用户名: 密码: 验证码:
复杂网络社团结构的探测及其在资金融通网络中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂网络是复杂性科学研究中受到最广泛关注的方向,在物理学、信息科学、生物学、数学乃至社会学、管理学等领域都做出了重大贡献并产生持续影响。复杂网络在表面上呈现出错综复杂的连接关系,但本质上大多数网络具有社团结构特性;社团结构是反映复杂网络整体结构性质的重要特征,因而在复杂网络中探测社团结构就尤为重要。研究复杂网络中的社团结构,对于更好地理解和解释社团结构所代表的现实结构单元有着重要的现实意义,并有助于更加有效地理解网络结构、分析网络特性,从整体上全面、准确地把握复杂网络特性。在复杂网络社团结构研究中,模块度指标催生了一大类重要的社团结构探测方法,但是这类通过优化模块度探测网络社团结构的方法存在分辨率问题,从而限制了基于模块度方法的有效性。本论文围绕有关社团结构探测的关键问题,研究社团结构定义及度量社团结构的指标模块度、模块密度;并分别对无向无权网络、有向无权网络及有向加权网络给出系统的社团结构探测方法。主要完成了以下工作:
     1.通过分析社团结构的定义,辨识各定义所基于的标准及定性和定量方式,详细分析基于派系的社团结构定义和基于比较的社团结构定义的异同。并在此基础上,直接从强社团结构定义出发,设计了一种启发式强社团结构探测算法,通过仿真测试说明了启发式强社团结构探测方法的有效性。对已有社团结构度量指标模块度Q和模块密度D进行理论分析,结合簇内密度、簇间密度等概念,给出了一种新的度量社团结构的指标—社团度C。通过对其性质、物理意义及值域范围进行分析及具体实验,比较了分别以模块度、模块密度和社团度分别为度量指标时,所得社团结构划分的差别及三个指标对社团内外部度变化的敏感程度。
     2.针对无向无权网络社团结构探测,通过设计合适的编码方式、双向传递的交叉方式和非优良等位基因的变异方式等适合社团结构探测的遗传算子,给出了改进遗传算法。以Zachary空手道俱乐部成员等关系网络为例,通过与经典算法比较,说明了该算法的有效性,并具体分析了以模块度、模块密度及社团度指标为优化目标所探测出的社团结构。
     3.针对有向网络社团结构探测,给出有向复杂网络社团结构定义,通过分析连通性、可达性等性质,给出了有向网络社团结构的量化指标——社团连通度。用经典的16节点有向网的模型分析说明社团连通度指标可作为衡量社团连通性的重要度量。针对有向加权网络,分析网络的连接密度、连接强度和连通程度等与有向加权网络社团结构探测直接相关的指标,重点分析网络的权值,比较了相似权和相异权,点权和边权等指标的异同。研究加权网络的连接密度和连接强度,提出了加权社团度指标。结合衡量有向网络连通性的指标连通度和衡量网络的连接密度、连接强度指标加权社团度,给出了有向加权网络社团结构探测算法。并通过16节点环型网络模型来检测加权社团度指标的变化。
     4.以资金融通网络为应用背景,分析了资金融通网络的经济复杂性、关系复杂性,探讨了用复杂网络理论研究资金融通网络的可行性。通过定义资金融通网络的账户节点及账户节点关系,构建了资金融通网络模型,分析了该网络的统计性质。应用社团结构的理论知识,将资金融通网络分别视为无权网络和加权网络,探测其社团结构并分析该结构中资金流动关系。为有效监管各种异常社团的活动,防范危机和金融监管提供了有效的方法。
As a new emerging discipline, research on complex networks attracts scientists from a variety of different fields. Breakthrough has been made in physics, information science, biology, mathematics, sociology and management science, and sustainable influence is produced on these fields. Complex networks are wheels within wheels on the surface, but most of complex networks have community structure characteristic in essence. It is important to research these properties because they show the global features of complex networks, which assist us to better understand and interpret practical problems that community structure stands for. Detecting community structure is very hard and is not yet satisfactorily solved, despite the huge effort of scientists working on it over the past few years. A widely used measure for evaluating the community structure of complex networks is called modularity (known as Q). It was a very effective method and a kind of methods aiming to maximize the modularity was developed. However the index of Q may fails to identify modules smaller than a scale community.
     Beginning with the issues related to the definition of community structure, this thesis deals with the indexes of modularity and modularity density, analyzes the undirected and unweighted networks, directed and unweighted networks and directed and weighted networks, defines the standard of communities partition on different types of networks, proposes systematic detection method of community structure. It mainly contains:
     1. The community structure definition difference is analyzed and compared, based on the standard of definition and pattern of qualitative and quantitative. The easy heuristic algorithm basing on definition of community in a strong sense is constructed. Simulation results demonstrate the validity of the easy heuristic algorithm. This dissertation theoretically analyzes the indexes of modularity Q and modularity density D for community structure measurement. Based on the concepts of intra-cluster density and inter-cluster density, a new community structure index C is proposed. In addition, this dissertation studies the physical meaning of C and analyzes the attribute of C such as boundedness, differentiability, monotonicity and so on. Through the experiment, compare the differences on community partition and the sensitivity of indexes, when the modularity Q, modularity density D, and communicability C are adopted as the optimization objective function respectively.
     2. Aiming to detect community in the undirected and unweighted networks, the appropriate encoding and decoding method are designed, and the bidirectional crossover method and inferior allele mutation method are constructed. Then the framework of improved genetic optimization algorithm is proposed. The algorithm is applied to Zachary Karate Club Network and College Football Network. Simulation test shows that the proposed approach has a good performance especially comparing with the GN algorithm. At last this dissertation discusses on the experimental results of community partition by selecting the modularity, modularity density and communicability as optimization objective.
     3. The current studies on community structure mainly manifests in undirected networks, however, few research focus on directed networks. The commonest approach is to detect communities in directed networks by ignoring the edge directions. But such type of approach frequently fails and results in inaccurate community partition because simply discarding edges' direction is equal to removing valuable information. This dissertation proposes the community structure definition of directed networks based on community structure of undirected networks and characteristic of directed networks. At the same time, the quantitative index of directed connectivity is put forward based on the feature of directed networks connectivity and accessibility. The directed networks model of classical sixteen nodes is used to test the index of directed connectivity, and the experimental results show that the quantitative index of directed connectivity is practicable. This dissertation analyzes the density, strength and connectivity of communities in directed and weighted networks, and mainly analyzes the differences between similitude weighted and dissimilar weighted, between node weighted and edge weighted. The index of weighted communicability is introduced based on connection strength and connection density of weighted community. The detection method of directed weighted networks is put forward, including connection density, connection strength and connectivity. The ring networks model of sixteen nodes is used to examine the change of the index of weighted communicability, and the results show the validity of thw algorithm.
     4. This dissertation discusses the feasibility of research financial network using complex network theory, constructs the model of financial network, and analyzes statistics characters of this network based on the economic complexity and relation complexity of financial network. Then this paper detects the community structure and analyzes the fund flow in financial network, regarding the financial network as un-weighted and weighted network respectively.
引文
[1]汪小帆,李翔,陈关荣.复杂网络理论及其应用.北京:清华大学出版社,2006,9-14.
    [2]覃桂敏.复杂网络模式挖掘算法研究:[西安电子科技大学博士学位论文].西安:西安电子科技大学,2012,2-8.
    [3]Barabasi A.L., Albert R., Jeong H. Mean-field theory for scale-free random networks. Physical A,1999,272(1-2):173-187.
    [4]Watts D.J., Strogatz S.H. Collective dynamics of'small-world'networks. Nature, 1998,393:440-442.
    [5]Barabdsi A.L., Albert R. Emergence of scaling in random networks. Science, 1999,286(439):509-512.
    [6]吕琳媛,陆君安,张子柯等.复杂网络观察.复杂系统与复杂性科学,2010,7(2-3):174-175.
    [7]李平.复杂网络的动力学行为研究:[电子科技大学博士学位论文],成都:电子科技大学计算机学院,2009:39-44.
    [8]闵志锋.中国证券市场的复杂网络特性研究[东北大学硕士学位论文],沈阳:东北大学经济与管理学院,2007:2-10.
    [9]鱼亮,高琳,孙鹏岗.蛋白质网络中复合体和功能模块预测算法研究.计算机学报,2011,34(7):1239-1240.
    [10]杨博,刘大有,金弟等.复杂网络聚类方法.软件学报,2009,20(1):54-56.
    [11]林照天.中国股票市场的稳健性与投资组合策略研究一基于复杂网络视角:[中山大学博士学位论文],广州:中山大学经济学院,2010:37-42.
    [12]钱学森,于景元,戴汝为.一个科学新领域:开放的复杂巨系统及其方法论.中国系统工程学会第六次年会论文集.北京:科学决策与系统工程,1990,10-17.
    [13]J6rn Davidsen, Holger Ebel, Stefan Bornholdt. Emergence of a Small World from Local Interactions:Modeling Acquaintance Networks. Physical Review Letters,2002,88(12):128701-1-128701-4.
    [14]Albert R., Barabasi A.L. Statistical mechanics of complex networks. Reviews of Modern Physics,2002,74(1):47-97.
    [15]Kleinberg J.M., Kumar R., Raghavanp et al. The web as a graph:Measurements models and methods. In Porceedings of the International Conference on Combinatorics and Computing. Lecture Notes in Computer science,1999, 1627:1-17.
    [16]Newman M.E.J., Watts D.J. Renormalization group analysis of the small-world network model. Physics Letters A,1999,263:341-346.
    [17]Barabasi A.L., Evolution of the social network of scientific collaborations. Physica A,2002,311:590-614.
    [18]解(?),汪小帆.复杂网络中的社团结构分析算法研究综述.复杂系统与复杂性科学,2005,3:32-33.
    [19]Girvan M., Newman M.E.J. Community structure in social and biological networks. Proceedings of the National Academy of the Sciences of the United States of America,2002,99:7821-7826.
    [20]Clauset A., Newman M.E.J., Moore C. Finding community structure in very large networks. Phys Rev E,2004,70(6):066111.
    [21]Alex Arenasa, Albert Diaz-Guilerac, Jurgen Kurthsd et al.Synchronization in complex networks. Physics Reports,2008,469(3):93-153.
    [22]Alex Arenasa, Albert Diaz-Guilera, Conrad J. Perez-Vicente. Synchronization processes in complex networks. Physica D:Nonlinear Phenomena,2006, 224(1-2):27-34.
    [23]Newman M.E.J. Assortative mixing in networks. Physical Review Letters,2002, 89(20):2531-2535.
    [24]Muhammad Adnan, Muhammad Rizwan. Empirical Validation of Three Macroscopic Dynamic Network Loading Models. Procedia Computer Science,2013,19:364-371.
    [25]Leonardo Duenas-Osorio, Srivishnu Mohan Vemuru. Cascading failures in complex infrastructure systems. Structural Safety,2009,31(2):157-167.
    [26]Newman M.E.J., Strogatz S.H., Watts, D.J. Random graphs with arbitrary degree distribution and their applications. Phys. Rev. E,2001,64:026118.
    [27]Makoto Katori, Hirotsugu Kobayashi. Mean-field theory of avalanches in self-organized critical states. Physica A:Statistical Mechanics and its Applications,1996,229(3-4):461-477.
    [28]Ying Pan, De-Hua Li, Jian-Guo Liu et al. Detecting community structure in complex networks via node similarity. Physica A:Statistical Mechanics and its Applications,2010,389(14):2849-2857.
    [29]Kumar R, Raghavan P, Rajalopagan S et al. Stochastic models for the Web graph. Proceedings of the 42st Annual IEEE symposium on Foundations of Computer Science Institute of Electronics and Electronics Engineers, NewYork,2000: 57-65.
    [30]H Zhou. Distance, dissimilarity index, and network community structure. Physical Review E,2003,67(6):061901.
    [31]闫强,吴联仁,郑兰.微博社区中用户行为特征及其机理研究.电子科技大学学报,2013,43(3):328-330.
    [32]Newman M.E.J, Girvan M, Finding and evaluating community structure in networks. Phys Rev E,2004,69(2):026113.
    [33]Kretschmer H, Kretschmer K. Application of a new centrality measure for social network analysis. Physica A:Statistical Mechanics and its Applications,1996, 229(3-4):481-482.
    [34]Papadopoulos, F., Kitsak, M., Serrano,M. A.et al. Popularity versus similarity in gowing networks. Nature,2012,489(7417):537-540.
    [35]Li X., Chen G. A local-world evolving network model. Physica A:Statistical Mechanics and its Applications,2003,328(1):274-286.
    [36]Dorogovtsev S.N., Mendes, J.F.F. Evolution of networks with aging of sites. Physical Review E,2000,62(2):1842.
    [37]Jinxia Liu, Jianchao Zeng, Yaowen Xue. Quantitative function for community detection, Advanced Materials Research,2012,433(1):6441-6446.
    [38]Albert R., Jeong H, Barabasi A.L. Error and attack tolerance of complex networks. Nature,2000,406:378-382.
    [39]Chung F., Lu L.Y, Dewey T.G et al. Duplication models for biological networks. Journal of Computer Biology,2003,10(5):677-688.
    [40]Bianconi G, Barabasi A.L. Competition and multi-scaling in evolving networks. Europhysics Letters,2001,54:436-442.
    [41]Bianconi G, Barabasi A L. Bose-Einstein condensation in complex networks. Physical Review letters,2001,86:5632-5635.
    [42]Caldarelli G, Capocci A, De Los Rios P. Scale-free networks from varying vertex intrinsic fitness. Phys Rev Lett,2002,89:258702.
    [43]Erdos P, Renyi A. On the evolution of random graphs. Publications of the Mathematical Institute of the HungarianAcademy of sciences,1960,5:17-61.
    [44]Chandra A.K, Dasgupta S.A small world network of prime numbers. Physica A, 2005,357:436-446.
    [45]Li Z.P., Zhang S.H., Wang R.S. et al. Quantative function for community detection, Physical Review E,2008,77:036109.
    [46]Zheng Dafang, TrimPer S, Zheng Bo, et al. Weighted scale-free networks with stochastic weight assignments. Physical Review E,2003,67:040102.
    [47]Barat A, Barthelemy M, Vespigani A.Weighted evolving networks:Coupling topology and weight dynamics. Physical Review Letters,2004,92:228701.
    [48]王桂英,周健,谢飚.基于BBV的有向加权网络模型.计算机工程,2010,36(12):141-143.
    [49]王晓陵,陆军.最优化方法与最优控制.哈尔滨:哈尔滨工程大学出版社,2006,10-19.
    [50]崔志华.微粒群算法的性能分析与优化:[西安交通大学博士论文].西安:西安交通大学,2008,3-21.
    [51]F Radicchi, C Castellano, F Cecconi et al. Defining and identifying communities in networks. PNAS,2004,101(9):2658.
    [52]Beyer H, Schwefel H. Evolution strategies-A comprehensive introduction. Natural computing,2002,1(1):3-52.
    [53]Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing,2008.8(1):687-697.
    [54]J Reichardt, S Bornholdt. Statistical mechanics of community detection. Physical Review E,2006,74(1):16110.
    [55]Birbil S, Fang R S. An electromagnetism-like mechanism for global optimization. Journal of Global Optimization.2003,25(3):263-282.
    [56]Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence:From Natural to Artificial Systems:Santa Fe Institute Publications,1999,33-42.
    [57]Kennedy J, Eberhart RC, Shi Y. Swarm intelligence. Morgan Kaufmann,2001.
    [58]Spears W, et al. An overview of physicomimetics. Lecture Notes in Computer Science-State of the Art Series,2004:84-97.
    [59]刘晋霞,曾建潮,薛耀文.复杂网络强社团结构探测.小型微型计算机系统,2011,32(4):686-690.
    [60]WW Zachary. An Information flow model for conflict and fission in small groups. Journal of Anthropological Research,1977,33(4):452.
    [61]Xie L P, Zeng J C, Cui Z H. Using Artificial Physics to Solve Global Optimization Problems. In:the 8th IEEE International Conference on Cognitive Informatics (ICCI 2009), Hong Kong,2009,211-215.
    [62]陈宏斌,胡延庆,狄增如.元胞自动机法寻找社团结构.北京师范大学学报(自然科学版),2008,44(2):153-156.
    [63]Shi Y, Eberhart R C. Empirical study of particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation. USA:IEEE Press,1999:1945-1950.
    [64]Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization. In: Proceedings of the IEEE Conference on Evolutionary Computation. Seoul, Korea:IEEE Press,2001,101-106.
    [65]Clerc M. The Swarm and the Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization.Proceedings of IEEE Congress on Evolutionary Computation. USA:IEEE Press,1999,1951-1957.
    [66]Ratnaweera A, Halgamuge S.K., Watson H.C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
    [67]Amicom Dell. Highly-clustered networks with preferential attachment to close nodes. Proceedings of European Conference on Complex Systems, Oxford, 2006:1-6.
    [68]Mohais A, Ward C, Posthoff C. Randomized directed neighborhoods with edge migration in particle swarm optimization. In:Proc. of the 2004 IEEE Congress on Evolutionary Computation, IEEE Press,2004,548-555.
    [69]Suman B, Kumar P. A survey of simulated annealing as a tool for single and multiobjective optimization. Journal of the Operational Research Society.2005, 57(10):1143-1160.
    [70]M Latapy, P Pons. Computing communities in large networks using random walks. LNCS,2005,284(23):3733-3740.
    [71]Castellano C, Cecconi F., Loreto V. et al. Self-contained algorithms to detect communities in networks. The European Physical Journal B-Condensed Matter and complex Systems,2004,38(2):311-313.
    [72]MA Xiaoke, GAO Lin, YONG Xuerong et.al. Semi-supervised clustering algorithm for community structure detection in complex networks. Physica A, 2010,389(12):187-197.
    [73]Jinxia Liu, Jianchao Zeng, Yaowen Xue. A novel quantitative function of communicability for community detection. Procedia Engineering,2011,8(15): 3277-3281.
    [74]Zhang D, Zuo WM. Computational intelligence-based biometric technologies. IEEE Computational Intelligence Magazine,2007,2(2):26-36.
    [75]Beyer H-G, Schwefel H-P. Evolution strategies A comprehensive introduction. Natural Computing,2002,1(1):3-52.
    [76]Chauhan Sanjeev, Girvan Michelle, Ott Edward. Using network function to define and identify community structure. Physica A,2009,14(3):1-5.
    [77]Toivonen R, Kovanen L, Kivela M, et al. A comparative study of social network models:Network evolution models and nodal attribute models. Social Networks, 2009,32(3):240-254.
    [78]Frank H, Frisch I. Analysis and design of survivable network [J]. IEEE Trans. on Communication Technology,1970,218(5):567-662.
    [79]Wasserman S., Faust K. Social Network Analysis:Methods and Applications. Cambridge:Cambridge University Press,1994,2-13.
    [80]Lawrence S, Giles C.L. Searching the world wide web. Science,1998,280-298.
    [81]Jinxia Liu, Jianchao Zeng. An improved genetic algorithm optimizing the quantitative function of communicability to detect community structure. ICIC express letter,2012,6(7):32-37.
    [82]F Radicchi, S Bornholdt. Detecting fuzzy community structures in complex networks with a Potts model. Physical Review Letters,2004,93(21):218701.
    [83]Zhang D, Zuo W. Computational intelligence-based biometric technologies. IEEE Computational Intelligence Magazine.2007,2(2):26-36.
    [84]刘晋霞,曾建潮,薛耀文.用遗传算法优化模块密度探测社团结构.解放军理工大学学报(自然科学版),2011(3):233-238.
    [85]Wang, W. Q., Zhang, Q. M., & Zhou,T. Evaluating network models:A likelihood analysis. Europhysics Letters,2012,98(2):28004.
    [86]Fortunato S., Barthelemy M. Resolution limit in community detection. PPNAS, 2007,104(1):36-41.
    [87]Newman M.E.J. Analysis of weighted networks. Phys Rev E,2004,70:056131.
    [88]陈霄.DNA遗传算法及应用研究:[浙江大学博士学位论文],杭州:浙江大学计算机学院,2010:47-51.
    [89]H Zhou. Network landscape from a Brownian particle's perspective. Physical Review E,2003,67(4):041908.
    [90]Garey M R, Johnson D S. Xomputers and Intractability:A Guide to the Theory of NP-Completeness. San Francisco:Freeman Publishers,1979.
    [91]黄红球.对有向网络理论及应用的一些研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学计算机学院,2007,2-8.
    [92]Yebin Chen, Ying Li, Jiankun Wang. On the wide diameter of directed double-loop networks. Journal of Network and Computer Applications,2011,34(2):692-696.
    [93]Wei Liao, Jurong Ding, Daniele Marinazzo et al. Small-world directed networks in the human brain:Multivariate Granger causality analysis of resting-state fMRI. Neuro Image,2011,54(4):2683-2694.
    [94]Wenjun Xiong, Daniel W.C.Ho, Chi Huang. Pinning synchronization of time-varying polytopic directed stochastic networks. Physics Letters A,2010, 374(3-4); 439-447.
    [95]Deroian F. Endogenous link strength in directed communication networks. Mathematical Social Sciences,2009,57(1):110-116.
    [96]Peter Pollner, Gergely Palla, Daniel Abel. Centrality properties of directed module members in social networks. Physica A:Statistical Mechanics and its Applications,2008,387(19-20):4959-4966.
    [97]Alfredo Candia-Vejar, Hugo Bravo-Azlan. Performance Analysis of Algorithms for the Steiner Problem in Directed Networks. Electronic Notes in Discrete Mathematics,2004,18(1):67-72.
    [98]Menglong Yang, Yiguang Liu, Zhisheng You et al. Global synchronization for directed complex networks. Nonlinear AnalysisReal World Applications, 2010,11(3):2127-2135.
    [99]方锦清,汪小帆,刘曾荣.略论复杂性问题和非线性复杂网络系统的研究.科技导报,2004,64(2):9-12.
    [100]Lauren Ancel Meyers, Newman M.E.J., Babak. Pourbohloul Predicting epidemics on directed contact networksJournal of Theoretical Biology,2006, 240(3):400-418.
    [101]赖大荣.复杂网络社团结构分析方法研究:[上海交通大学博士学位论文].上海:上海交通大学,2012,53-92.
    [102]Boutheina Ben Yaghlane, Khaled Mellouli. Inference in directed evidential networks based on the transferable belief model. International Journal of Approximate Reasoning,2008,48(2):399-418.
    [103]Aygul Mamut, Qiongxiang Huang, Liu Fenjin. Enumeration of 2-regular circulant graphs and directed double networks. Discrete Applied Mathematics, 2009,157(5-6):1024-1033.
    [104]杨树忠.复杂网络中的社团检测问题研究[北京交通大学博士学位论文],北京:北京交通大学计算机学院.2009:25-33
    [105]Star X. Zhao, Fred Y.Ye. Exploring the directed h-degree in directed weighted networks. Journal of Informetrics,2012,6(4):619-630.
    [106]Jianhong Xu. Simulating weighted directed small-world networks. Applied Mathematics and Computation,2010,216(7):2118-2128.
    [107]Flavio Bono, Eugenio Gutierrez, Karmen Poljansek. Road traffic:A case study of flow and path-dependency in weighted directed networks. Physica A: Statistical Mechanics and its Applications,2010,389(22):5287-5297.
    [108]Zhong-Ke Gao, Ning-De Jin. A directed weighted complex network for characterizing chaotic dynamics from time series. Nonlinear Analysis:Real World Applications,2012,13(2):947-952.
    [109]Zeev Nutov. Approximating directed weighted-degree constrained networks. Theoretical Computer Science,2011,412(8-10):901-912.
    [110]Zhong-Ke Gao, Ning-De Jin Characterization of chaotic dynamic behavior in the gas-liquid slug flow using directed weighted complex network analysis. Physica A:Statistical Mechanics and its Applications,2012,391(10): 3005-3016.
    [111]A.P. Masucci, G.J. Rodgers. Multi-directed Eulerian growing networks. Physica A:Statistical Mechanics and its Applications,2007,386(1):557-563.
    [112]Xiangbin Yan, Li Zhai, Weiguo Fan. A weighted network node centrality measure for collaboration competence. Journal of Informetrics,2013,7(1): 223-239.
    [113]Tore Opsahl, Pietro Panzarasa. Clustering in weighted networks. Social Networks,2009,31(2):155-163.
    [114]Giorgio Fagiolo, Javier Reyes, Stefano Schiavo. On the topological properties of the world trade web:A weighted network analysis.Physica A:Statistical Mechanics and its Applications,2008,387(15):3868-3873.
    [115]Alfredo Candia-Vejar, Hugo Bravo-Azlan. Performance Analysis of Algorithms for the Steiner Problem in Directed Networks. Electronic Notes in Discrete Mathematics,2004,18(1):67-72.
    [116]Xiangjun Wu, Hongtao Lu. Exponential synchronization of weighted general delay coupled and non-delay coupled dynamical networks. Computers & Mathematics with Applications,2010,60(8):2476-2487.
    [117]薛耀文.复杂金融网络中资金异常流动仿真监测平台设计与实现.系统工程理论方法应用,2005,14(5):19-21.
    [118]王飞跃.计算实验方法与复杂系统行为分析和决策评估.系统仿真学报,2004,16(5):893-897.
    [119]戴汝为,王珏,田捷.智能系统的综合集成.杭州:浙江科学技术出版社,1995,25-33.
    [120]李耀东,崔霞,戴汝为.综合集成研讨厅的理论框架设计与实现.复杂系统与复杂性科学,2004,1(1):27-32.
    [121]杨冬梅,吴冲锋,冯芸.金融网络中洗钱资金异常转移路径的经济成本模型[J].系统工程理论与实践,2006,5(5):24-26.
    [122]周涛,傅忠谦,牛永伟等.复杂网络上传播动力学研究综述.自然科学进展,2005,15(05):513-515.
    [123]侯明扬,伍海华.基于无标度网络的深圳证券交易市场特性分析.青岛大学学报(自然科学版),2008,21(2):92-95.
    [124]伍海华,张宗强.金融复杂性与行为金融理论.经济理论与经济管理,2004,22(9):33-36.
    [125]Kartik Anand, Prasanna Gai, Sujit Kapadia et al. A network model of financial system resilience. Journal of Economic Behavior & Organization, 2013,85(1):219-235.
    [126]杨春霞.金融复杂性研究与金融市场建模:[中国科学技术大学博士学位论文].合肥:中国科学技术大学信息工程学院,2006,43-54.
    [127]王晓辉.企业资金融通网络演化机制及其抗毁性研究:[太原科技大学硕士学位论文].太原:太原科技大学经济与管理学院,2010,13-22.
    [128]薛耀文.金融网络中资金异常流动监测研究.国家自然科学基金丛书,北京:中国金融出版社,2009,36-59.
    [129]朱永彬,薛耀文,高慧敏等.基于智能Agent的金融交易模拟终端设计与实现.计算机技术与发展,2008,18(8):250-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700