3):38-42.
    [58]张宪奎,许靖华,卢秀琴,等.黑龙江省土壤流失方程的研究[J].水土保持通报,1992,12 (4) :1-9.
    [59]马志尊.应用卫星影像估算通用土壤流失方程各因子值方法的探讨[J].中国水土保持,1989,(3):24-27.
    [60]陈法扬.通用水土流失方程在小良水土保持实验站上的应用[J].水土保持通报,1992.12(1):22-41.
    [61]吕喜玺,沈荣明,等.土壤可蚀性因子K值的初步研究[J].水土保持学报,1992,6(1):63-70.
    [62]陈明华.土壤可蚀性因子研究[J].水土保持学报,1995,9(1):19-24.
    [63]于东升,史学正,梁音,等.应用不同人工模拟降雨方式对土壤可蚀性K值的研究.土壤侵蚀与水土保持学报,1997,3(2):53-57.
    [64]史学正.长江以南东部丘陵山区土壤可蚀性K值研究.水土保持研究,1999,6(2):47-52.
    [65]张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算.土壤学报,2007,44(1):7-13.
    [66]蒋定生,李新华等.黄土高原土壤崩解速率变化规律及影响因素研究.水土保持通报,1995,15(3):20-27.
    [67]张爱国,张平仓.中国水土流失土壤因子研究进展.陕西师范大学学报:自然地理版,2002,16(1):79-85.
    [68]吴普特.黄土区土壤抗冲性研究进展及亟待解决的若干问题.水土保持研究,1997,4(5):59-66.
    [70]张科利,蔡永明.土壤可蚀性动态变化规律研究[J].地理学报,2001,56(6):673-681.
    [71]张科利,蔡永明.土壤侵蚀预报中的标准小区问题论证[J].地理研究,2000,19(3):297-302.
    [72]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):1-19.
    [73]马晓薇.基于GIS的中国潜在水土流失宏观分析与评价.中国科学院、水利部西北水土保持研究所硕士毕业论文,2000.
    [74]王占礼.关于黄土高原土壤抗冲性研究的认识.区域水土流失快速调查与管理信息系统研究(李锐,杨勤科主编),郑州:黄河水利出版社,2000:74-77.
    [75]刘国彬.黄土高原土壤抗冲性研究及有关问题.水土保持研究,1997,4(5):91-101.
    [76]胡良军.基于GIS的区域水土流失评价研究-以黄土高原为例.中国科学院、水利部西北水土保持研究所硕士毕业论文,1999.
    [77]胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究.土壤学报,2001,38(2):167-173.
    [78]王万忠,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙.北京:科学出版社,1996.
    [79]韦中亚.石家庄土壤侵蚀定量评价研究.水土保持学研究,1999,6(4):62-68.
    [80]张爱国,李锐,杨勤科.水蚀土壤因子野外测试问题探讨.人民黄河,2002,(2):28-30.
    [81]张爱国,李锐,杨勤科.中国水蚀土壤抗剪强度研究.水土保持通报,2001,21(3):5-9.
    [82]杨勤科,李锐. LISEM:一个基于GIS的流域土壤流失预报模型.水土保持通报,1998,18(5):13-18.
    [83]刘国彬.黄土高原草地土壤抗冲性及其机理研究.土壤侵蚀与水土保持学报,1998,4(1):93-96.
    [84] Wischmeier, W.H. 1976. Use and misuse of the universal soil loss equation. J. Soil and Water Conserv. 31:5-9.
    [85] Wischmeier, W.H., and D.D. Smith. 1958. Rainfall energy and its relationship to soil loss.Trans. AGU 39:285-291.
    [86] Wischmeier, W.H., and D.D. Smith. 1978. Predicting rainfall erosion losses. A guide to conservation planning. U.S. Dep. Agric., Agric. Handb. No. 537.
    [87] Wischmeier, W.H., and J.V. Mannering. 1969. Relation of soil properties to its erodibility. Soil Sci. Soc. Am. Proc. 33:131-137.
    [88] Wischmeier, W.H., C.B. Johnson, and B.V. Cross. 1971. A soil erodibility nomograph for farmland and construction sites. J. Soil and Water Conserv. 26:189-l93.
    [89] Wischmeier, W.H., D.D. Smith, and Uhland, R.E. 1958. Evaluation of factors in the soil loss equation. Agric. Eng. 39:458-462, 474.
    [90]杨萍,胡续礼,姜小三,何旭东,潘剑君.小流域尺度土壤可蚀性的变异及不同采样密度对其估值精度的影响.水土保持通报,2006,26(6):35-39.
    [91]梁音,史学正.长江以南东部丘陵山区土壤可蚀性K值研究.水土保持研究,1999,6(2):47-52.
    [92]高华端,李锐.噶斯特地区原状土的可蚀性.中国水土保持科学,2007,5(5):1-4.
    [93]蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISII预测小流域-土壤侵蚀量的研究[J]水土保持学报,2000,14(2):19-25.
    [94]王小丹,钟祥浩,王建平.西藏高原土壤可蚀性及其空间分布规律初步研究[J].干早区地理,2004,27(3):343-346.
    [95]张科利,蔡永明,刘宝元,等.土壤可蚀性动态变化规律研究[J].地理学报,2001,56(6):673-679.
    [96] Zhang K L, Shu a B, Xu X L et a1. Soil erodibility and its estimation for agricultural soils in China [J]. Journal of Arid Environments,2008:.
    [97] Baumer O W.1990. Prediction of soil hydraulic parameters. In: WEPP Data File for Indiana [J]. SCS National Soil Survey Laboratory, :LincoIn, NE.
    [98]李庆奎.中国红壤[M].北京:科学出版社,1983.
    [99]中国科学院成都分院土壤研究室.中国紫色土(上篇)[M].北京:科学出版社,1994.
    [100]中国科学院成都分院土壤研究室.中国紫色土(下篇)[M].北京:科学出版社,1994.
    [101]中国科学院林业土壤研究所.中国东北土壤.北京:科学出版社,1980.
    [102]陕西省土壤普查办公室.陕西土壤[M].北京:科学出版社,1992.
    [103]中国科学院南京土壤研究所.土壤物理性质测定法[M].北京:科学出版社,1978:34-88.
    [104]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1980.
    [105]曲格平.保护水土资源,改善生态环境,造福子孙后代[J].中国水土保持,1996,(8):4-5.
    [106]朱波,陈实,游祥,等.紫色土退化旱地的肥力恢复与重建[J].土壤学报,2002,39(5):743-749.
    [107]程积民,万惠娥,王静.黄土丘陵区山桃灌木林地土壤水分过程与调控恢复[J].土壤学报,2003,40(5):691-696.
    [108]高维森,王佑民.黄土丘陵柠条林地土壤抗蚀性研究[J].西北林学院学报,1991,6(3):12-17.
    [109]王佑民,郭培才,高维森.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(4):11-16.
    [110]张兵硕士毕业论文.紫色丘陵区土壤可蚀性模拟研究[D]. 2009.
    [111]张祖垚硕士毕业论文.紫色土抗侵蚀性指标研究[D]. 2009.
    [112]肖培青博士毕业论文.黄土丘陵区坡沟系统侵蚀产沙过程及动力学机理研究[D]. 2007.
    [113]郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟[M].陕西:陕西人民出版社,2000.
    [114]张新和博士毕业论文.黄土坡面片蚀-细沟侵蚀-切沟侵蚀演变与侵蚀产沙过程研究[D]. 2007.
    [115]丁文峰,李占斌,鲁克新,丁登山.坡面细沟发生临界水动力条件初探[J].土壤学报,2003,40(6):822-828.
    [116]李占斌,鲁克新,丁文峰黄土坡面土壤侵蚀动力过程试验研究[J].水土保持学报,2002,16(2):5-7.
    [117]丁文峰,李占斌,崔灵周黄土坡面径流冲刷侵蚀试验研究[J].水土保持学报,2002,16(3):72-75.
    [118]丁文峰,李占斌,鲁克新黄土坡面细沟侵蚀发生的临界条件[J].山地学报,2001,19(6):551-555.
    [119]张科利,蔡永明,刘宝元,等.黄土高原地区土壤可蚀性及其应用研究[J].生态学报,2001,21(20):1686-1695.
    [120]刘宝元,谢云,张科利.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001.
    [121] Olson TC, Wischmeier W H. Soil erodibility evaluations for soils on the runoff and erosion stations[J]. Soil Science Society of America Proceedings, 1963, 27(5): 590-592.
    [122]张文太,于东升,史学正,等.中国亚热带土壤可蚀性K值预测的不确定性研究[J].土壤学报,2009,46(2):185-191.
    [123] TorriD, Poessen J, Borselli L. Predicability and uncertainty of the soil erodibility factor using global dataset[J]. Catena, 1997, 31:1-22.
    [124] Renard K G, FoserG R, Weesies G A,et al. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE)[J]. Agriculture Handbook No. 703. U. S. Department of Agriculture. Washington,DC., 1997.
    [125] Barthsès B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena,2002,47(2):133-149.
    [126] Dimoyiannis D,Valmis S,Danalatos N G. Interrill erosion on cultivated Greek soils: modelling sediment delivery[J].Earth Surface Processes and Landforms,2006, 31(8):940-949.
    [127]李云涛,唐峰.土壤类型与抗冲性关系特性分析[J].国外建筑科技,2006,27(4):116-119.
    [128]王一峰,张平仓,朱兵兵等.长江中上游地区土壤抗冲性特征研究[J].长江科学院院报,2007,24(1):12-15.
    [129] Fox D M, Le Bissonnais Y. Process-based analysis of aggregate stability effects on sealing, infiltration, and interrill erosion[J]. Soil Science Society of America Journal,1998,62(3):717-724.
    [130] Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility:I. Theory and methodology[J]. European Journal of Soil Science,1996,47(4):425-437.
    [131]李朝霞,王天巍,史志华,等.降雨过程中红壤表土结构变化与侵蚀产沙关系[J].水土保持学报,2005,19(1):1-4.
    [132]程琴娟,蔡强国,马文军.我国水土流失典型区土壤表土结皮敏感性[J].地理研究,2008,27(6):1290-1298.
    [133]何毓蓉,等.中国紫色土(下篇)[M].北京:科学出版社,2003.
    [134]闫峰陵,李朝霞,史志华,蔡崇法.红壤团聚体特征与坡面侵蚀定量关系[J].农业工程学报,2009,25(3):37-41.
    [135] Kirby M. Modelling the interactions between soil surface properties and water erosion[J]. Catena, 2002, 46:89-102.
    [136] LalR.水土保持学会,黄河水利委员会宣传出版中心译.可蚀性和侵蚀性[M].北京:科学出版社,1991.
    [137]卜兆宏,李全英.土壤可蚀性(K)值图编制方法的初步研究[J].农村生态环境(学报),1995,11(1):5-9.
    [138] Williams J R. Sharply A N. EPIC-Erosion Productivity Impact CacalatorⅠ[J]. Model Documentation. US Department of Agriculture Technical Bulletin. N. 1990:1768.
    [139]卜兆宏,杨章林,卜宇行,等.太湖流域苏皖汇流区土壤可蚀性K值及其应用研究[J].土壤学报,2002,39(3):296-300.
    [140] Sharply A N, W illiams JR. EPIC-Erosion productivity impact calculator: 1. Model documentation[J]. U. S. Department of Agriculture Technical Bulletin. No. 1768. Washington, DC., 1990
    [141] Torri D, Poessen J, Borselli L. Predicability and uncertainty of the soilerodibility factorusing globaldataset[J]. Catena, 1997, 31:1-22.
    [142] Torri D, Poessen J, Borselli L. Corrigendum to“Predictability and uncertainty of the soil erodibility factor using a global dataset”[Catena 31 (1997) 1~22] and to“Erratum to Predictability and uncertainty of the soil erodibility factorusing a globaldata-set”[Catena 32 (1998 ) 307-308 ] [J]. Catena,2002, 46:309-310.
    [143] Shirazi M A, Boersma L. A unifying quantitative analysis of soil texture[J]. Soil Science Society of America Journal, 1984, 48(1):142-147.
    [144] Renard K G, FoserG R, Weesies G A, et al. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE) [M].Agriculture Handbook No.703. U. S. Department of Agriculture. Washington, DC., 1997.
    [145]张平仓,唐克丽,等.皇普川流域泥沙来源及数量分析[J].水土保持学报,1990,4(4):29-36.
    [146]郝芳华,陈利群,刘昌明,戴东.土地利用变化对产流和产沙的影响分析[J].土壤与环境,2004,18(3):5-8.
    [147]雷阿林.土壤侵蚀模型实验中的土壤相似性问题[J].科学通报,1996,(2):21.
    [148]郑良勇,李占斌,李鹏.黄土区陡坡侵蚀过程实验研究[J].土壤与环境,2002,11(4):356-359.
    [149]肖培青,郑粉莉.上方来水来沙对细沟侵蚀泥沙颗粒组成的影响[J].泥沙研究,2003,(10):64-68.
    [150]王文龙,雷阿林,李占斌,唐克丽.黄土丘陵坡面薄层水流侵蚀动力机制实验研究[J].水利学报,2003,(9):66-70.
    [151]刘青泉,李家春,陈力,向华.坡面流及土壤侵蚀动力学[J].土壤侵蚀力学进展,2004,34(4):493-506.
    [152]席有.坡度影响土壤侵蚀的研究[J].中国水土保持,1990,(11):493-506.
    [153]张光辉.坡面薄层流水动力学特性的实验研究[J].水科学进展,2002,13(2):159-165.
    [154]吴普特.动力水蚀实验研究[M].陕西:陕西科学技术出版社,1997.
    [155] Emerson W W, Greenland D J. Soil aggregates formation and stability[M]. New York: Plenum Press,1990.
    [156] Panabokke C R, Quirk J P. Effect of initial water content on stability of soil aggregates in water[J]. Soil Sci, 83:185-195.
    [157] Zhang B,Horn R.Mechanisms of aggregate stabilization in Ultisols from subtropical China[J]. Geoderma, 2001, 99(1-2):123-145.
    [158] Li Z X,Cai C F,Shi Z H,et al.Aggregate stability and its relationship with some chemical properties of red soils in subtropical China[J]. Pedosphere,2005, 15(1):129-136.
    [159]朱显谟.黄土高原土壤与农业[M].北京:农业出版社,1997.
    [160]包澄澜,王德瀚,等.暴雨的分析与预报.北京:农业出版社,1981.
    [161]何圆球,孙波,等.红壤质量演变与调控[M].北京:科学出版社,2008.
    [162] Ellison W D. Soil erosion studies-partⅠ[J]. Aric. Eng, 1947, 28:145-146.
    [163] Moore D C, Singer M J. Crust formation effects of soil erosion progress[J]. Soil Sci Soc Am J, 1990, 48:1117-1123.
    [164]郑粉莉.黄土区坡耕地细沟间和侵蚀细沟侵蚀影响因素研究[J].土壤学报,1998,(1):95-103.
    [165]中国农业百科全书(土壤卷) [M].北京:农业出版社,1996.
    [166]罗枢运,孙逊,陈永宗.黄土高原自然条件研究[M].西安:陕西人民出版社,1988.
    [167]吴发启,范文波.土壤结皮对降雨入渗和产流产沙的影响[J].中国水土保持科学,2005,3(2):97-101.
    [168]朱远达,蔡强国,胡霞,等.土壤理化性质对结皮形成的影响[J].土壤学报,2004,41(1):13-19.
    [169]蔡强国,王贵平,陈永宗.黄土高原侵蚀产沙过程与模拟[M].北京:科学出版社,1998.
    [170]蔡强国,陈浩,陆兆熊.表土结皮在溅蚀和坡面侵蚀过程中的作用[J].见:陈永宗.黄河粗泥沙来源及侵蚀产沙机理研究文集[M].北京:气象出版社,1989.
    [172]姚文艺,汤立群.水力侵蚀产沙过程与模拟[M].河南:黄河水利出版社,2001.
    [173]郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟[M].陕西:陕西人民出版社,2000.
    [174]郑粉莉,江忠善,高学田.水蚀过程与预报模型[M].北京:科学出版社,2007.
    [175]李醒民.水土保持工程学[M].台北:徐氏基金会,1969.
    [176]张科利.黄土坡面侵蚀产沙分配及其与降雨特征关系的研究[J].泥沙研究,1991,4(4):13-19.
    [177]扎斯拉夫斯基.土壤侵蚀的机理与规律[J].见:侵蚀过程[M],1989.
    [178]赵晓光.黄土塬区坡面水蚀作用过程[J].水土保持学报,2000,14(3):122-123.
    [179]李占斌.黄土地区坡地系统暴雨侵蚀试验机小流域产沙模型研究[D].陕西机械学院博士毕业论文,1991.
    [180]刘秉正,吴发启.土壤侵蚀[M].陕西:陕西人民出版社,1996.
    [181]刘宝元,张科利,谢云.土壤侵蚀模型[M].北京:中国科学技术出版社,2001.
    [182]郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀的发生、发展和防治途径的探讨[J].水土保持学报,1987,1(1):36-48.
    [183]张兵.紫色丘陵区土壤可蚀性模拟研究[D].西南大学硕士毕业论文,2009.
    [184]康玲玲,王云,王云璋,等.黄土高原水土保持世界银行贷款项目实施的生态效益分析[J].中国生态农业学报,2004,12(04):198-200.
    [185]陕西省黄土高原水土保持世界贷款项目办公室,终期检测评价报告. 2002年7月.
    [186]延安市林业局,延安市退耕还林工程建设情况汇报. 2002年8月.
    [187]延安市水利水土保持局,延安市坝系工程建设情况汇报. 2003年3月.
    [188]谢红霞.延河流域土壤侵蚀时空变化及水土保持环境效应评价研究[D].陕西师范大学博士毕业论文,2008.
    [189]谢红霞,李锐,杨勤科,等.退耕还林(草)和降雨变化对延河流域土壤侵蚀的影响[J].中国农业科学,2009,42(2):569-576.
    [190]庞国伟.区域水土流失人为因子的定量表征——以延河流域为例[D].西北农林科技大学硕士毕业论文,2009.
    [191]姚志宏.基于GIS区域水土流失模型的算法设计与实现[D].中科院水土保持与生态环境研究中心硕士毕业论文,2007.
    [192] Lu Hua, Michael R Raupach, Tim R McVicar, et al. Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series[J]. Remote Sensing of Environment, 2003, 86: 1-18.
    [193] McVicar TR, Jupp D LB,Williams. Relating AVHRR vegetation indices to LANDSAT TM leaf area index estimates[R]. Canberra, CSIRO Division of Water Resources, 1996, 33.
    [194] McVicar TR, Walker J, Jupp D LB, et al. Relating AVHRR vegetation indices to in situ leaf area index[J]. Canberra, CSIRO Division of Water Resources, 1996, 54.
    [195]丁文峰.黄土区坡面侵蚀动力过程试验研究[D].西北农林科技大学硕士毕业论文,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700