一类带有非牛顿位势的正则化非线性Vlasov方程初边值问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究一类带有非牛顿位势的正则化非线性的Vlasov方程(?)atf+v(?)xf+(?)xΦ(?)vf-εdiv((|▽f|2+μ0)q-2/2▽f)=-(|(?)xΦ|p-2(?)xΦ)x=∫-LLf(x,v,t)dv,探讨了这类方程满足下列条件的初边值问题其中f是在时刻t,在(x,v)处单位体积及单位速度变化范围中的粒子分布函数.φ为非牛顿重力位势.q>2,ε>0,μ0>0,(?)=(?)×(0,T),T>0,(x,v)∈(?)=I×(-L,L),I=(0,1),x∈I,v∈(-L,L).本文重点研究上述问题弱解的存在性.
The kinetic theory of gas dynamics is also called as compressible fluid dynamics. It is a fluid mechanics that mainly studies the variability of fluid density or fluid compressibility which plays a significant role.
     In macroscopic scales,fluid is considered as a whole,and its motion can be described by some macroscopic quantities such as density,velocity,temperature,pressure,etc.In this re-spect,the Euler and Navier-Stokes equations,compressible or incompressible,are very famous.
     In microscopic scales,fluid is considered as a many-body system of microscopic parti-cles.So the motion of the system is governed by the coupled Newton equations within the framework of the classieal mechanies. Though the Newton equation is the first principle of the classieal mehanies.it is not of practically used because the number of the equations is too big.
     From the cognitive perspective,we wish that be a way which could show the macroseopic scales and microscopic scales at the same time. And Boltzmann equation can reflect this feature. Thus,we could say Boltzmann equation is between the macroseopic scales and mi-croscopic scales. Actually,the Boltzmann equation is a convergence between the Euler and Navier-Stokes equations.
     The first proof of the existence of Boltzmann equation can be traced back to the year 1932 when Carleman proved the existence of global solutions to the Cauchy problem for the spatially homogeneous case. And it's 2 years earlier before the incompressible Navier-Stokes equation was solved by Leray on the existence of global weak solutions.On the other hand,the research on the spatially inhomogeneous Boltzman equation began much later.It was only in the year 1963 when Grad constructed the first local solutions near the Maxwellian,and it was in the year 1974 when the first author of these notes constructed global solutions which were also near the Maxwellian, extending Grad's mathematieal framework.
     The Vlasov equation of this paper is the Boltzmann equation in a special case of collision-free items.
     In this paper, we delicate to the model of the fluid dynamics, that is, the initial-boundary value problem to a class of the regularization for the Vlasov equations with non-Newtonian potential. That is,{(?)tf+υ(?)xf+(?)xΦ(?)υf-εdiv((|▽f|2+-(|(?)xΦ|p-2(?)xΦ)x=∫-LLf(x,υ,t)dυwith initial and boundary condition: where f is the mass density funcation of gas particles having position x and velocity v at time t.Φ=Φ(x, t) the non-Newton gravitational potential,ε> 0,μ0>0, q>2,(?)=(?)×(0, T), T> 0, (x, v)∈(?)=I×(-L,L),I=(0,1), x∈I,υ∈(-L,L). Physically, this system describes the motion of compressible viscous isentropic gas flow under the gravitational force.
     The difficult of this type model is mainly that the equations are coupled with elliptic and parabolic. Also the degenerate of the elliptic equation, and so on.
     For the case of the parameter p∈(3/2,2),q∈(2,+∞),we consider its solution defined by:
     Definition 0.1 The(f,Φ)is called a solution to the initial boundary valude problem (0.1)一(0.2),if the following conditions are satisfied:
     (i) f∈Lq(0,T;W01,q((?)))∩L∞(0,T;W01,q((?))), ft∈L2(0,T;L2((?))),Φ∈L∞(0,T;H2(I)∩H14(I)).
     (ⅱ)For allφ∈Lq(0,T;W01,q((?))),q>2,μ0>0,φt∈L2(0,T;L2((?))),for a.e.t∈(0,T), we have:∫(?)f(x,υ,t)φ(x,υ,t)dxdυ-∫0t∫(?)(fφt+υfφx+fΦxφυ-ε(|▽f|2+μ0)q-2/2▽f▽φ)dxdvds∫(?)f0φ(x,υ,0)dxdυ
     (ⅲ)For allψ∈L∞(0,T;H01(I)),for a.e.t∈(0,T),we have:∫01|Φx|p-2Φxψxdx=∫(?) We get the main result as following:
     Theorem 0.1 Assume f0≥0,f0∈L∞(0,T;W1,q((?)))for any fix T>0.3/2 2,μ>0,μ0>0,Then there exist a weak solution of the problem(0.1)一(0.2)in (?)×[0,T], such that: f∈Lq(0,T;W01,q((?)))∩L∞(0,T;W01,q((?))), diυ((|▽f|2+μ0)q-2/2▽f)∈L2(0,T;L2((?))),Φ∈L∞(0,T;H2(I)∩H01(I)).
     Theorem 0.2 Assume f0≥0,f0∈L∞(0,T;W1,q((?))),for any fix T>0.3/2 2. Assume((?))is a weak solution of the problem(0.1)一(0.2)in (?)×[0,T],and satisfies (?)∈L∞(0,T;H2((?))).If(f,Φ)is a weak s.lution of the problem(0.1)一(0.2)in(?)×[0,T], then((?))=(f,Φ).
     In this chapter,we use the method of iterative to construct the approximate Solution, and get the uniform estimate,then get the Theorem 0.1 and Theorem 0.2.
     So we first consider the following: with initial boundary value: whereδ>0,μ0>0,ε>0,3/22,(?)=(?)×(0,T),T>0,(x,υ)∈(?) I×(-L,L),I=(0,1),x∈I,υ∈(-L,L).
     For the singularity,we need to regularize it:LetΦδ,0=0, ftδ,k+υfxδ,k+[Jδ*(ξδΦδ,k,k-1)]xfυδ,k-εdiυ((|▽fδ,k|2+μ0)q-2/2▽fδ,k)=0,(0.5) Lpδδ,k=∫-LLfδ,k(x,υ,t)dυ, (0.6)-[(δ(Φxδ,k2+1)/(Φxδ,k)2+δ)2-p/2Φxδ,k]x we get the uniform estimates of the solution for(0.5)一(0.7). sup0≤t≤T(∥Φδ(t)∥H2(I)+∥fδ(t)∥W1,q(?))≤C For the uniform estimate,we can take limits with respect toκ,δand get the Theorem 0.1. Finally,we obtain the proving of the Theorem 0.2.
     For the case of the parameter p∈(2,+∞),q∈(2,+∞),we c.nsider the following initial boundary problem: with where f is the mass density function of gas particles having position x and velosityυat time t.Φ=Φ(x,t)the non-Newton gravitational potential,μ0>0,p>0,ε>0,p>2,q>2,(?)= (?)×(0,T),T>0,(x,υ)∈(?)=I×(L,L),I=(0,1),x∈I,υ∈(一L,L).
     We consider its solution defined by:
     Definition 0.2 The(f,Φ)is called a solution to the initial boundary valude problem (0.8)一(0.9),if the following conditions are satisfied:
     (i) f∈Lq(0,T;W01,q((?)))∩L∞(0,T;W01,q((?))), ft∈L2(0,T;L2((?))),Φ∈L∞(0,T;H2(I)∩H01(I)).
     (ii)For allφ∈Lq(0,T;W01,q((?))),q>2,μ0>0,φt∈L2(0,T;L2((?))),for a.e.t∈(0,T), we have:∫(?)f(x,υ,t)φ(x,υ,t)dxdυ-∫0t∫(?)(fφt+υfφx+fΦxφυ-ε(|▽f|2+μ0)q-2/2▽f▽φ)dxdυds
     ∫(?)f0φ(d,υ,0)dxdυ
     (iii)For allψ∈L∞(0,T;H01(I)),for a.e.t∈(0,T),we have:∫01(|Φx|2+μ)p-2/2Φxψxdx=∫(?)fψdxdv
     The main result as following:
     Theorem 0.3 Assume f0≥0,f0∈L∞(0,T;W1,q((?)))for any fix T>0.p>2,q> 2,μ>0,μ0>0.Then there exist a weak solution of the problem(0.8)-(0.9)in(?)×[0,T], such that: f∈Lq(0,T;W01,q((?)))∩L∞(0,T;W01,q((?))), diυ((|▽f|2+μ0)q-2/2▽f)∈L2(0,T;L2((?))),Φ∈L∞(0,T;H2(I)∩H01(I)).
     Theorem 0.4 Assume f0≥0,f0∈L∞(0,T;W1,q((?))),for any fix T>0.p>2,q> 2,μ>0,μ0>0.Assume(f,Φ)is a weak solution of the problem(0.8)一(0.9)in(?)×[0,T], and satisfies f∈L∞(0,T;H2((?))).If(f,Φ)is a weak solution of the problem(0.8)一(0.9)in (?)×[0,T],then(f,Φ)=(f,Φ).
     In this chapter,the proof by the same technique as in the case of the p∈(3/2,2),q∈(2,+∞).We use the method of iterative to construct the approximate solution,and get the uniform estimate,then get the Theorem 0.3 and Theorem 0.4.
引文
[1]Abdalah N B. Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system[J]. Math. Methods Appl. Sci.17(1994), no.6,451-476.
    [2]Adams R A. Sobolev Space[M]. Academic Press, New York,1975.
    [3]Andreasson H. Global existence of smooth solutions in three dimensions for the semiconductor Vlasov-Poisson-Boltzmann equation[J]. Nonlinear Anal.28 (1997), no.7,1193-1211.
    [4]Alexandre R. Weak solutions of the Vlasov-Poisson initial boundary value prob-lem[J]. Math. Methods Appl. Sci.16 (1993), no.8,587-607.
    [5]Bae H, Choe H J. Existence of weak solutions to a class of non-Newtonian flows [J]. Houston Journal of Mathematics.26(2000), no.2,387-408.
    [6]Batt J, Rein G. Global classical solutions of the periodic Vlasov-Poisson system in three dimensions [J]. C.R. Acad. Sci. Paris. I Math.313 (1991), no.6,411-416.
    [7]Bae H. Existence, regularity, and decay rate of solutions of non-Newtonian flow[J]. J. Math. Anal. Appl.231(1999),467-491.
    [8]Bardos C, Degond P. Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data[J]. Ann. Inst. H. Poincare Anal. Non Lineaire 2 (1995), no.2,101-118.
    [9]Bellout H, Bloom F, Necas J, Young measure-valued solutions for non-Newtonian incompressible fluids [J]. Comm. Partial Differential Equations.19(1994),1763-1803.
    [10]Batt J, Philip J, Rein G. Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions [J]. Arch. Rational Mech. Anal.130 (1995). no. 2,163-182.
    [11]Batt J, Rein G. Global classical solutions of the periodic Vlasov-Poisson system in three dimensions [J]. C.R. Acad. Sci. Paris. I Math.313 (1991), no.6,411-416.
    [12]Bostan M. Boundary value problem for the N-dimensional time periodic Vlasov-Poisson system[J]. Math. Methods Appl. Sci.29(2006), no.15,1801-1848.
    [13]Bostan M. Existence and uniqueness of the mild solution for the 1D Vlasov-Poisson initial boundary value problem[J]. SIAM J. Math. Anal.37 (2005), no.1,156-188 (electronic).
    [14]Brizard, Alain J. On the dynamical reduction of the Vlasov equation. Commun. Nonlinear Sci. Numer. Simul.13 (2008), no.1,24-33.
    [15]Bostan M. Weak solution for the Vlasov-Poisson initial-boundary value problem with bounded electric field[J]. Chin. Ann. Math. Ser. B 28 (2007), no.4.389-420.
    [16]Castella F. Propagation of space moments in the Vlasov-Poisson equations and further results[J]. Ann. Inst. H. Poincare Anal. Non Lineaire 16 (1999), no.4,503-533.
    [17]Califano Francesco, Manfredi Giovanni. Editorial [Special issue:Vlasovia 2006: The Second International Workshop on the Theory and Applications of the Vlasov Equation]. Commun. Nonlinear Sci. Numer. Simul.13 (2008), no.1,1,82-06
    [18]Campos Pinto. Martin Adaptive semi-Lagrangian scheme for Vlasov equations. Analytical and numerical aspects of partial differential equations,69-114, Walter de Gruyter, Berlin,2009.
    [19]Carmack L, Majda G. Concentrations in the one-dimensional Vlasov-Poisson equa-tions:additonal regularizations[J]. Phys. D 121 (1998), no.1-2,127-162.
    [20]Chayes L, Panferov V. The McKean-Vlasov equation in finite volume. J. Stat. Phys.138 (2010), no.1-3,351-380.
    [21]Crouseilles N, Gutnic M, Latu G. Sonnendrucker E. Comparison of two Eulerian solvers for the four-dimensional Vlasov equation. I. Commun. Nonlinear Sci. Numer. Simul.13 (2008), no.1,88-93.
    [22]Crouseilles N, Gutnic M, Latu G, Sonnendrucker E. Comparison of two Eulerian solvers for the four-dimensional Vlasov equation. Ⅱ. Commun. Nonlinear Sci. Nu-mer. Simul.13 (2008), no.1,94-99.
    [23]Crouseilles, Nicolas; Respaud, Thomas; Sonnendrucker, Eric A forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Comput. Phys. Comm.180 (2009), no.10,1730-1745.
    [24]Crouseilles, Nicolas; Mehrenberger, Michel; Sonnendrucker, Eric Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys.229 (2010), no. 6,1927-1953.
    [25]De Buyl. Pierre Numerical resolution of the Vlasov equation for the Hamiltonian mean-field model. Commun. Nonlinear Sci. Numer. Simul.15 (2010), no.8,2133-2139.
    [26]Diperna R J, Lions P L. On the Cauchy problem for Boltzmann equations:global existence and weak stability[J]. Ann. of Math. (2) 130 (1989), no.2,321-366.
    [27]Dolbeault J. An introduction to kinetic equations:the Vlasov-Poisson system and the Boltzmann equation[C]. Current developments in partial differential equations (Temuco,1999). Discrete Contin. Dyn. Syst.8 (2002), no.2,361-380.
    [28]Dogbe C. Spherical harmonics expansion of the Vlasov-Poisson initial boundary value problem[J]. ZAMM Z. Angew. Math. Mech.86 (2006), no.5,339-357.
    [29]Dolbeault J, Fernandez J, Sanchez O. Stability for the gravitational Vlasov-Poisson system in dimension two[J]. Comm. Partial Differential Equations 31 (2006), no.10-12,1425-1449.
    [30]Duan R, Yang T, Zhu C J. Existence of stationary solutions to the Vlasov-Poisson-Boltzmann system [J]. J. Math. Anal. Appl.327 (2007), no.1,425-434.
    [31]Gajewski H, Groger K, Zacharias K. Nichtlineare operator gleichungen and oper-ator differential gleichungen[C]. Akademie-Verlag, Berlin,1974.
    [32]Gibelli L, Shizgal B D, Yau A W. Ion energization by wave-particle interactions: comparison of spectral and particle simulation solutions of the Vlasov equation. Comput. Math. Appl.59 (2010), no.8,2566-2581.
    [33]Glassey R T, Schaeffer J. On symmetric solutions of the relativistic Vlasov-Poisson system[J]. Comm. Math. Phys.101 (1985), no.4,459-473.
    [34]Goudon T, Jabin P E, Vasseur A. Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅱ. Fine particles regime [J]. Indiana Univ. Math. J.53 (2004), no. 6,1517-1536.
    [35]Goudon T, Jabin P E, Vasseur A. Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime [J]. Indiana Univ. Math. J.53 (2004), no. 6,1495-1515.
    [36]Guo Y. The Vlasov-Poisson-Boltzmann system near Maxwellians[J]. Comm. Pure Appl. Math.55(2002), no.9,1104-1135.
    [37]Guo Y. The Vlasov-Poisson-Boltzmann system near vacuum [J]. Comm. Math. Phys.218 (2001), no.2,293-313.
    [38]Hadzie M, Rein G. Global existence and nonlinear stability for the relativistic Vlasov-Poisson system in the gravitational case[J]. Indiana Univ. Math. J.56 (2007), no.5,2453-2488.
    [39]Horst E, Hunze R. Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation[J]. Math. Methods Appl. Sci.6 (1984), no.2,262-279.
    [40]Horst E. Global strong solutions of Vlasov's equation-necessary and sufficient con-ditions for their existence[J]. Partial differential equations (Warsaw,1984),143-153, Banach Center Publ.19, PWN, Warsaw,1987.
    [41]Horst E. On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. I. General theory [J]. Math. Methods Appl. Sci.3(1981), no.2,229-248.
    [42]Horst E. New results and open problems in the theory of the Vlasov equations. Progress in Nuclear Energy[J]. Volume 8, Issues 2-3,1981, Pages 185-189.
    [43]Horst E. On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Ⅱ. Special cases[J]. Math. Methods Appl. Sci.4(1982), no.1,19-32.
    [44]Holm Darryl D, Tronci. Cesare Geodesic Vlasov equations and their integrable moment closures. J. Geom. Mech.1 (2009), no.2,181-208.
    [45]Hwang H J, Schaeffer J. Uniqueness for weak solutions a one-dimensional boundary value problem for the Vlasov-Poisson system [J]. J. Differential Equations 244 (2008), no.10,2665-1691.
    [46]Jabin P E. The Vlasov-Poisson system with infinite mass and energy [J]. J. Statist. Phys.103 (2001), no.5-6,1107-1123.
    [47]Karimov A R, Lewis H. Ralph Nonlinear solutions of the Vlasov-Poisson equa-tions[J]. Phys. Plasmas 6 (1999), no.3,759-761.
    [48]Kiessling Michael K-H. Microscopic derivations of Vlasov equations. Commun. Nonlinear Sci. Numer. Simul.13 (2008), no.1,106-113.
    [49]Kufner A, John O, Fucik S. Function Space[M], Academia, Prague,1977.
    [50]Ladyzhenskaya O A. New equations for the description of the vicous incompress-ible fluids and solvability in the large of the boundary value problem for them[J], in "Boundary Value Problems of Mathematical Physics V". Amer. Math. Soc. Provi-dence, RI.,1970.
    [51]Ladyzhenshaya O A. Boundary Value Problems of Mathematical Physics[M], Spring-Verlag, New York,1985.
    [52]Letavin M I. A difference scheme for solving the initial-boundary value problem for one-dimensional Vlasov equations [J]. (Russian) Zh. Vychisl. Mat. i Mat. Fiz.22 (1982), no.2,418-423,494.
    [53]Li L. On the trend to equilibrium for the Vlasov-Poisson-Boltzmann equation[J]. J. Differential equations 244 (2008), no.6,1467-1501.
    [54]Lions P L. Mathematical topics in fluid dynamics. Vol.1, Incompressible mod-els[M]. Oxford Science Publication. Oxford,1996.
    [55]Lions P L. Mathematical topics in fluid dynamics. Vol.2, Incompressible mod-els[M]. Oxford Science Publication, Oxford,1998.
    [56]Lions P L, Perthame B. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[J]. Invent. Math.105 (1991), no.2,415-430.
    [57]Lions P L. Globel existence of solutions for isentropic compressible Navier-Stokes equations[J]. C. R. Acad. Sci. Paris Ser. I Math.,1993, Vol.316,1335-1340.
    [58]Malek J, Necas J, Rokyta M, Ruzcka M. Weak and Measure-valued Solutions to Evolutionary PDEs[M]. Chapman and Hall, New York,1996.
    [59]Mendes R. Vilela, Cipriano Fernanda. Corrigendum to:"A stochastic representa-tion for the Poisson-Vlasov equation". Commun. Nonlinear Sci. Numer. Simul.13 (2008), no.1,221-226.
    [60]Mendes R. Vilela, Cipriano Fernanda. A stochastic representation for the Poisson-Vlasov equation. Commun. Nonlinear Sci. Numer. Simul.13 (2008), no.1,221-226.
    [61]Mellet A, Vasseur A. Asymptotic analysis for a Vlasov-Fokker-Planck/compress-ible Navier-Stokes system of equations[J]. Comm. Math. Phys.281 (2008), no.3, 573-596.
    [62]Mellet A, Vasseur A. Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations[J]. Math. Models Methods Appl. Sci.17 (2007), no.7, 1039-1063.
    [63]Mingalev ⅠⅤ. Global solvability of the Cauchy problem for a system of Vlasov-Poisson equations with some collision integrals[J]. (Russian) Dokl. Akad. Nauk 351 (1996), no.4,459-461.
    [64]Mischler S. On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system[J]. Comm. Math. Phys.210 (2000), no.2,447-466.
    [65]Neshchadim M V. Differential identities and uniqueness theorem in inverse prob-lem for the Boltzmann-Vlasov equation[J]. J. Inverse Ill-Posed Probl.16 (2008), no. 3,283-290.
    [66]Pankavich S. Local existence for the one-dimensional Vlasov-Poisson system with infinite mass[J]. Math. Methods Appl. Sci.30 (2007), no.5,529-548.
    [67]Pankavich S. Global existence for the Vlasov-Poisson system with steady spatial asymptotics[J]. Comm. Partial Differential Equations 31 (2006), no.1-3,349-370.
    [68]Pfaffelmoser K. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data[J]. J. Differential Equations 95 (1992), no.2, 281-303.
    [69]Phillips T N. On the potential of spectral methods to solve problems in non-Newtonian fluid mechanics[J]. Numer. Methods Partial Differential Equations 5 (1996), no.1,35-43.76-08.
    [70]Qiu Jingmei, Christlieb Andrew. A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys.229 (2010), no.4,1130-1149.
    [71]Ramkissoon H. Lame-type potentials in a non-Newtonian fluid theory [J]. Acta Mech.60 (1986), no.3-4,135-141.
    [72]Rein G, Rendall A D. Global existence of classical solutions to the Vlasov-Poisson system in a three-dimensional, cosmological setting[J]. Arch Rational Mech. Anal. 126 (1994), no.2,183-201.
    [73]Schaeffer J. Global existence for the Vlasov-Poisson system with nearly symmetric data[J]. J. Differential Equations 69 (1987), no.1,111-148.
    [74]Schaeffer J.Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions [J]. Comm. Partial Differential Equations 16 (1991), no.8-9,1313-1335.
    [75]Schaeffer J. The Valsov-Poisson system with steady spatial asymptotics[J]. Comm. Partial Differential Equations 28 (2003), no.5-6,1057-1084.
    [76]Schaeffer J. Steady spatial asymptotics for the Vlasov-Poisson system[J]. Math. Methods Appl. Sci.26 (2003), no.4,273-296.
    [77]Shoucri M. Eulerian codes for the numerical solution of the Vlasov equation. Com-mun. Nonlinear Sci. Numer. Simul.13 (2008); no.1,174-182.
    [78]Tran V C. A wavelet particle approximation for McKean-Vlasov and 2D-Navier-Stokes statistical solutions [J]. Stochastic Process. Appl.118 (2008), no.2,284-318.
    [79]Wecker J. On the initial boundary value problem for the Vlasov-Poisson system: existence of weak solutions and stability [J]. Arch. Rational Mech. Anal.130 (1995), no,2,145-161.
    [80]Wennberg B. Stability and exponential convergence of the Boltzmann equation[J]. Arch. Rational Mech. Anal.130 (1995), no.2,103-144.
    [81]Wollman S. Global in time solutions to the three-dimensional Vlasov-Poisson sys-tem[J]. J. Math. Anal. Appl.176 (1993), no.1,76-91.
    [82]Wollman S. Convergence of a numerical approximation to the one-dimentional Vlasov-Poisson system[J]. Transport Theory Statist. Phys.19 (1990), no.6,545-562.
    [83]Wollman S. The spherically symmetric Vlasov-Poisson system[J]. J. Differential Equations Volume 35, Issue 1, (1980).30-35.
    [84]Wollman S. Existence and uniqueness theory of the Vlasov-Poisson system with application to the problem with cylindrical symmetry [J]. J. Math. Anal. Appl.90 (1982), no.1,138-170.
    [85]Wollman S. A refinement of the existence and uniqueness theorem for the Vlasov-Poisson system[J]. J. Math. Anal. Appl.126 (1987), no.2,574-578.
    [86]Yang T, Zhao H. Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system [J]. Comm. Math. Phys.268 (2006), no.3,569-605.
    [87]Yang T, Yu H, Zhao H. Cauchy problem for the Vlasov-Poisson-Boltzmann sys-tem[J]. Arch. Ration. Mech. Anal.182 (2006), no.3,415-470.
    [88]Zeidler E. Nonlinear functional analysis Ⅱ/B-Nonlinear Monotone operators[M]. Springer-Verlag, Berlin-heidelberg-New York,1990.
    [89]Zhang P, Qiu Q. On the existence of almost global weak solution to multidimen-sional Vlasov-Poisson equation[J]. A Chinese summary appears in Chinese Ann. Math. Ser. A 19 (1998), no.4,534. Chinese Ann. Math. Ser. B 19 (1998), no.3, 381-390.
    [90]Zhang X, Wei J. The Vlasov-Poisson system with infinite kinetic energy and initial data in LP(R6)[J]. J. Math. Anal. Appl.341 (2008), no.1,548-558.
    [91]郭柏灵,林国广,尚亚东.非牛顿流动力系统[M].北京:国防工业出版社,2006.
    [92]应隆安,藤振寰.双曲型守恒律方程及其差分方法[M].北京:科学出版社,1991.
    [93]许孝精.一类具有真实的可压缩非牛顿流[D].长春:吉林大学数学学院,2007.
    [94]闫晗.一类带有非牛顿位势的正则化Vlasov方程初边值问题[D].长春:吉林大学数学学院,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700