c-di-GMP信号通路在变形链球菌致龋过程中作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龋病是一种最为常见的、严重危害人类口腔健康的口腔感染性疾病之一。变形链球菌( Streptococcus mutans, S. mutans)是人类龋病的主要致病菌,其致龋毒力因子主要表现在对牙面的粘附和利用碳水化合物产生多糖以及产酸、耐酸。含有GGDEF结构域的蛋白是近年来发现的一种新型蛋白,其主要功能是参与单磷酸鸟苷环二聚体(bis-(3’-5’)-cyclic dimeric guanosine monophosphate, c-di-GMP)的合成。c-di-GMP已被证实是原核细胞信号转导中一类新的第二信使,它的作用涉及生物膜的形成、毒力因子的表达、细胞间的通讯、激发免疫系统的应答等多个方面,是细菌生存和代谢的关键性调节因子之一,但其在变形链球菌中的研究尚属空白。本研究主要是针对外源性c-di-GMP对变形链球菌致龋过程作用及其机制的初步研究,为防龋探索一条新的途径。
     第一部分:外源性c-di-GMP对变形链球菌致龋过程影响的初步研究
     对生物膜影响的研究:在96孔细胞培养板上形成变形链球菌生物膜,不同浓度的外源性c-di-GMP作用于生物膜48 h,将生物膜进行染色,乙醇/丙酮混合液显色,使用酶标仪测定光密度值,观测生物膜形成量的改变,等质量的生理盐水作为阴性对照。同时在离体牙的新鲜釉质片上形成变形链球菌生物膜,200μM的c-di-GMP与等量的生理盐水分别作用于生物膜48 h,扫描电镜观察结构的改变。结果c-di-GMP处理组与生理盐水组相比,生物膜形成能力明显下降,细菌排列无明显规律,细胞外基质减少,提示200μM的c-di-GMP可有效抑制变形链球菌生物膜形成能力。
     对产酸、耐酸影响的研究:外源性c-di-GMP与生理盐水分别加入至含变形链球菌UA159菌液的不同pH的BHI培养基中,精密数显酸度计测终末pH值,以pH的差值(△pH)表示产酸结果,比较两组△pH,分析c-di-GMP对变形链球菌UA159产酸能力的影响;在pH=5的培养液中孵育2 h,以孵育前后细菌存活数量的比值评价细菌耐酸能力。结果: c-di-GMP处理组与生理盐水组相比,产酸、耐酸能力明显下降,提示c-di-GMP可以抑制变形链球菌的产酸、耐酸能力。
     对胞外多糖形成能力影响的研究:将变形链球菌UA159厌氧培养,外源性c-di-GMP与生理盐水分别加入至变形链球菌培养液中培养24 h,用等同培养基体积的蒸馏水洗2次,将3次上清液合并作为水溶性胞外多糖,水洗后的菌胞中加入等体积0.5 mol/L NaOH洗3次,合并上清液,作为水不溶性胞外多糖。上述两部分上清液各取1.5ml,加入3倍体积无水乙醇,4℃过夜,离心后弃水相,将沉淀分别在等体积的蒸馏水及0.1mol/L NaOH中溶解,用蒽酮法分别测定水溶性及水不溶性葡聚糖的含量,在OD620比色,以葡萄糖标准液绘制标准曲线,根据标准曲线计算UA159合成的水溶性及水不溶性葡聚糖的含量,对两组进行比较。结果发现干预组生成水不溶性糖的量明显减少。提示外源性c-di-GMP对变形链球菌合成胞外多糖的能力有一定的影响。
     对唾液包被的HA表面黏附的影响:选取荧光标记物BCECF/AM标记变形链球菌标准菌株UA159,用唾液包被的羟基磷灰石(SHA)模拟口腔中的牙面情况,外源性c-di-GMP与生理盐水分别与荧光标记的UA159菌液,SHA共同孵育30分钟,于荧光酶标仪上以激发波长485 nm、发射波长535 nm测定各孔,扣除阴性对照的结果作为测定的荧光值。按照公式计算黏附率,比较两组的区别。结果: c-di-GMP处理组与生理盐水组相比,粘附能力明显下降。综述上述各结果,提示外源性c-di-GMP对变形链球菌的致龋特性均有一定程度的抑制能力,因此可以单独也可以与其它的抗龋制剂联合应用控制龋病,有望成为一种新型防龋方法。
     第二部分:外源性c-di-GMP防龋的动物实验研究
     选用20 d龄的SD大鼠感染致龋菌,并饲以致龋饲料2000 #诱龋成功后,分别用适量外源性c-di-GMP、氟化钠水溶液、0.9%的氯化钠给大鼠施药,用唾液取样细菌培养记录大鼠口腔内变形链球菌数量、龋齿记分观察外源性c-di-GMP在动物口内对致龋菌的生长繁殖以及对龋病发生、发展的影响,并以氟化钠为阳性对照。结果:实验中大鼠食物、水消耗,各组间未见明显差异,保证了各组大鼠所受致龋攻击性相同。药物处理期间,大鼠口腔黏膜未见红斑、肿胀等异常表现。提示外源性c-di-GMP没有明显毒性,同时,发现外源性c-di-GMP处理组大鼠咬合面龋及光滑面龋齿计分显著低于阴性对照组,但是大鼠口腔内变形链球菌定植数量未见明显差异,提示了c-di-GMP作为未来新型防龋途径的可行性。
     第三部分:变形链球菌gcp基因失活菌株的构建、鉴定及致龋特性研究
     以前期研究中pMD19T-gcp为模板, PCR扩增873bp的gcp基因内部序列,连接T载体后将该内部片段定向插入自杀载体pVA8912,酶切鉴定,发现PCR产物及插入片段大小与预期值相符,表明成功构建了打靶载体pVA8912/gcp;将鉴定正确的质粒转化变形链球菌UA159株,挑取阳性克隆,提取基因组DNA,用PCR结合酶切鉴定发现gcp基因失活株基因组中gcp基因内部成功插入了打靶载体片段。结果表明成功构建了变形链球菌gcp基因失活株,为该基因功能的研究奠定了基础。
     厌氧培养变形链球菌gcp基因失活株,在不同时间点测定OD600值,绘制生长曲线,发现gcp基因失活株和野生菌的生长曲线无显著性差异,表明gcp的基因失活对变形链球菌的生长无显著影响。
     将gcp失活菌和野生菌菌悬液转入无菌的96孔酶标板中厌氧培养48h,黏附菌使用结晶紫溶液染色,乙醇/丙酮混合液显色,测量OD575值,以定量反映生物膜形成量。结果发现gcp失活菌生物膜形成量显著低于野生菌,表明gcp可能与变形链球菌生物膜形成能力有关。
     荧光标记gcp失活菌和野生菌,与唾液包被的羟基磷灰石粉末共同孵育后,测定羟基磷灰石沉淀的荧光值,比较粘附率的差异,发现gcp失活菌的黏附率(45.33%±6.35%)低于野生菌(64.05%±6.73%),差异有显著性(P <0.05);说明gcp可能对变形链球菌与唾液包被的羟基磷灰石的黏附有关,对这种黏附有一定的抑制作用。
     总之,本研究证明变形链球菌内部存在c-di-GMP信号通路,该通路介导变形链球菌的生物膜形成及在离体牙釉质表面的黏附,外源性c-di-GMP具有降低变形链球菌生物膜的形成,产酸、耐酸、体外黏附等特性。上述结果为揭示变形链球菌黏附致龋的分子机理以及建立新的防龋途径提供了实验依据。
Dental caries is a common oral infectious disease that affect people’s health. One of the dorminant pathogenic microorganisms cause human dental caries is Streptococcus mutans ( S. mutans), which attaches on the surface of the teeth, produce polysaccharide and acid, and survive acid environment. With the contribution of GGDEF, S. mutans generates c-di-GMP, which has been reported mediating biofilm formation and virulent factors expression in Staphlococcus Aureus, Vibrio Cholerae, Pseudomonus Aurugenosa, and it also stimulated innate immunity which limited the infection of the bacteriae mentioned above. It is one of key regulatory factors inbacterium exist and metabolism,however, the research in S. mutans is still unknown. In this study, we focus on the effect of exogenous c-di-GMP on S. mutans induced dental caries and its mechanism,which might theoretically indicate a new way in caries prevention.
     Section I:exogenous c-di-GMP’s effect on dental caries caused by S Mutans
     Biofilm Formation:48 hours after exposed to exogenous c-di-GMP with different dosage, biofilm formed in 96 well plates by S Mutans were stained and dissolved by ethanol/acetone, the OD measured by spectrophotometry presents the amount of biofilm in each well. 200μM c-di-GMP and the saline with the same volume incubated with S Mutans on the fresh tooth slices, the biofilm on the slices were investigated with scanning electronic microscope. Result shown that c-di-GMP decreased the biofilm formation and the bacteriae disorganized on the tooth slices with less extracellular matrix, which implies that 200uM c-di-GMP inhibit S Mutans’s capability to form biofilm.
     Acid generation and acid resistance: Exogenous c-di-GMP and saline added into variable pH bacteria medium with UA159 S Mutans strain, the change of pH values (△pH)at the end of culture were compared;after cultured in pH=5 medium for 2 hours, the number of live bacteriea presents the ability of acid resistance. Results: after treat with c-di-GMP, S. Mutans’s capability of acid generation and acid resistance decreased.
     Extracellular polysaccharide formation: S. Mutans strain UA159 cultured in anaerobic environment 24 hour after exogenous c-di-GMP and saline added into culture system, S. Mutans were broken by distilled water (x2 times) and the supernatant (supernatant I) of 3 centrifugations were collected and combined as water-soluble extracellular polysaccharide. The pellets were added with same volume 0.5 mol/L NaOH, centrifuged, collected supernatant, and repeated 3 times. Combine the supernatant (supernatant II) as water-insoluble polysaccharide. 1.5ml from supernatant I and II (respectively) plus 3 volumes of ethanol, 4℃overnight, collect and centrifuge and discard the upper water phase. Pellets dissolved in distilled water and 0.1mol/L NaOH with same volume. Anthrone method measured the content of glucan in the water-soluble and–insoluble supernatant,OD620,the standard curve was made with glucose and calculate the water-soluble and–insoluble glucan generation. With the result shown that exogenous c-di-GMP treatment significantly decreased the formation of water-insoluble glucan.
     Attached to the surface of HA coated with saliva: fluorescence- BCECF/AM labeled UA159 strain put on SHA coated with saliva mimic oral teeth surface, exogenous c-di-GMP and saline co-cultured with UA159 for 30 minutes, fluorescence measured presents the bacteria attached on SHA (485nm→535nm). Results: c-di-GMP treatment decreased the bacteria attachment.
     Token together, exogenous c-di-GMP inhibits S Mutans’capacity to form dental caries. So it is possible that exogenous c-di-GMP could be used as anti-caries agent, either alone or with other methods.
     Section II: Exogenous c-di-GMP Prevent Caries Formation in Animals Dental Caries were made on the teeth of 20 day age SD rat infected with S Mutans, and fed with caries inducing food 2000 #. Exogenous c-di-GMP, NaF solution and 0.9% NaCl applied to the teeth of the rats, the bacteria number and scores of dental caries were recorded. Results shown that the food and water consume are same among different treatments, which enabled same number of dental caries on the teeth. No red plague, swelling appeared during the treatment, which implies that exogenous c-di-GMP has no toxic effect in the oral cavity. Exogenous c-di-GMP treatment group downgrade the scores of dental caries on occlusal surface and smooth surface, but no difference has been found on the number of bacterial plagues, implies that c-di-GMP could be used as anti-caries agent.
     Section III: S Mutans with gcp gene inactivation, strain construction, identification and its caries inducing characters
     Take pMD19T-gcp as template, PCR amplify gcp sequence (873bp) , after connected to T vector, the gene frame inserted into suicide vector pVA8912. Enzymatic analysis found the product of PCR product had the same size as the inserted piece, which implies the construct of pVA8912/gcp is successful. Thereby pVA8912/gcp transformed into UA159 and positive clone selected. The selected clone was then verified by PCR and enzymatic analysis on the extracted genomic DNA of the positive clone, with the result shown that the construction of S. Mutans with gcp gene inactivation strain was successful.
     S. Mutans with gcp gene inactivation strain was culture in anaerobic environment, the growth curve based on values of OD 600 presents the bacterial growth condition. Results shown that no difference between S. Mutans with gcp gene inactivation strain and wildtype bacteria was found, which implies that inactivation of gcp gene did not change the growth of S Mutans.
     S. Mutans with gcp gene inactivation strain and wildtype bacteria were plated into 96 well plates and cultured in anaerobic environment for 48 hours, the bacteria attached were stained with crystal violet, ethanol/acetone dissolve the precipitated stain and the spectrophotometric values of OD575 represent the amount of biofilm formation, with the results shown that S. Mutans with gcp gene inactivation strain formed much less biofilm as compared with wildtype. This implies that gcp gene has relationship with S. Mutans’capacity to form biofilm.
     Fluorescence labeled S. Mutans with gcp gene inactivation strain and wildtype bacteria were put on SHA coated with saliva,the fluorescence on SHA represents the number of bacteria attached. S. Mutans with gcp gene inactivation strain (45.33%±6.35%)attached less (P <0.05)than wildtype bacteria(64.05%±6.73%), which implies that gcp gene could inhibit the SHA surface attachment by S Mutans. Conclusion
     In our study, c-di-GMP signaling pathway has been found existed in S. Mutans and mediated its capacity of the biofilm formation and surface attachment. Exogenous c-di-GMP reduced S. Mutans’ability of biofilm formation, acid generation, acid resistance and surface attachment ex vivo. In brief, our research provided molecular mechanism for explanation how S Mutans’cause dental caries and experimental evidences for developing new anti-caries method.
引文
[1] Mikx FH, Hoeven JS, Koenig KG, Plasschaert AJ, Guggenheim B. Establishment of defined microbial ecosystems in germfree rats. Caries Res 1972, 6: 211-219.
    [2] Hugoson A, Koch G, Gothberg C, Helkimo AN, Lundin SA, Norderyd O, Sjodin B, Sondell K.Oral health of individuals aged 3-80 years in Jonkoping, Sweden during 30 years (1973-2003). II. Review of clinical and radiographic findings. Swed Dent J. 2005, 29(4):139-155.
    [3]齐小秋。第三次全国口腔健康流行病学抽样调查报告.北京:人民卫生出版社2008: 5.
    [4] Galperin M.Y. Bacterial signal transduction network in a genomic perspective. Env microbial 2004 6 (6): 552–567.
    [5] R?mling U, Gomelsky M and Galperin MY. C-di-GMP: the dawning of a novel bacterial signaling system. Mol microbiol 2005, 57 (3): 629–639.
    [6] Ross P, Weinhouse H, Aloni Y et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 1987, 325(10): 279–281
    [7] Karaolis DK, Rashid MH, Chythanya R, et al. c-di-GMP (3′-5′-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob Agents Chemother 2005, 49 (3): 1029–1038
    [8] Okada M, Soda Y, Hayashi F, et al. PCR detection of S treptococcus Mutans and S. sobrinus in dental p laque samp les from Japanesep reschool children . J Med Microbiol 2002, 51 ( 5 ) : 443 -447.
    [9]刘筱娣。变形链球菌生物膜形成相关基因的研究进展。牙体牙髓牙周病学杂志2006, 16(9): 532-535.
    [10] Marthaler M: Changes in the prevalence of dental caries. How much can be attributed to changes in diet? Caries Res 1990, 24: 3–15.
    [11] Burt BA: Relative consumption of sucrose and other sugars: Has it been a factor in reduced caries experience. Caries Res 1993, 27: 56–63.
    [12] Gallus S, Scotti L, Negri E, Talamini R, Franceschi S, Montella M, Giacosa A, Dal Maso L, La Vecchia C. Artificial sweeteners and cancer risk in a network of case-control studies. Ann Oncol 2007, 18(1): 40–44.
    [13] Soffritti M, Belpoggi F, Esposti DD, Lambertini L, Tibaldi E, Rigano A. First experimental demonstration of the multipotential carcinogenic effects of aspartame administered in the feed to Sprague-Dawley rats. Environ Health Perspect 2006, 114(3): 379–85.
    [14] Frazier PD, Little MF, Casciani FS. X-ray diffraction analysis of human enamel containing different amounts of fl uoride. Arch Oral Biol 1967, 12: 35–42.
    [15] Brown WE, Gregory TM, Chow LC. Effects of fl uoride on enamel solubility and cariostasis. Caries Res 1977, 11: 118–41.
    [16] Johnston DW. Current status of professionally applied topical fluorides.Community Dent Oral Epidemiol 1994, 22: 159–63.
    [17]王金东,刘寿桃.学龄前儿童乳牙局部加氟抑龋研究.口腔医学研究2002, 18 ( 5) : 339- 340。
    [18] Featherstone JD. Prevention and reversal of dental caries: role of low level fl uorides. Community Dent. Oral Epidemiol 1999, 27: 31–40.
    [19] De Paola PF, Brudevold F, Aasenden R . A pilot study of the relationship between caries experience and surface enamel fl uoride in man. Arch Oral Biol 1975, 859–64.
    [20] Karjalainen S. Eating patterns diet and dental caries. Dent Update 2007, 34:295–98.
    [21] El-Moung T, Rogers DT, Furr JR. Antiseptic induced changes in cell surface of a chlorhexidine sensitive and chlorhexidine resistant strain of Providencia stuartii. J ntimicrobial Chemotherapy 1985, 16: 685–89.
    [22] Mc Donnell G, Russell AD. Antiseptics and Disinfectants: Activity action and resistance. Microbiol Rev 1999, 12: 147–79.
    [23] Twetman S. Antimicrobials in future caries control? Caries Res 2004,38: 223–29.
    [24] McClure FF, Hewitt WL. The relation of penicillin to induced rat dental caries and oral L. acidophilus. J Dent Res 1946, 25: 441–43.
    [25] Fitzgerald RJ. Inhibition of experimental dental caries by antibiotics. Antimicrob Agents Chemother 1972, 1: 296–302.
    [26] Fitzgerald RJ. The potential of antibiotics as caries-control agent. J Am Dent Assoc 1973, 87: 1006–9.
    [27] Little WA, Thomson LA, Bowen WH. Antibiotic susceptibility of S. mutans: comparison of serotype profi les. Antimicrob Agents Chemother 1979, 15: 440–43.
    [28] Nguyen PTM, Baldeck JD, Olsson J, Marquis RE. Antimicrobial actions of benzimidazoles against oral Streptococci. Oral Microbiology Immunology 2005, 20: 93–100.
    [29] Sulaiman MI, Ajabnoor MA, Al-Khateeb T. Effects of Salvadora persica extracts on mice exploratory locomotion activities. J Ethnopharmacology 1968, 17: 263–68.
    [30] Babay V, Almas K. Effect of miswak extract on healthy human dentin: an in vitro study. Saudi Dent J 1999, 11: 46–52.
    [31] Almas K, Al-Bagieh NH. The antimicrobial effects of bark and pulpextracts of miswak, Salvadora persica. Biomed Letters 1999, 60: 71–75.
    [32] Arias ME, Gorney JD, Cadmani NM . Antibacterial activity of ethanolic and aqueous extracts of Acacia aroma Gill. Ex Hook et. Am. Life Sci 2004, 75(2): 191–202.
    [33] Limsong J, Benjavongkulchai E, Kuvatanasuchati J. Inhibitory effect of some herbal extracts on adherence of S. mutans. J Ethanopharmacol 2004, 92: 281–89.
    [34] Prabu GR, Gnanamani A, Sadulla S. Guaijaverin– a plant fl avonoid as potential antiplaque agent against S. mutans. J of Applied Microbiology 2006, 101: 487–95.
    [35] Filosche SK, Soma K, Sissons CH. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiology and Immunology 2005, 20: 221–25.
    [36]谢倩,李继遥,左渝陵,周学东。天然药物五倍子提取物对致龋细菌生长的影响。华西口腔医学杂志, 2005, 23(1): 82-84。
    [37] Ikeno K, Ikeno T, Miyazawa C. Effect of propolis on dental caries in rats. Caries Res 1991, 25: 347–51.
    [38] Guo JH, Jia R, Fan MW . Construction and Immunogenic characterization of a fusion anti-caries DNA vaccine against PAc and glucosyltransferase I of Streptococcus mutans. J Dent Res 2004, 83: 266–270.
    [39] Ajdic D, McShan MW, McLaughlin RL. Genome sequence of S. mutans UA159, a cariogenic pathogen. Proc Natl Acad Sci USA 2002, 99: 14434–39.
    [40] Ishihara K, Miyakawa H, Hasegawa A, Takazoe I, Kawai Y. Growth inhibition of Streptococcus mutans by cellular extracts of human intestinal lactic acid bacteria. Infect Immun 1985, 49: 692–694.
    [41] Silva M, Jacobus NV, Deneke C, Gorbach SL. Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother 1987, 31: 1231–1233.
    [42] Meurman JH, Antila H, Korhonen A. Effect of Lactobacillus rhamnosus strain GG (ATCC 53103) on the growth of Streptococcus sobrinus in vitro. Eur J Oral Sci 1995, 103: 253–258.
    [43] Comelli EM, Guggenheim B, Stingele F. Selection of dairy bacterial strains as probiotics for oral health. Eur J Oral Sci 2002, 110: 218–224.
    [44] Kowalczyk DW, Ertl HC. Immune responsesto DNA vaccines .CellMol Life Sci 1999, 55 ( 5) : 751- 770.
    [45]贾荣,樊明文,边专. GTF- Pac融合防龋DNA疫苗研究(Ⅲ) Pglua- P免疫定菌鼠防龋研究.口腔医学纵横杂志, 2002, 18 ( 1) : 1- 3.
    [46] Hillman JD. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Van Leeuwenhoek, 2002; 82(1-4): 361–366.
    [47] Pucci Y, Oho T, Shimazake Y. Bovine milk antibodies against cell surface protein antigen PAc- glucosyl transferase fusion protein suppress cell adhesion and alter glucan synthesis of Streptococcus mutans . J Nutr 1999, 129(10) : 1836- 1841.
    [48] Kleerebezem M, et al. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol 1997, 24: 895–904.
    [49] Cvitkovitch, DG.. Genetic competence and transformation in oral streptococci. Crit. Rev. Oral Biol. Med 2001, 12: 217–243.
    [50] Kleerebezem, M, Quadri LE. Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 2001, 22: 1579–1596.
    [51] Ajdic D, McShan W M., McLaughlin REG, Savic J, Chang MB, Carson C, Primeaux R. Tian, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F,Lai H, White J, Roe BA, and Ferretti JJ. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci 2002, 99: 14434-14439.
    [52] Cvitkovitch D G., Li Y H, and Ellen RP. Quorum sensing and biofilm formation in streptococcal infections. J. Clin. Investig 2003, 112: 1626-1632.
    [53] Li YH, P. Lau CY, Lee JH, Ellen RP, and Cvitkovitch DG.. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol 2001, 183: 897-908.
    [54] Petersen, FC, and Scheie AA. Genetic transformation in Streptococcus mutans requires a peptide secretion-like apparatus. Oral Microbiol Immunol. 2000, 15: 329-334.
    [55] Li, YH, Tang N, Lau PCY, Aspiras MB, Ellen RP and Cvitkovitch D G.. A quorum sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 2002, 184: 2699-2708.
    [56] Li YH, Hanna MN, Svens?ter G, Ellen RP and Cvitkovitch DG.. Cell density modulates acid adaptation in Streptococcus mutans: implication for survival in biofilms. J Bacteriol 2001, 183: 6875-6884.
    [57] Frias J, Olle E, Alsina M. Periodontal pathogens produce quorum sensing signal molecules. Infect Immun 2001, 69(5): 3431- 3434.
    [58] Merritt J, Qi F, Goodman SD, et al. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 2003, 71(4): 1972- 1979.
    [59] Wen ZT, Burne RA. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol 2002, 68(3): 1196- 1203.
    [60] McNab R, Ford SK, El- Sabaeny A, Barbieri B, Cook GS, Lamont RJ. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controlscarbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 2003, 185(1): 274- 284.
    [61] Luo P, Morrison DA. Transient association of an alternative sigma factor, ComX, with RNA polymerase during the period of competence for genetic transformation in Streptococcus pneumoniae. J Bacteriol 2003, 185(1): 349-358;
    [62] Ajdic D, McShan WM, Mclaughlin RE, Savi? G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA 2002, 99(22): 14434-14439.
    [63] Morrison DA, Lee MS. Regulation of competence for genetic transformation in Streptococcus pneumoniae: a link between quorum sensing and DNA processing genes. Res Microbiol 2000, 151(6): 445-451.
    [64] Li YH, Lau CY, Lee JH, Ellen RP and Cvitkovitch DG.. Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 2001,183(3): 897-908.
    [65] Kroes I, Lepp PW, Relman DA. Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci USA. 1999, 96: 14547–14552.
    [66] Palmer RJ Jr, Gordon SM, Cisar JO, Kolenbrander PE. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol 2003, 185(11): 3400–3409.
    [67] Hausner M, Wuertz S. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 1999, 65: 3710–3713
    [68] Li YH, Lau P , Tang N, Svens?ter G, Ellen RP and Cvitkovitch DG. A novel two-component regulatory system involved in biofilm formationand acid resistance in Streptococcus mutans. J Bacteriol 2002, 184(22): 6333–6342.
    [69] Li YH, Tang N, Aspiras MB, Lau P, Lee JH, Ellen RP, and Cvitkovitch DG. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol, 184(10): 2699-2708.
    [70] Zhang Kai, Ou Meizhen, Wang Weilu, Ling Junqi. Effects of quorum sensing on cell viability in Streptococcus mutans biofilm formation. Biochemical and Biophysical Research Communications 2009, 379 (4): 933–938
    [71] Kuramitsu HK. Virulence factors of mutans streptococci: role of molecular genetics. Crit. Rev. Oral Biol. Med 1993, 4: 159–176.
    [72] Svensater G, Larsson UB, Greif EC, Cvitkovitch DG, Hamilton IR. Acid tolerance response and survival by oral bacteria. Oral Microbiol Immunol 1997, 12(5): 266–273.
    [73] Wilkins JC, Homer KA, Beighton D. Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 2002, 68: 2382–2390.
    [74] Ryjenkov DA, Tarutina M, Moskvin OV and Gomelsky M.Cyclic Diguanylate Is a Ubiquitous Signaling Molecule in Bacteria: Insights into Biochemistry of the GGDEF Protein Domain. J Bacteriol 2005, 187: 1792–1798.
    [75] Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL., Volman G, Mayer R, Ross P, Amikam D and Weinhouse H . Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes, J Bacteriol 1998, 180: 4416–4425.
    [76] Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B and Jenal U. Cell cycle-dependent dynamic localization of a bacterial responseregulator with a novel di-guanylate cyclase output domain. Genes Dev 2004, 18: 715–727.
    [77] Hickman JW, Tifrea DF and Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels, Proc Natl Acad Sci USA 2005, 102 : 14422–14427.
    [78] Chan C, Paul R, Samoray D, Amiot NC, Giese B, Jenal U and Schirmer T. Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci USA 2004, 101: 17084–17089.
    [79] Jenal U. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr Opin Microbiol 2004, 7: 185–191.
    [80] Christen M, Christen B, Folcher M, Schauerte A and Jenal U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 2005, 280: 30829–30837.
    [81] Schmidt AJ, Ryjenkov DA and Gomelsky M. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 2005, 187: 4774–4781.
    [82] Tamayo R, Tischler AD and Camilli A. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J Biol Chem 2005, 280: 33324–33330.
    [83] Bobrov AG, Kirillina O and Perry RD. The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 2005, 247: 123–130.
    [84] Galperin MY, Nikolskaya AN. and Koonin EV. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 2001, 203: 11–21.
    [85] Tucker CL, Hurley JH, Miller TR and Hurley JB. Two amino acidsubstitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase, Proc Natl Acad Sci USA 1998, 95: 5993–5997.
    [86] Richter W, Unciuleac L, Hermsdorf T, Kronbach T and Dettmer D. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis Cell Signal 2001, 13: 159–167.
    [87] Kader A, Simm R, Gerstel U, Morr M and R?mling U. Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006, 60(3): 602-16.
    [88] Garcia B, Latasa C, Solano C, Portillo F, Gamazo C and Lasa I. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 2004, 54(1): 264–277.
    [89] Hisert KB, MacCoss M, Shiloh MU, Darwin KH, Singh S, Jones RA, Ehrt S, Zhang Z, Gaffney BL and Gandotra S et al. A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Mol Microbiol 2005, 56: 1234–1245.
    [90] Weinhouse H, Sapir S, Amikam D, Shilo Y, Volman G, Ohana P and Benziman M. c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum, FEBS Lett 1997, 416 : 207–211.
    [91] Simm R, Fetherston JD, Kader A, Romling U and Perry RD. Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 2005, 187: 6816–6823.
    [92] Simm R, Morr M, Kader A, Nimtz M and R?mling U. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 2004, 53: 1123–1134.
    [93] Tischler AD and Camilli A. Cyclic diguanylate (c-di-GMP) regulatesVibrio cholerae biofilm formation. Mol Microbiol 2004, 53: 857–869.
    [94] Fraser GM and Hughes C. Swarming motility. Curr Opin Microbiol 1999, 2: 630–635.
    [95] Klausen M, Aaes-Jorgensen A, Molin S and Tolker-Nielsen T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 2003, 50: 61–68.
    [96] Aldridge P, Paul R, Goymer P, Rainey P and Jenal U. Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 2003, 47: 1695–1708.
    [97] Choy WK, Zhou L, Syn CK, Zhang LH and Swarup S. MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas species. J Bacteriol 2004, 186: 7221–7228.
    [98] Tischler AD and Camilli A .Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 2005, 73: 5873–5882.
    [99] Thomas C, Andersson CR, Canales SR and Golden SS. PsfR, a factor that stimulates psbAI expression in the cyanobacterium Synechococcus elongatus PCC 7942. Microbiology 2004, 150: 1031–1040.
    [100] He J, Baldini RL, Deziel E, Saucier M, Zhang Q, Liberati NT, Lee D, Urbach J, Goodman HM and Rahme LG.. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci USA 2004, 101: 2530–2535.
    [101] R?mling U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 2005, 62: 1234–1246.
    [102] Osorio CG., Crawford JA. Michalski J, Martinez-Wilson H, Kaper JB and Camilli A. Second-generation recombination-based in vivoexpression technology for large-scale screening for Vibrio cholerae genes induced during infection of the mouse small intestine. Infect Immun 2005, 73: 972–980.
    [103] Merkel TJ, Stibitz S, Keith JM, Leef M and Shahin R. Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis. Infect Immun 1998, 66: 4367–4373.
    [104] R?mling U, Rohde M, Olsen A, Normark S and Reink?ster J. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 2000, 36: 10–23.
    [105] Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A and Lory S. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 2005, 55: 368–380.
    [106] Yoshimura-Suzuki T, Sagami I, Yokota N, Kurokawa H and Shimizu T. DOS(Ec), a heme-regulated phosphodiesterase, plays an important role in the regulation of the cyclic AMP level in Escherichia coli. J Bacteriol 2005, 187: 6678–6682.
    [107] Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA and Miller SI. Amino-glycoside antibiotics induce bacterial biofilm formation. Nature 2005, 436: 1171–1175.
    [108] Brouillette E, Hyodo M, Hayakawa Y, Karaolis DK and Malouin F. 3′,5′-cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrob Agents Chemother 2005, 49: 3109–3113.
    [109] Amikam D, Steinberger O, Shkolnik T and Ben-Ishai Z. The novel cyclic dinucleotide 3′-5′cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line. Biochem J 1995, 311: 921–927.
    [110] Steinberger O, Lapidot Z, Ben-Ishai Z and Amikam D. Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3′,5′-cyclic diguanylic acid. FEBS Lett 1999, 444: 125–129.
    [111] Karaolis DK. Cheng K, Lipsky M, Elnabawi A, Catalano J, Hyodo M, Hayakawa Y and Raufman JP. 3′,5′-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochem Biophys Res Commun 2005, 329: 40–45.
    [112] Amikam D, Steinberger O, Shkolnik T and Ben-Ishai Z. The novel cyclic dinucleotide 3′-5′cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line. Biochem J 1995, 311: 921–927.
    [113] Steinberger O, Lapidot Z, Ben-Ishai Z and Amikam D. Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3′,5′-cyclic diguanylic acid. FEBS Lett 1999, 444: 125–129.
    [114] Holland LM, O'Donnell ST, Ryjenkov DA, Gomelsky L, Slater SR, Fey PD, Gomelsky M, O'Gara JP. A Staphylococcal GGDEF Domain Protein Regulates Biofilm Formation Independently of Cyclic Dimeric GMP. J Bacteriol 2008, 190(15): 5178–5189.
    [115] Song JH, Kim SK, Chang KW, Han SK, Yi HK, Jeon JG. In vitro inhibitory effects of Polygonum cuspidatum on bacterial viability and virulence factors of Streptococcus mutans and Streptococcus sobrinus. Archives of Oral Biology, 2006, 51(12): 131-1140.
    [116] Ahn SJ, Lemos JA, Burne RA. Role of HtrA in Growth and Competence of Streptococcus mutans UA159. J Bacteriol 2005, 187 (9):3028–3038.
    [117] Matsumoto M, Minami T, Sasaki H, Sobue S, Hamada S, Ooshima T. Inhibitory effects of oolong tea extract on caries-inducing properties ofmutans streptococci. Caries Research 1999, 33 (6): 441–445.
    [118] Hanna MN, Ferguson RJ, Li YH . uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutants. J Bacteriol 2001,183(20): 5964–5973.
    [119] Hillman JD. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie van Leeuwenhoek 2002, 82 (1): 361–366.
    [120] Quivey RG Jr; Kuhnert WL, Hahn K. Adaptation of oral streptococci to low pH. A dv Microb physiol 2000, 42(9): 239-74.
    [121] Loesche WJ. Role of streptococcus mutans in human dental. Microbial Rev1986, 50(4): 353-380.
    [122] Suzuki T, Tagami J, Hanada N. Role of F1F0-ATPase in the growth of streptococcus mutans GS5. J Appl Microbiol 2000, 88(4): 555-562.
    [123] Yoshida A, Kuramitor HK. Streptococcus biofilm formation: utilization of a gtfB promoter-green fluorescent protein construct to monitor development [J]. Microbiology 2002,148(11):3385-3394.
    [124] Sun JW, Wanda SY, Curtiss R 3rd. Purification, characterization, and specificity of dextranase inhibitor (Dei) expressed from Streptococcus sobrinus UAB 108 gene cloned in Escherichia coli. J Bacteriol 1995, 177(7): 1703-1711.
    [125] Rozen R, Bachrach G, Bronshteyn M, Gedalia I, Steinberg D. The role of fructans on dental biofilm formation by Streptococcus sobrinus, Streptococcus mutans, Streptococcus gordonii and Actinomyces viscosus.. FEMS Microbiol Lett, 2001, 195 (2): 205- 210.
    [126] Munro C, Michalek SM, Macrina FL. Cariogenicity of Streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect Immun, 1991, 59(7): 2316- 2323.
    [127] Hamada S, Slade HD, Biology, immunology, and cariogenecity ofStreptococcus mutans . Microbiol Rev 1980, 4(42):331- 384.
    [128] Hao YQ, Zhou XD, Xiao XR, Lu JJ, Zhang FC, Hu T, Wu HK, Chen XM. Effects of cecropin-XJ on growth and adherence of oral cariogenic bacteria in vitro.Chin Med J (Engl). 2005, 118(2): 155-60.
    [129]周学东主编.口腔生物化学.成都:四川大学出版社, 2002. 84– 88.
    [130] Clark WB, Lane MD, Beem JE, Bragg SL, Wheeler TT. Relative hydrophobicities of Actinomyces viscosus and Actinomyces naeslundii strains and their adsorption to saliva-treated hydroxyapatite. Infect Immun 1985, 47(3): 730-6.
    [131] Tinanoff N , Brady JM, Gross A. The Effect of NaF and SnF2 Mouthrinses on Bacterial Colonization of Tooth Enamel :TEM and sem studies . Caries Res 1976, 10(5) :475.
    [132] Navia JM. Animal models in dental research.Tuscaloosa . University of alabama press1977, 280.
    [133] Keyes PH. Dental caries in the molar teeth of rats. II. A method for diagnosing and scoring several types of lesions simultaneously. J. Dent. Res. 1958, 37: 1088-1099.
    [134] Yan Wenjuan, Qu Tiejun, Zhao Hongping, Su Lingyun , Yu Qing , Gao Jie. Wu Buling.The effect of c-di-GMP (3′-5′-Cyclic Diguanylic Acid) on the biofilm formation and adherence of Streptococcus mutans,Microbiology Research, 2009 (E Pubed).
    [135] Tao L, LeBlanc DJ, Ferretti JJ. Novel streptococcal-integration shuttle ectors for gene cloning and inactivation. Gene 1992, 120(1):105-110.
    [136]段劲,刘筱娣,郭丽宏.变形链球菌UA159磷酸蔗糖变位酶基因功能丧失菌株的构建.实用口腔医学杂志, 2008, 24(1): 69-73.
    [137] Tao L. Streptococcal integration vectors for gene inactivation and cloning. Methods Cell Sci 1998, 20: 59-64.
    [138] INDRANIL BISWAS , ALEXANDRA GRUSS , DUSKO EHRLICH . High-efficiency gene inactivation and replacement system for gram-positive bacteria . Journel of bacteriology 1993, 175 (11) : 3628-3635.
    [139] Yim HH, Rubens CE. Site-specific homologous recombination mutanenesis in group B streptococci. Methods Cell Sci. 1998, 20: 13-20.
    [140] Tamayo R, Schild S, Pratt JT, Camilli A. Role of Cyclic Di-GMP during El Tor Biotype Vibrio cholerae Infection: Characterization of the In Vivo-Induced Cyclic Di-GMP Phosphodiesterase CdpA. Infection and Immunity 2008, 76: 1617-1627.
    [141] Nakhamchik A, Wilde C, Rowe-Magnus DA. Cyclic-di-GMP regulates extracellular polysaccharide production, biofilm formation, and rugose colony development by Vibrio vulnificus. Appl Environ Microbiol. 2008; 74: 4199-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700