轻型汽车电子机械制动及稳定性控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以某轻型汽车为研究对象,对基于汽车电子机械制动(Electromechanical Brake,EMB)的汽车稳定性控制系统(Vehicle Stability Control,VSC)进行研究。针对目标车型研制了四台EMB执行器及一套实用的电子制动踏板;提出了车轮EMB控制系统的结构及总体方案,并进行了软硬件设计。通过EMB执行器特性试验,得到了EMB执行器特性曲线并测得了EMB执行器建模所需参数,通过离线仿真和台架试验对EMB控制参数进行调节,并对其性能进行了验证。确定了基于EMB的VSC控制算法,自主研发了VSC控制器硬件,搭建了基于EMB的VSC离线仿真平台和硬件在环试验平台,对在EMB基础上集成VSC的可行性进行了验证。本文的研究为EMB系统设计及基于EMB的VSC的应用开发提供了重要参考。
Electromechanical Brake (EMB) is a kind of new-style brake system. Response time and drive efficiency of EMB are better than hydraulic brake system, because EMB adopted electromechanical transmission instead of hydraulic transmission.Therefore, EMB is considered the major method to improve braking performence. However, braking performance and handling performance of vehicle can not be optimized only with EMB, other control systems have to be integrated. Vehicle Stability Control (VSC) is the third generation of vehicle stability control system, it can improve the vehicle braking performance, driving performance and handling performance by means of controlling braking force. So the research of EMB and the VSC based on EMB has become increasingly concerned about in vehicle brake system. In the dissertation, the research on EMB and the VSC based on EMB has been done based on projects“Simulation platform for software-in-the-loop of electromechanical brake system of car”,“Study on ABS/ASR/ESP based on electromechanical brake system of car”,“Research of vehicle dynamic control based on brake-by-wire”and“Research on vehicle intelligent brake system”.
     Firstly, the plan of redesigning brake system and the design objective of EMB actuator were made. Four EMB actuators were developed according to the plan and design flowchart. The design method of electronic brake pedal was given and the electronic pedal for target vehicle was designed. Afterwards, the software and hardware’s schemes for EMB controller were given, and the hardware and control procedure are set up base on the scheme. The off-line simulation and bench test were carried out to adjust the parameters of EMB control system and the performance of EMB system is verified. Secondly, based on the performance of EMB, the research on algorithm of ECU for VSC was developed. Finally, the structures of off-line simulation platform and hardware-in-the-loop test bench were built based on Matlab/Simulink/xPC Target platform. Some different situation tests were carried out on the simulation platform and HIL test bench.
     1.Design of the hardware for EMB system
     According to the requirement of projects, the brake system of vehicle was redesign. The design specification for EMB actuator was given according to the production hydraulic brake system and this was the design bases of EMB actuator. After the flow chart for EMB actuator design and parts selection were given, three transmission schemes for EMB actuator and the corresponding theory designs were made. Through comparison, the third scheme was adopted and four EMB actuators were made. After the scheme for electronic brake pedal was given, the flow chart of electronic brake pedal was decided. According to the characteristic of target vehicle, the electronic brake pedal was developed independently and the test was performed. The test results showed the electronic brake pedal could satisfy the requirements.
     2.Design of the control system for EMB
     Based on the blue print of EMB actuator, the design method of control system for EMB and the design of software and hardware were completed. The hardware design consists of design of single chip minimum system, wiring design of signal interface, wiring design of communication, design of drive circuit for motor. The design of signal interface consists of wiring design of interface for analog signals and wiring design of interface for digital signals. According to the requirement for EMB performance, the software adopted the control structure of three loops and the flow chart of the program was given. The designed software consists of the module of initialization, the module of motor commutation, the module of three loop controls, the module of armature voltage control and the module of tachometry.
     3.Research on control characteristic of EMB
     According to the need of future research, the off-line simulation and bench test were combined to adjust the parameters of EMB control system and verify the performance of EMB system. The parameters for EMB model were obtained through the attribute testing of EMB actuator. The simulation model of EMB was built and the control parameters of three loop controller for EMB were obtained through off-line simulation. The building of EMB simulation model established the foundation for the off-line platform. Based on the results of off-line simulation, the control parameters which were applicable to EMB controller were obtained through bench test. The test results showed: the EMB model and EMB system are good and they could satisfy the need of use. The results proved the way for the off-line simulation and HIL test.
     4. Research on VSC based on EMB
     When the performance of EMB can meet the challenge, the research on algorithm of VSC based on EMB and ECU of VSC was performed. First, the main flow chart of VSC control algorithm was given. The VSC control algorithm consist module of wheel speed computation, module of vehicle state estimation, module of anti-lock brake, module of anti-slip regulation and module of yaw stability control system. The module of vehicle state estimation consists of module of vehicle velocity estimation, module of nominal yaw rate estimation, module of road adhesion coefficient estimation and module of wheel load estimation. Based on VSC control algorithm, the hardware configuration of VSC controller was given and the design of hardware was given. The hardware design consists of chip selection, wiring design of clock , wiring design of reset, wiring design of power supply, wiring design of interface for analog signals , wiring design of interface for digital signals, wiring design of CAN and wiring design of analog output mainly.
     5.The building of VSC simulation platform base on EMB and the research of off-line simulation
     According to the need for VSC control algorithm based on EMB, The VSC simulation platform was built. This platform consist of 15DOF vehicle dynamics model, graphical user interface, 3-D virtual scene, and the vehicle model consists of engine model, powertrain model, EMB model, tire model, wheel dynamics model, suspension model, vehicle body model and driver model.
     VSC simulation on various conditions was proceeded on the platform condition. The results showed: at braking the slippage of vehicle wheel could be controlled to follow the target and the the directional stability of vehicle was improved. At driving condition, over-slip of driven wheels which were on low-μroad was avoided effectively using braking control, and the capability of startup of the vehicle was improved obviously. When steering, the yaw rate and slip angle were controlled to target through brake force regulation, thus the lateral stability of automotive was improved, efficiently.
     The building of off-line simulation platform and the off-line simulations established theory foundation for the design and development of HIL test platform and HIL test.
     6.The research of VSC HIL test platform based on EMB building and HIL test According to the need of research for VSC based on EMB, the plan of test platform was given and the HIL test platform was built based on Matlab/xPC Target. The platform consisted of one host computer, two target computers, four suits of EMB actuators, four suits of EMB controllers, VSC controller, sensors, signal collecting system, VF and software system. Some VSC HIL tests on various conditions were proceeded and the platform based on control algorithm prototype. The test results showed: The EMB can satisfy the requirement of VSC. At braking condition, wheels lockup was avoided effectively with shorter stop distance. When driving, over-slip of driven wheel which is on low-μroad was avoided effectively using braking control, and the capability of vehicle acceleration was improved obviously. When steering, the oversteering or understeering of vehicle could be restrained effectively through brake force regulation, thus the lateral stability of automotive was improved. In summary, the VSC HIL platform was qualified to the test.
引文
[1]余志生.汽车理论[M].北京:机械工业出版社, 2000.
    [2]张铁柱,张洪信.汽车安全、节能与环保[M].北京:国防工业出版社, 2004.
    [3]方永龙.汽车制动理论与设计[M].北京:国防工业出版社, 2005.
    [4]李红强.轻型汽车制动系统结构改进及ABS控制逻辑研究[D].长春:吉林大学,2006.
    [5]杨坤,李静,李幼德,等.电子机械制动系统在汽车自适应巡航控制中的应用[J].农业机械学报,2008,39(12): 34-38.
    [6]David B Drennen, Bellbrook, Ernest R Siler, et al. Electric Brake Caliper Having A Ballscrew With Integral Gear Carrier[P]. US, 2005/0034936 A1. 2005-2-17.
    [7]Tadashi Tamasho, Masahiro Kubota, Masahiro Tsukamoto. Electromechanical Brake System [P]. US, 6397981 B1. 2002-6-4.
    [8]Johannes Ante, Stephan Heinrich, Andreas Ott. Measuring Device For An Electromechanical Brake[P]. US, 2005/0140205 A1. 2005-6-30.
    [9]Yasuhiko Fujita, Toshiaki Arai, Masami Ogura, et al. Motor Disc Brake System[P]. US, 5107967. 1992-4-28.
    [10]张猛,宋健.电子机械制动系统发展现状[J].机械科学与技术,2005,24(2):209-211.
    [11]Antonio Pascucci, Henry Hartmann, Martin Schautt. Motor Vehicle Brake System Comprising A Parking Brake Function And Electromechanical Wheel Brake For Such A Motor Vehicle Brake System: US, 2005/0167212 A1[P]. 2005-8-4.
    [12]Henry Hartmann, Martin Schautt, Antonio Pascucci, et al.eBrake?–the mechatronic wedge brake[C]. SAE Paper 2002-01-2582.
    [13]Richard Roberts, Martin Schautt, Henry Hartmann,et al. Modelling and Validation of the Mechatronic Wedge Brake[C]. SAE Paper 2003-01-3331.
    [14]Richard Roberts, Bernd Gombert, Henry Hartmann,et al.Testing the Mechatronic Wedge Brake[C]. SAE Paper 2004-01-2766.
    [15]Martin Schautt, Antonio Pascucci, HenrryHartmann, et al.ELECTROMECH-ANICAL BRAKE WITH SELF-BOOSTING AND VARYING WEDGE ANGLE[P].US, 6986411B2, 2006-1-17
    [16]王锴.飞机全电刹车系统设计[D].北京:北京航空航天大学.2003.
    [17]李晖晖,刘航,谢利理.飞机全电刹车系统研究[J].飞机设计,2003(3):62-65.
    [18]李晖晖,林辉,谢利理.飞机全电刹车系统电作动机构研究[J].测控技术,2003(2):51-55 .
    [19]李晖晖.基于模糊控制的飞机全电刹车系统研究[D].西安:西北工业大学,2003.
    [20]张秋红.飞机全电刹车系统控制律的研究[D].西安:西北工业大学,2003.
    [21]Nico A. Kelling, Patrick Leteinturier. X-by-Wire: Opportunities, Challenges and Trends[C].SAE Paper 2003-01-0113.
    [22]Nathan Ray Trevett. X-by-Wire, New Technologies for 42V Bus Automobile of the Future[D]. South Carolina Honors College, 2002.
    [23]Christof Maron, Thomas Dieckmann, Stefan Hauck, Hubertus Prinzler. Electro-mechanical brake system: Actuator control development system[C]. SAE Paper 970814.
    [24]文延.飞机全电刹车系统控制器设计[D].西安:西北工业大学,2004.
    [25]冉庆东.飞机全电刹车控制系统设计[D].西安:西北工业大学,2005.
    [26]杨坤.夏利轿车EMB控制方法及执行器方案研究[D].长春:吉林大学, 2006.
    [27]万惠璇.天津夏利汽车EMB仿真及控制器方案研究[D].长春:吉林大学, 2007.
    [28]王振乾.轻型吉普车电子机械制动控制系统研究[D].长春:吉林大学,2007.
    [29]谭树梁.轻型汽车电子机械制动执行器及硬件在环试验台研究[D].长春:吉林大学,2008.
    [30]张猛.电子机械制动系统(EMB)试验台的开发[D].北京:清华大学,2004.
    [31]沈沉,王军,林逸.电子机械制动系统制动执行器建模与试验[J].农业机械学报,2007, 38(8):30-33.
    [32]钟伟.线控制动系统的安全策略研究[D].武汉:武汉理工大学, 2006.
    [33]熊璐,余卓平,张立军.车用电制动器(EMB)样机设计[J].汽车技术,2005(8):15-18
    [34]李刚,于学兵. Bosch VDC系统的控制原理及展望[J].公路交通科技, 2004, 21(7): 119-122.
    [35]黄炳华,陈祯福. ESC的最新动向和发展趋势[J].汽车工程, 2008,30(1): 1-9.
    [36]张长冲. ESP_汽车电子稳定系统仿真研究[D].济南:山东大学, 2007.
    [37]赵志国.车辆动力学及其非线性控制理论技术的研究[D].西安:西北工业大学, 2002.
    [38]李克宁.基于主从微分对策的ESP_ABS集成控制方法研究[D].长春:吉林大学, 2006.
    [39]司利增.汽车防滑控制技术-ABS与ASR[M].北京:人民交通出版社, 1996.
    [40][日]ABS株式会社.汽车制动防抱装置(ABS)构造与原理[M].北京:机械工业出版社, 1995.
    [41]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社, 1999.
    [42]罗俊.汽车稳定性控制策略研究与仿真[D].武汉:武汉科技大学, 2006.
    [43]徐渺.汽车稳定性控制系统的产业化研究与设计[D].上海:上海交通大学, 2007.
    [44]李幼德,刘巍,李静.汽车稳定性控制系统硬件在环仿真[J].吉林大学学报(工学版), 2007, 37(4): 737-740.
    [45]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].长春:吉林大学,2007.
    [46]Van Zanten. VDC System Development and Perspective[C]. SAE Paper 980235.
    [47]Sugiyama M, Inoue H, Uchida K, et al. Development of VSC (Vehicle Stability Control) System[J]. TOYOTA Technical Review, 1997,46(2):61-68.
    [48]于俊伟,杨万福,陈正江.现代汽车电子开发和测试平台分析[J].山西电子技, 2004(5):7-9.
    [49]黄永安,马路,刘慧敏,等. MATLAB7.0/Simulink6.0建模仿真开发与高级工程应用[M].北京:清华大学出版社,2005.
    [50]陈全世.先进电动汽车技术[M].北京:化学工业出版社,2007.
    [51]Christian Wewetzer,Klaus Lamberg,Rainter Otterbach. Creating Test Patterns for Model-Based Development of Automotive Software[C]. SAE Paper 2006-01-1598.
    [52]赵和平,孟峰.硬件在环混合仿真技术的应用[J].汽车电子, 2004,8: 55-58.
    [53]Michael Beine,Raineer Otterbach,Michael Jungmann. Development of Safety-Ctritical Software Using Automatic Code Generation[C]. SAE Paper 2004-01-0708.
    [54]吴志红,孙萌,毛明平.基于MATLAB/RTW的车载无刷直流电机调速系统代码自动生[J].沈阳理工大学学报,2005,4:43-45.
    [55]Alberto Ferrari,Giovanni Gaviani,Monti Stefano,et al. Automatic Code Generation and Platform Based Design Methodology:An Engine Management System Design Case Study[C]. SAE Paper 2005-01-1360.
    [56]赵健.轻型越野汽车牵引力/制动力控制系统研究[D].长春:吉林大学,2007.
    [57]Herbert Schuette,Peter Waeltermann. Hardware-in-the-Loop Testing of Vehicle Dynamics Controllers-A Technical Survey[C]. SAE Paper 2005-01-1660.
    [58]Susanne K?hl,Dirk Jegminat. How to Do Hardware-in-the-Loop Simulation Right[C]. SAE Paper 2005-01-1657.
    [59]陈胜金.动态偏航稳定控制系统ESP及EHB/EMB[J].汽车电器,2004(11):60-61.
    [60]王季秩,曲家骐.执行电动机[M].北京:机械工业出版社,1997.
    [61]梁秀玲,李优新,王鸿贵,等.新型可调磁永磁无刷直流电动机在电动汽车中的应用[J].广东工业大学学报,2004, 21(4): 1-5.
    [62]海老原大树.电动机技术实用手册[M].北京:科学技术出版社,2006.
    [63]汤蕴缪,史乃.电机学[M].北京:机械工业出版社,2003.
    [64]渐开线齿轮行星传动的设计与制造编委会.渐开线齿轮行星传动的设计与制造[M].北京:机械工业出版社, 2002.
    [65]齿轮手册编委会.齿轮手册上册(第二版)[M].北京:机械工业出版社,2001.
    [66]饶振纲.行星齿轮传动设计[M].北京:化学工业出版社工业装备与信息工程出版中心,2003.
    [67]陈光仁,施祖康,张超鹏.滚动螺旋传动设计基础[M].北京:机械工业出版社,1987.
    [68]饶振纲,王勇卫.滚珠丝杠副及自锁装置[M].北京:国防工业出版社,1990.
    [69]郑阿奇. Matlab实用教程[M].北京:电子工业出版社,2004.
    [70]薛定宇.基于Matlab/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [71]Karlheinz Bill, Martin Semsch and Bert Breuer. A New Approach to Investigate the Vehicle Interface Driver/Brake Pedal Under Real Road Conditions in View of Oncoming Brake-by-wire-systems[C]. SAE Paper 1999-01-2949.
    [72]Robert Alan Anderson, Stephen Donald Crisp, Barry John Bridgens, et al. Pedal assemblies for vehicle braking systems: Us, 2001/0043009 A1[P]. 2001-12-22.
    [73]Schuyler S Shaw. Braking pedal emulator system and method: US, 6367886 B1[P]. 2002-4-9.
    [74]Crista M Constantakis, Srini Sundaresan, Casimir R Kiczek. Pedal feel emulator mechanism for brake by wire pedal: US, 2005/0082909 A1[P]. 2005-4-21.
    [75]James W ZehnderⅡ, John C Layman. Braking pedal feel emulator and method: US, 2002/0084690 A1[P]. 2002-7-4.
    [76]Joaquim A. de Arruda Pereira . New Fiesta: Brake Pedal Feeling Development to Improve Customer Satisfaction[C]. SAE Paper 2003-01-3598.
    [77]Rena Hecht Basch, Paul Sanders and Dale Hartsock. Correlation of Lining Properties with Brake Pedal Feel[C]. SAE Paper 2002-01-2602.
    [78]Akihito Kusano. Braking stroke simulator: US, 2005/0001476 A1[P]. 2005-1-6.
    [79]Akihito Kusano. Master cylinder with a braking stroke simulator: US, 2005/0104443 A1[P]. 2005-5-19.
    [80]Kent Randolph Young, David Leslie Agnew. Brake pedal feel emulator: US, 2006/0071545 A1[P]. 2006-4-6.
    [81]Kent Randolph Young. Brake pedal feel emulator: US, 2006/0071544 A1[P]. 2006-4-6.
    [82]Dale Scott Crombez. Barke Master Cylinder and Pedal Feel Emulator: US, 6267456 B1[P]. 2001-7-31.
    [83]In-Yong Jung, Jae-Hwan Jeon, Jong-Ho Lee, et al. Magnetorheological pedal simulator: US, 6916074 B2[P]. 2005-7-12.
    [84]Thomas Weigert, Salvatore Oliveri, Robert L Ferger, et al. Programmable electronic pedal simulator: US, 6105737[P]. 2000-8-22.
    [85]Pasquet. Brake pedal simulator, master cylinder for a vehicle and method of operation of said simulator: EP, 1600347 A1[P]. 2005-5-23.
    [86]Georg Koepff. Pedal Travel Simulator: US, 6267208 B1[P]. 2001-7-31.
    [87]Dale Scott Crombez, Dave James Lotito, Mark Alan Shehan, et al. Vehicle Brake System With Variable Brake Pedal Feel: US, 6309031 B1[P]. 2001-10-30.
    [88]Donald Edward Schenk, Schuyler Scott Shaw. Electro-hydraulic brake apply system with emulator latch: US, 5927825[P]. 1999-7-27.
    [89]Robert Alan Anderson, Stephen Donald Crisp, Michael James Ayres. Pedal Assemblies Vehicle Braking systems: US, 6361122 B2[P]. 2002-3-26.
    [90]Michael Huber. Brake Pedal Configuration: US, 6253635 B1[P]. 2001-7-3.
    [91]James W Zehnder II, Shekhar S Kanetkar and Craig A Osterday. Variable Rate Pedal Feel Emulator Designs for a Brake-By-Wire System[C]. SAE Paper 1999-01-0481.
    [92]曲再鹏.依维柯汽车均一路面EHB控制系统的研究[D].长春:吉林大学,2005.
    [93]成大先.机械设计手册[M].北京:化学工业出版社, 2002.
    [94]Chris Line, Chris Manzie and Malcolm Good. Control of an Electromechanical Brake for Automotive Brake-By-Wire Systems with an Adapted Motion Control Architecture[C].SAE Paper 2004-01-2050.
    [95]黄立培.电动机控制[M].北京:清华大学出版社,2003.
    [96]周渊深.交直流调速系统与MATLAB仿真[M].北京:中国电力出版社,2004.
    [97]何礼高. dsPIC30F电机与电源系列数字信号控制器原理与应用[M].北京:北京航空航天大学出版社,2007.
    [98]Aakash Arora and Syed Masud Mahmud. Performance Analysis of Fault Tolerant TTCAN System[C]. SAE Paper 2005-01-1538.
    [99]Peter Bühring. Safe-by-Wire Plus: Bus Communication for the Occupant Safety System[C]. SAE Paper 2004-21-0047.
    [100]Douglas Cesiel , Michael C Gaunt, Brian Daugherty. Development of a Steer-by-Wire System for the GM Sequel[C]. SAE Paper 2006-01-1173.
    [101]Kohei Sakurai, Masatoshi Hoshino , Yuichiro Morita, et al. Design and Implementation of Middleware for Network Centric X-by-Wire Systems[C]. SAE Paper 2006-01-1326.
    [102]Philipp Nenninger, Benedikt Merz, Stephan Brummund, et al. A Network Approach to Connecting Safety-Relevant Automotive Electronic Systems[C]. SAE Paper 2006-01-1495.
    [103]秦贵和,葛安林,李柱张,等.汽车网络技术[J].汽车工程,200325(2):151-155.
    [104]秦贵和.车上网络技术[M].北京:机械工业出版社, 2003.
    [105]Rodney Cummings. Easing the Transition of System Designs from CAN to FlexRay[C]. SAE Paper 2008-01-0804.
    [106]Jens K?tz, Stefan Poledna. Making FlexRay a Reality in a Premium Car[C]. SAE Paper 2008-21-0023.
    [107]Thomas Fuehrer, Bernd Mueller, Florian Hartwich, et al. Time Triggered CAN (TTCAN)[C]. SAE Paper 2001-01-0073.
    [108]Holger Zeltwanger. Time-Triggered Communication on CAN[C]. SAE Paper 2002-01-0437.
    [109]Xinfan Lin, Lei Bao, Jianfeng Hua, et al. A Time-triggered CAN Network and Test Platform for Fuel Cell Bus[C]. SAE Paper 2008-01-1534.
    [110]Richard T McLaughlin, Chris Quigley. Analysis and Diagnostics of Time Triggered CAN (TTCAN) Systems[C]. SAE Paper 2004-01-0201.
    [111]Sinan Yaldo and Syed Masud Mahmud. Design and Implementation of a Fault Tolerant Time Triggered CAN System and the Related Issues[C]. SAE Paper 2005-01-1537.
    [112]刘刚,王志强,房建成.永磁无刷直流电机控制技术与应用[M].北京:机械工业出版社,2008.
    [113]张琛.直流无刷电动机及原理[M].北京:机械工业出版社,1996.
    [114]王晓明.电动机的单片机控制[D].北京:北京航空航天大学,2002.
    [115]江海蛟.电动汽车用稀土永磁无刷直流电机的控制方式研究[D].西安:西北工业大学,2004.
    [116]楚斌. IR2110功率驱动集成芯片应用[J].电子工程师, 2004, 30(10):33-35.
    [117]贾贵玺,吴晓花,闫建三.自举式IR2110驱动集成电路在SDR系统中的应用[J].电子元件应用, 2007, 9(9): 17-20.
    [118]谢运祥. IR2130驱动器及其在逆变器中的应用[J].微电机,2001,34(2): 50-52.
    [119]苏亦白,李季,徐淑彦.大规模集成芯片IR2130触发器[J].现代电子技术, 2007(20): 7-9.
    [120]毕庆,张纯江,闫朝阳.高性能六输出MOS栅极驱动器IR2130及应用[J].信息技术, 2000(3): 11-12.
    [121]张红涛,闫林,徐晓辉等.基于单片机PID算法的无刷直流电机控制系统的研究[J].现代电子技术, 2007(10): 52-54.
    [122]肖本贤.小功率低成本的无刷直流电动机控制器研制[J].机电工程, 2000,17(1):55-57.
    [123]蔡耀成.无刷直流电动机中的霍尔位置传感器[J].微特电机, 1999(5):14-18.
    [124]陈红琳,朱志红,彭学文.基于TMS320LF240xDSP的无刷直流电机控制器的设计[J].机械与电子, 2003(3):21-23.
    [125]袁沂辉.永磁无刷直流电机控制系统研究[D].武汉:华中科技大学,2004.
    [126]杨艳.基于DSP的无刷直流电机数字控制系统研究[D].长沙:湖南大学, 2002.
    [127]李剑.电动车用永磁无刷直流电动机控制器的研制[D].西安:西安交通大学,2003.
    [128]白浩,崔建华,徐晓辉.永磁无刷直流电机控制器研究及展望[J].机械工程,2004(4):59-61.
    [129]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.
    [130]李定仁.电机的微机控制[M].北京:机械工业出版社,1999.
    [131]钱平.交直流传动控制系统[M].北京:高等教育出版社,2006.
    [132]董期林,张淑梅. DSP控制的直流电机伺服系统[J].电光与控制, 2006, 13(2): 109-112.
    [133]于庆广,刘葵,王冲,等.光电编码器选型及同步电机转速和转子位置测量[J].电气传动, 2006, 36(4): 17-20.
    [134]王力,杜坤梅,胡博.基于磁编码器永磁同步电动机转速及位置的检测[J].哈尔滨理工大学学报, 2007, 12(6): 80-83.
    [135]王磊杰,张红梅.增量式光电旋转编码器及在角减速度测量中的应用[J].机电产品开发与创新, 2005, 18(5): 115-117.
    [136]李烨,严欣平.基于M/T法的无刷直流电动机智能数字式测速电路[J].中小型电机, 2001, 28(4): 51-53.
    [137]宋刚,秦月霞,张凯.基于普通编码器的高精度测速方法[J].上海交通大学学报, 2002,36(8):1169-1172.
    [138]罗萍黄,怀蓉.经济通用的数字M/T法测速系统[J].电气传动自动化, 1999, 21(2):60-62.
    [139]姜庆明,杨旭,甘永梅.一种基于光电编码器的高精度测速和测加速度方法[J].微计算机信息(测控自动化), 2004, 20(6): 48-49.
    [140]赵岩.编码器测速方法的研究[D].北京:中国科学院研究生院, 2002.
    [141]于炳亮.电机转速测量方法研究[J].山东科学,2005, 18(5): 41-42.
    [142]杨坤,李静,李幼德,等.汽车电子机械制动执行器的研制及压力估算研究[J].汽车技术,
    [143]杨坤,李静,郭立书,李幼德.汽车电子机械制动系统设计与仿真[J].农业机械学报,2008, 39(8):24-27.
    [144]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [145]Ralf Schwarz,Rolf Isermann,Jürgen B?hm, et al. Modeling and Control of an Electromechanical Disk Brake[C]. SAE Paper 980600.
    [146]柴肇基.电力传动与调速系统[M].北京:北京航空航天大学出版社,1992.
    [147]陆善文.晶闸管直流调速系统测量与调试[M].北京:机械工业出版社,1988.
    [148]孔凡才.晶闸管直流调速系统[M].北京:北京科学技术出版社,1985.
    [149]倪忠远.直流调速系统[M].北京:机械工业出版社,1996.9
    [150]石桂花.依维柯汽车TCS神经PI自适应控制及车速估算算法研究[D].长春:吉林大学,2006.
    [151]程军,徐光辉,崔继波.一种新型的车辆速度及加速度测量方法[J].汽车研究与开发,1999(3):41-43.
    [152]奇志权,刘昭度,时开斌,等.基于汽车ABS/ASR/ACC集成化系统的ABS参考车速确定方法的研究[J].汽车工程,2003,25(6):617-620.
    [153]Hongtei Eric Tseng, Behrouz Ashrafi,Todd Allen Brown,et al.The Development of Vehicle Stability Control at Ford[J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS 1999, 4(3).
    [154]丁海涛.轮胎附着极限下汽车稳定性控制仿真研究[D].长春:吉林大学,2003.
    [155]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [156][德]M.米奇克.汽车动力学(第二版): C卷[M].陈萌兰译.北京:人民交通出版社,1997.
    [158]A T van Zanten. Bosch ESP System: 5 Years of Experience[C]. SAE Paper 2000-01-1633.
    [159]Kiyoshi Wakamatsu, Yoshimistu Akuta, Manabu Ikegaya, et al. Adaptive Yaw Rate Feedback 4WS with Friction Coefficient Estimator Between Tire and Road Surface[C].International Symposium on Advanced Vehicle Control, 1996.
    [160]A DaiB. Model Based Calculation of Fricion Cruves between Tyre and Road Surface[C].IEEE, 1995.
    [161]杨坤,李静,李幼德,等.基于汽车电子机械制动系统的EBD/ABS研究[J].系统仿真学报, 2009, 21(6):1785-1788.
    [162]曾光奇,胡均安,王东,等.模糊控制理论与工程应用[M].武汉:华中科技大学出版社,2006.
    [163]吴晓莉,林哲辉. MATLAB辅助模糊系统设计[M].西安:西安电子科技大学出版社,2002.
    [164]刘侠. NJ2045牵引力控制系统神经网络自适应控制方法研究[D].长春:吉林大学,2005.
    [165]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社, 2005.
    [166]李静. 4×4越野汽车牵引力控制策略与控制算法研究[D].长春:吉林大学,2003.
    [167]苑绍志.轻型自动机械变速越野汽车牵引力控制系统研究[D].长春:吉林大学,2008.
    [168]邵贝贝,宫辉.嵌入式系统中的双核技术[M].北京:北京航空航天大学出版社,2008.
    [169]刘光斌,刘冬,姚志成.单片机系统实用抗干扰技术[M].北京:人民邮电出版社,2003.
    [170]宋大凤.越野汽车牵引力控制参数自调整电控系统研究[D].长春:吉林大学, 2005.
    [171]张家祥,方凌江,毛全胜.基于MATLAB6.x的系统仿真分析与设计—虚拟现实[M].西安电子科技大学出版社, 2002.
    [172]段文杰.依维柯汽车ABS神经网络控制算法及虚拟仿真研究[D].长春:吉林大学,2006.
    [173]吴剑,孙秀霞.采用MATLAB中的xPC Target对硬件进行操作[J].现代电子技术, 2002(4): 59-60.
    [174]张江滨,姚辉,杨晓萍.构建基于XPC目标的实时仿真测试系统[J].水利水电技术, 2005, 36(1): 70-72.
    [175]刘思久,孙莹,赵蔚.基于MATLAB RTW的控制系统一体化设计方法[J].哈尔滨理工大学学报, 2004, 9(5): 29-32.
    [176]徐国政,陈勇.基于MatlabxPCTarget的数据采集系统[J].微计算机信息(测控自动化), 2005,21(1): 63-64.
    [177]王敏,项昌乐,马越.基于xPC目标环境的数据采集系统[J].测试技术学报, 2004, 18(3): 228-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700