调频式电容位移传感器高速测频与非线性校正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电容式位移传感器由于具有结构简单、分辨率高、动态特性好、能实现非接触式测量等特点,在精密加工、高精度定位、超精密测量等领域得到广泛的应用。电容位移传感器的输出信号较小,而且输入输出特性存在一定的非线性,如何实现电容信号的提取以及对其输入输出特性进行有效的非线性处理就成了影响电容传感器性能的关键。
     本文基于调频式电容位移传感器输出信号的特点,对调频信号频率测量技术以及非线性校正技术进行深入了的研究,具体研究工作如下:
     首先,在对频率测量的方法进行归纳、总结的基础上,设计了以现场可编程门阵列(FPGA)为核心的频率测量模块,对多周期同步测频进行了方法改进,实现FPGA内部多周期同步测频逻辑代码的编写;
     其次,对基于神经网络的非线性校正以及曲线拟合技术进行了研究,设计了基于傅立叶级数神经网络的非线性校正算法并进行仿真,实现了算法向DSP芯片中程序的移植。
     再次,研制了基于TMS320VC5402芯片的电容位移传感器非线性校正和信号处理模块,进行了DSP外围的FLASH存储器扩展、串口通信、液晶显示等模块的软硬件设计。
     最后,对频率测量以及非线性校正模块进行了性能测试、实验和研究,为电容位移传感器性能的改进提供了理论和数据的参考。
With the advantages of simple structure, high accuracy, fast response and no contact measurement, capacitance sensor has been widely used in the domains of precision machining, ultra-precision orientation, ultra-precision measurement and so on. However, due to the small output signal of the capacitance sensor and the non-linearity of the Input-Output curve, how to gain the capacitive signal and how to carry out effective non-linearity correction, has become the key which influences the performance of the capacitance sensor.
     Based on the processing of output data from the frequency modulation type capacitance sensor, this paper gives the in-depth study on the technology of measuring frequency and the technology of non-linearity correction. The main research is given as follows:
     Firstly, in this paper the method of measuring frequency is concluded and summarized. The circuit of measuring frequency based on FPGA is designed. The method on the synchronous multi-cycle frequency measurement is improved, and the VHDL program of the multi-cycle frequency measurement is given;
     Secondly, the application of Artificial Neural Networks (ANN) technology on non-linearity correction and curve fitting is studied. The emulator of non-linearity correction, which is based on Fourier Progression Artificial Neural Networks (FANN), is realized, at the same time the naturalization of the non-linearity correction program to Digital Signal Processor (DSP) is achieved;
     Third, the hardware circuit based on TMS320VC5402 of non-linearity correction and data processing is designed, including FLASH memory, serial data transfer and LCD display module;
     Finally, the experiment is carried out to testing the performance of the frequency measurement module and the non-linearity correction module. The result of the experiment affords the principle and reference to improve the capability of the capacitance sensor system.
引文
1丁衡高.微米/纳米技术——面向21世纪的军民两用技术.仪器仪表学报. 1995,16(1):1~7
    2李圣怡.超精密加工与控制技术.机械与电子. 1999,(2):56~60
    3 C.W.Jin,F.T.Hua,L.H.Long. Vibration Sensitivity of the Scanning Near Field Optical Microscope with a Tapered Optical Fiber Probe. Ultra micros copy. 2005,102(2):85~92
    4 C.H.Kim,D.W.Lee. Asseccment of an Ultrasonic Sensor and a Capacitance Probe for Measurement of Two-Phase Mixture Level. Journal of Nuclear Science and Technology. 2004,41(12):1187~1191
    5 G.Manet, V.D.H.Lucas, L.Xiujun. A Contactless Capacitive Angular-Position Sensor. Proceedings of IEEE Sensors. 2002,1(2):880~884
    6赵晋云.智能电容测微仪系统关键技术的研究.天津大学硕士学位论文. 2005,3:1~2
    7袁真,胡庆新,顾爱华.采用数字集成振荡器的调频位移测量新方法.仪表技术与传感器. 2005,11:59~60
    8 S.Zoran, M.Robert. A New Method for Instantaneous Power System Freq-uency Measurement Using Reference Points Detection. Electric Power Systems Research. 2000,55: 97~102
    9江玉洁,陈辰,周渭.新型频率测量方法的研究.仪器仪表学报. 2004,2(1):30~34
    10包本刚.基于FPGA的全同步数字频率计的设计.湖南大学硕士学位论文. 2007,7:1~3
    11谢煜,杨三序,李晓伟.基于反拟合法的电容称重传感器非线性校正.仪器仪表学报.2007,28(5):923~927
    12张家田,董秀莲.非线性传感器的校正方法.石油工业技术监督. 2002,1(18):27~29
    13高美静,胡黎明.基于遗传小波神经网络的压力传感器的非线性校正研究.传感技术学报. 2007,20(4):816~819
    14 S.P.TIAN,Y.ZHAO, W.Y.WEI, Z.W.WANG. Nonlinear Correction of Sen-sors Based on Neural Network Model. Optics and Precision Engineering.2006, 14(5):891~902
    15郝慧娟,张玉林,宋会英,魏强.非线性曲线拟合法确定邻近效应参数.微细加工技术. 2006.4:12~15
    16 R.V. Jones and J. C. Richards. The design and Some Applications of Sen- sitive Capacitance Micrometers. J phys E: Sci Instrum. 1973,(6):589~600
    17 Willem.Chr.Heerens. Application of Capacitance Techniques in Sensor Design. J.Phyus. E:Sci.Instrum. 1993,(19):897~906
    18 A.Blanco, M.Delgado, M.C.Pegalajar. A Genetic Algorithm to Obtain the Optimal Recurrent Neural Network. Interna ional Journal of Approximate Reasoning,2000 ,23:67~83
    19 B.Widrow, M.Bilello. Nonlinear Adaptive Processing for Inverse Contral. Wor Conference on Neural Network. 1994,23(3):142~146
    20高宏宾,焦东升,彭商濂.一种基于遗传算法的改进的BP算法.计算机与现代化.2006,127(3):6~8
    21苏高利,邓芳萍.论基于MATLAB语言的BP神经网络的改进算法.科技通报. 2003,19(2)130~135
    22张杰,姚剑,叶林,李昌禧.频率测量的新方法.工业仪表与自动化装置. 2003(1):65~69
    23马献果,焦阳.频率测量方法的改进.仪器仪表学报. 2004,25(4):120~121
    24 Ryszard. Szplet , Jozef.Kalisz. Interpolating Time Counter with 100ps Resolution on a Single FPGA Device. IEEE Transactions on Instrumentation and Measurement,2000,49(4):879~882
    25朱灿焰.频率精确测量方法研究.现代雷达. 2004,26(7):74~76
    26 Griffiths. Magnetic Induction Tomography. Measurement Science and Technology,2001,12(8):1126~1131
    27杨潇,翟玉文,艾学忠.基于CPLD和VHDL的等精度频率测量.吉林化工学院学报,2004,9(30):49~51
    28 Song Pan. Application Foreground of CPLD/FPGA in ElectronDesign. Electron Technology Apply. 1997,(7):16~21
    29 Wei Zhou,Zong Qiang Yu. Some New Development of Precision Frequency Measurement. Proceedings of the 49th IEEE International on Frequency Control Symposium. 1995:354~359
    30包明,赵明富,郭建华.基于FPGA的高速高精度频率测量的研究.仪器仪表学报. 2003,(4):87~91
    31 31谢浪清.高速等精度频率测量的研究.中国科技信息. 2006,8(15):78~93
    32徐成,刘彦,李仁发,甘勇.一种全同步数字频率测量方法的研究.自动化与仪器仪表,2004,4(7):37~39
    33 M.Kezunovic, P.Spasojevic, B.Perunicic. New Digital Signal Processing Algorithms for Frequency Deviation Measurement. IEEE Transaction on Power Delivery. 1992, 7 (3) : 85 ~ 92
    34王海,周渭,李智奇.基于延迟链的频率测量方法.仪器仪表学报. 2008,29(3):520~524
    35包本刚,何怡刚,谭永宏.基于FPGA的全同步数字频率计的设计与实现.测试技术学报. 2008,22(2):98~102
    36杨春玲,张慧.现代可编程逻辑器件及SOPC应用设计.哈尔滨工业大学出版社. 2005:46~52
    37刘建生,杨丽荣,程铁栋.基于BP神经网络的超声波测距非线性误差校正.传感器与仪器仪表. 2007,23(1-1):20~22
    38 M.Bowen, G.Smith. Considerations for Design of Smart Sensors. Sensors and Actuators. 1995,47(19):516~520
    39王正宏,马以武,陈建群.基于BP网络的厚膜压力传感器非线性校正.传感器与微系统. 2007,26(2):82~85
    40 R.H.Nielsen.Theory of Back Propagation Neural Network . Proc of IJCNN.1989,(1):593~603
    41曾喆昭,竺炜,孙湘?跻?一种基于神经网络算法的高精度拟合传感器温度特性曲线的方法.传感技术学报. 2007,20(2):325~328
    42曾喆昭,李仁发.高阶多通带滤波器优化设计研究.电子学报. 2002,30(1):87~89
    43 M.T.Hagan, M.B.Menhaj. Training Feed Forward Networks with Mar quart Algorithm.IEEE Trans on Neural Networks. 2001,5(6):989~993.
    44姜滨.基于TMS320VC5402的DSP基本系统的设计.计算机与数字工程. 2003,31(3):17~20
    45闫文娟.基于TMS320C5409的语音识别系统.太原理工大学硕士学位论文. 2007(5):24~29
    46 Texas Instruments Incorporated: TMS320C54x Assembly Language ToolsUser’Guide, 2001
    47 Texas Instruments Incorporated: TMS320C54x DSP Reference Set, Volume 1: CPU and Peripheral, 2001
    48 Texas Instruments Incorporated: TMS320C54x DSP Reference Set, Volume 2: mnemonic Instruction, 2001
    49何治军,王英民,张勇,王英哲. 5409外挂闪存在线编程与上电引导的实现.微处理机. 2007(1):110~113
    50邓勇,施文康. DSP与PC机串行通信的几种方法.微电子学. 2002,32 (1):74~78
    51张韧,方少元,冯刚.用TL16C550C芯片实现DSP与PC机的串行通信.电子工程师. 2005,35(1):51~53
    52赵亮.液晶显示模块LCD1602应用.电子制作. 2007(3):57~59
    53罗剑,胡荣强. DSP并行引导多种方法实现的研究.仪表技术. 2007(3):25~27
    54张冠男,张坤.基于FLASH编程技术的DSP并行引导装载模式的设计.电子元器件应用. 2003,7(7):38~41
    55戴玮,胡仁杰. TL16C550芯片在串行通信中的应用.电气电子教学学报. 2003,25(8):41~44
    56 R.Nerino , A.Sosso , G.B..Picotto. A Novel AC Current Source for Capacitance Based Displacement Measurements. IEEE Transactions on Instrmentation and Measurement. 1997,46(2):640~642

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700