梓树的形态结构及发育解剖学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梓树(Catalpa ovata)为紫葳科(Bignoniaceae)梓树属(Catalpa scop)植物,又称河楸、黄花楸等,多年生木本。在我国分布很广,为中国的乡土树种,世界各国大都进行引种。梓树较喜光,适宜温暖气候,但其耐寒力极强,能耐-45℃的极端低温,亦耐干旱贫瘠土壤,能耐轻盐碱土,其抗污染性较强。有关梓树的繁殖栽培、园林绿化及药用价值方面已经做了初步的研究,并取得了很大的成果。梓树作为优质的的园林绿化树种具有较高的生态意义和经济意义,具有较高的开发利用前景。
     本文采用石蜡切片、木材制片等方法,对梓树(Catalpa ovata)幼苗初生维管系统、营养器官及内部结构同抗旱性、抗寒性的关系与系统演化进行了研究和分析。结果表明:
     1.梓树幼苗的初生维管系统
     幼苗的子叶节区较长,自上到下都有髓的存在,为向基移位型(Basipetal shifting type)。子叶节区下部具有中始式四原型管状中柱,在子叶节区中部的原生木质部处一分为二,逐渐形成具有8枚外韧维管束的中柱结构;在子叶节区上部,组成短轴的2枚维管束各自一分为三,逐渐形成真中柱的雏形,与上胚轴的分生组织性组织分化形成的内始式真中柱相连接,至此,子叶节区发育完成。子叶为单隙三迹。
     2.梓树次生根的结构
     根系发达,为深根性。次生根的导管孔多为近圆形,口径较大,数量多,且多数组成复管孔或管孔团,导管靠近髓射线分布。轴向薄壁组织发达,为傍管型,带状。髓射线发达,多由3-4列射线细胞组成,射线细胞的体积较小。这说明梓树根系具有较强的输导水分及抗旱能力。
     3.梓树的茎材结构
     在横切面上:树皮具有内皮和外皮之分,韧皮细胞含有较多的内含物,韧皮纤维发达,并同韧皮薄壁细胞间隔排列。韧射线发达,多由2列细胞组成。木材为环孔材,生长轮明显;早材管孔近圆形,多为单管孔,管孔团较少见,壁较厚:在心材的导管内有侵填体的存在;晚材管孔为圆形或多边形,多组成复管孔、管孔团或管孔链,导管壁较薄;轴向薄壁组织发达,为傍管型。
     在径切面上:木射线由方形细胞、横卧细胞、直立细胞组成,属异型木射线。细胞端壁上具明显的节状加厚,水平壁纹孔十分明显。
     在弦切面上:木射线排列密集,异胞,非叠生,单列或者多列,多为异形Ⅱ。
     解离细胞特征:在解离的细胞中,纤维的数目多,且长度相差较大;导管较长,按有无尾端及尾端的长短可分为四种类型。
     4.梓树叶的内部结构特征
     叶的上、下表皮均具有较厚的角质层、腺毛及较长的多细胞表皮毛,这些表皮附属物是梓树防止水分流失及增强抗寒性的结构特征。气孔数目多,体积小,仅分部在叶的下表皮。在横切面上可以看出,梓树的叶片较厚,叶肉细胞发达,具有栅栏组织和海绵组织之分;栅栏组织排列紧密,细胞较小,一般2-3层,且长、宽比例大;海绵组织排列疏松,并有游离细胞的存在,栅栏组织/海绵组织的比值大于1。
     叶片的主脉较突出,且主脉表皮细胞明显比叶片上、下表皮细胞体积小,排列紧密,其上分布有较多的表皮毛。主脉维管束较发达,在近轴面的叶脉中出现了三束异常的维管束;在远轴面的维管束呈环状排列,与幼茎的维管束像似。在主脉表皮上未见有气孔的存在。
     同时,在梓树叶的表皮上分布有较多的蜜腺,蜜腺较小,且结构简单,一般仅有单一的基细胞和一列纵行排列的分泌细胞组成,不具有专门的维管组织。按腺细胞相对于表皮细胞的位置,可以分为突出型和凹进型两种。
Catalpa ovata is a perennial deciduous shrub of Catalpa Scop in Bignoniaceae. It is widely distributed over our country and is native tree specie in china. It grows in sun and is suitable to warm climate but has great cold resistance, arid soil, light saline-alkali soil and pollution of environment. The primary studies on its culture and breeding, landscaping and medicinal value have made great achievements. As high grade seeds of tree, Catalpa ovata is of great ecological and economic value, having widely potential application.
     The primary vascular system of seedling and anatomical structure were studied through paraffin section method and wood section method, as well micro-technology. The results were as follows:
     1. The primary vascular system of seedling of Catalpa ovata
     The cotyledon node zone (CNZ) of Catalpa ovata is longer, and belongs to basipetal shifting type. From top to bottom, it has pith in the whole CNZ. There is mesarch tetrarch siphonostele in the lower portion of the CNZ, which divides into two parts from protoxylem in the middle portion of the CNZ and gradually form stele structure with eight collateral bundles. In the upper portion of the CNZ, two vascular bundles which formed shorter axis divide into three parts respectively and shape the model of eustele, then connect with endarch eustele of epicotyl. There is three-trace cotyledonary node in the seedling.
     2. The structure of Catalpa ovata secondary root
     The root system is well-developed, and belongs to rooting plant. The vessels of secondary which hole is mostly round, bigger pipe diameter are a lot, mostly formed pore multiple or pore cluster, and near to pith ray. Axial parenchyma is well-developed, banding, and belongs to paratracheal parenchyma. The pith ray is well-developed formed from two or three rows pith cells, and the pith cell is small. All of the structure features illustrate that Catalpa ovata root system has strong translocation and drought resistance.
     3. The structure of Catalpa ovata timber
     In the transaction, the bark can be divided into hardback and soft back. Phloem parenchyma has much tannin, and phloem fiber is well-developed which alternates with phloem cells. The phloem fiber is also well-developed, mostly with two rows of cells. The timber belongs to rind pored wood, and its growth ring is evident; The hole of vessel of spring wood get on for roundness, solitary, few of pore cluster, thin-wall, and having thylose in duramen; The hole of vessel of summer wood is roundness or polygon, mostly formed pore multiple or pore cluster, thick-wall. Axial parenchyma is well-developed, and belongs to paratracheal parenchyma.
     In radial longitudinal section, xylem ray includes cubiodal cell, procumbent cell, upright cell, which belongs to heterogeneous ray. The cell wall has section shape thickening.
     In tangential section, xylem ray arranges tightly, not storied ray, uniseriate or multiseriate ray, and most belong to heterogeneous II ray, few belong to heterogeneous I ray.
     The characteristics of dissociation:the amount of fiber takes up to overwhelming majority, and the fiber length is different very much.; The vessels is longer which can classify five types, in terms of tail end or the length of tail.
     4. The structure of Catalpa ovata leaf
     The upper and lower epidermis have think horny layers, wax layers, glandular hairs, and long multicellular epidermis hairs which all named dermal appendages can help Catalpa ovata prevent water loss and enhance cold resistance. There are a lot of stomas in the lower epidermis. In the transaction, there are thick upper epidermis, thick developed lamina which can be divided into palisade tissue and spongy tissue; The palisade tissue is compactness, including two or three layers, and its cells are small, which length is bigger than width; The spongy tissue arranges loosely and has free cells, and the proportion of thickness between palisade tissue and spongy tissue is bigger than one.
     Main vein of Catalpa ovata leaf is more prominent. The epidermis cells of main vein which arrange more closely than the epidermis cells of leaf are smaller and have more multicellular epidermis fairs. The vascular bundles in main vein are well-developed, and there are three abnormal vascular bundles in abaxial surface; the vascular bundles arrange a circle in adaxial surface which is similar to younger stem. There isn't stoma in the epidermis of main vein.
     At the same time, there are many small nectarines in epidermis of leaves, and the structure of nectary is simple which just has a basal cell and bristling secretory cells, without special vascular tissue. The gland cells can classify bulge and recessed types, in terms of the positions which are relative to epidermis cells.
引文
[1]谷安根,王立军.子叶节区理论与被子植物演化形态学的进展[M].长春:吉林科学技术出版社,2000.34-38.
    [2]Gu An-gen, Wang Lijun, Wang Mao. Studies on cotyledon node zone in some genera of the Ranunculaceae [J]. Cathaya,1990,2:171-180.
    [3]谷安根,王立军,汪矛,等.被子植物根—茎过渡区研究新进展[J].植物研究,1991,11(3):85-90.
    [4]谷安根,王立军.子叶节区理论研究进展[J].植物学通报,1997,14(3):30-39.
    [5]张友民,姚方杰,王立军,等.黄瓜幼苗的初生维管系统研究[J].吉林农业大学学报,1997,19(4):30-32.
    [6]张友民,王立军,谷安根,等.苦瓜幼苗初生维管系统的解剖学研究[J].吉林农业大学学报,1996,18(2):39-41.
    [7]张友民,姚方杰,王立军,等.西瓜幼苗初生维管系统的解剖学研究[J].吉林农业大学学报,1996,18(增刊):8-11.
    [8]赵丽辉,谷安根,王立军,等.大白菜幼苗初生维管系统的解剖学研究[J].植物研究,1997,17(4):431-435.
    [9]张恕茗,谷安根,王立军,等.茄子幼苗初生维管系统的解剖学研究[J].植物研究,1997,17(2):163-168.
    [10]赵丽辉,王立军,谷颐.大豆幼苗初生维管系统的解剖学研究[J].吉林农业大学学报,1998,20(1):42-45.
    [11]汪矛,谷安根,张友民,等.镰形角果毛莫幼苗的初生维管系统研究[J].吉林农业大学学报,1991,13(3):29-31.
    [12]王立军,张友民,谷安根,等.尖萼耧斗菜幼苗初生维管系统的解剖学研究[J].植物研究,1993,13(2):132-135.
    [13]王立军,谷安根,张友民,等.夏侧金盏花幼苗初生维管系统的解剖学研究[J].植物研究,1993,13(3):257-261.
    [14]王立军,谷安根,张友民,等.大花翠雀幼苗初生维管系统的解剖学研究[J].植物研究,1994,14(1):76-81.
    [15]赵丽辉,谷安根,王立军,等.大白菜幼苗初生维管系统的解剖学研究[J].植物研究,1997,17(4):431-435.
    [16]王立军,谷安根,张友民,等.甜菜幼苗的分区及其肥大直根的定位研究[J].作物学报,2000,26(1):87-91.
    [17]赵丽辉,谷颐.胡萝卜的幼苗分区及其肥大直根的定位研究[J].吉林农业大学学报,1998,20(4):41-44.
    [18]古尔恰兰.辛格,植物系统分类学[M].北京:化学工业出版社,2008,111-144,364
    [19]陆静梅,李建东.同种不同生态环境植物解剖结构比较研究[J].东北师范大学学报,1994,3:100-104.
    [20]王勋陵,王静.植物的形态结构与环境[M].兰州:兰州大学出版社,1989.105-138.
    [21]蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅰ.叶片解剖特征的比较[J].植物生态学报,2001,25:90-98.
    [22]贺金生,陈伟烈,王勋陵.高山栋叶的形态结构及其与生态环境的关系[J].植物生态学,1994,18:219-227.
    [23]Sam O, Jerez E, Dell' Amiieo J, etal. Water stress induced changes in anatomy of tomato leaf epidermis [J]. Biologia Plantum,2000,43:275-277.
    [24]Bosabalidis AM, Kofidis G. Comparative effects of drought stress on leaf anatomy of two olive cultivars [J]. Plant Science,2002,163:375-379.
    [25]ChartzoulakisK, Patskas A, Kofidis G, etal. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars[J]. Scientia Horticulturae,2002,95:39-50.
    [26]Castro-Diez P, Puyravaud J P, Cornelissen J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of wide range of woody plant species and types [J]. Oecologia,2000, 124:476-486.
    [27]Dong X J, Zhang X S. Some observations of the adaptations of sandy shrubs to the arid environment in the Wu Us sandland leaf water relations and anatomic feature[J]. Journal of Arid Environments,2001, 48:41-48.
    [28]Antonielli M, Pasqualini S, Batini P, etal. Physiological and anatomical characterization of Phragmites austrlis leaves[J]. Aquatic Botany,2002,72:55-66.
    [29]胡云,燕玲,李红.14种荒漠植物茎的解剖结构特征分析[J].干旱区资源与环境,2006,20(1):202-208.
    [30]李广毅,高国雄,吕悦来,等.灰毛滨黎茎解剖结构与抗逆性研究[J].西北林学院学报,1995,10(3):16-20.
    [31]张来,刘宁,陈训.贵州花江峡谷不同生境条件下艳山姜茎的解剖研究[J].贵州科学,2004,22(3):86-88.
    [32]张新英,曹宛虹.豆科7种沙生植物木质部的生态解剖[J].植物学报,1993,35(2):929-935.
    [33]肖雯,张振霞,贾恢先.几种盐地植物根解剖结构的研究[J].甘肃农业大学学报,1998,33(1):90-93.
    [34]贺金生,陈伟烈,王勋陵.高山栋叶的形态结构及其与生态环境的关系[J].植物生态学报,1994,18:219-227.
    [35]刘全宏,王孝安,田先华,太白红杉叶的形态解剖学特征与环境因子的关系仁[J].西北植物学报,2001,21:885-893.
    [36]王丽雪.葡萄叶片组织结构与抗寒性的关系[J].特产研究,1990(3):13-18.
    [37]戚英鹤,魏安靖,赵四清,等.脐橙抗寒性与叶片结构的关系[J].浙江林业科技,1995,15(2):27-29.
    [38]钟广炎,陈力耕.柑桔种质资源抗寒性与叶片结构的关系[J].中国柑桔,1994,23(2):16-17.
    [39]彭伟秀,杨建民,张芹,等.不同抗寒性的杏品种叶片组织结构比较[J].河北林果研究,2001,16(2):145-147.
    [40]房用,李秀芬,慕宗昭,等.茶树抗寒性研究进展[J].经济林研究,2004,22(2):69-72
    [41]彭伟秀,杨建民,张芹,等.几个仁用杏品种枝条组织结构与抗寒性关系的初步研究[J].河北农业大学学报,2002,25(1):48-50.
    [42]郭修武.葡萄根系抗寒性鉴定方法研究[J].葡萄栽培与酿酒,1994(4):26-29.
    [43]罗伟祥,刘广全,李嘉珏.西北主要树种培育技术[J].中国林业出版社,2007,1: 340-341.
    [44]王跃兵,徐洪义.黑龙江省最有开发价值的树种—梓树介绍[J].致富短平快,2007,7.
    [45]李朝虹.古代梓、楸考异[J].北京林业大学学报(社会科学版),2007,6(4):20-24
    [46]十三经注疏影印本[Z].北京:中华书局,1980:208,315,452,906,1965,2637,2156.
    [47]Delectis Florae Reipublicae Popularis Sinicae, Agendae Acad-emiae Sinicae Edits.Flora Reipublicae Popularis Sinicae(中国植物志)[M]. Tomus 69. Beijing:Science Press,1997.
    [48]王淑清.梓树已在大庆开花结果[J].北方园艺.1996,3.
    [49]王世荣,黄瑞海,徐凤珍.城市绿化新树种—梓树[J].中国林副特产.1995,8(3)41-42.
    [50]郭立影,李福义,孙金玉,等.梓村引种培育技术的研究[J].吉林林业科技.1994,10(5)36-37.
    [51]占玉芳,蔺国菊.干旱、半干旱区梓树的繁育技术及其利用[J].防护林科技,2005,1.
    [52]赵曦阳,王军辉,张金凤,等.梓树属4个种种子表型性状和发芽特性的研究[J].西北农林大学学报,2008,36:149-154.
    [53]吴松权,李正男,全雪丽,等.梓树种子萌发率影响因素研究[J].江苏农业科学,2010,(3):245-247.
    [54]鲁敏,李英杰.绿化树种对大气金属污染物吸滞能力[J].城市环境与城市生态,2003,16(1):51-52.
    [55]张玲玲.11种园林树木对汽车尾气和SOz的抗性生理研究[D].安徽农业大学,2006.
    [56]胡丁猛,王太明,孙明高.11个园林绿化树种对S02胁迫反应特性的研究[D].泰安:山东农业大学,2005.
    [57]EL-Naggar, Beal. Iridoids. A Review[J]. JNat Prod,1980,43 (60):647-707.
    [58]王奇志,梁敬钰.梓实化学成分研究[J].中草药,2005,36(1):15-17.
    [59]秦雪梅,郝敏晋,张忠鹤.梓树与楸树果实的生药鉴别[J].1993,24(4):270-273.
    [60]宫玉婷,王钰,阿不都拉.阿巴斯.梓树果实中黄酮类化合物提取工艺研究[J].2008.
    [61]姚庆渭黄鹏成.江苏省珍贵用材树种的研究[J]. CatalPaSeopoli, Introd. Hist. Nat.1977.
    [62]马德滋任笠坤.梓树(catalpa ovata)花药绒毡层的个体发育[J].宁夏农学院学报,1988,2:21-27.
    [63]托马斯S.伊来斯,莉迪亚F.纽科姆.梓属(Catalpa)(紫威科)叶上的蜜腺和腺毛[J].植物学报,1979,21(3):215-228.
    [64]樊汝汶.梓树(catalpa ovata)胚胎发育的研究[J].南京林产工业学院学报.1981,4:64-74
    [65]柯病凡江泽慧王传贵柯曙华珍稀及待开发树种材性及用途的研究[J].安徽农业大学学报,1994,21(4):381-482
    [66]柯曙华.梓树的材性及用途[J].安徽农业大学学报.1994,21(3):362-365
    [67]吴振明,李贤军.梓木干燥特性和干燥基准试验研究[J].湖南林业科技.2007,34(6).
    [68]芩显超,彭方仁.不同品种(类型)楸树苗木对干旱胁迫的生理响应[D].2008.
    [69]张光灿,杨吉华,郭春利,等.不同母岩山地梓树幼林生长及水文效应的试验研究[J].山西水土保持科技.1997,3:13-16.
    [70]姚晓蕊,潘存德.克拉玛依农业开发区水土环境特征与人工栽培树种生态适应性评价研究[J].新疆农业大学学报,2008.
    [71]江霞,张喜,谢双喜,等.基于光合生理指标的黔中地区造林树种选择研究[J].贵州大学学报,2006.
    [72]姚晓蕊,潘存德,李冬梅,等.11种人工栽培数木叶绿素荧光特征比较[J].干旱区研究.2009,26(4):555-560.
    [73]Kimura K, Okuda T, Takano T. Studies on the constituents of Catalpa ovataG. Don. I. Active principles of fruits [J]. Yakuzaigaku[药学杂志(日)],1962,83(6):635-638.
    [74]李正理.植物制片技术[M].北京:科学出版社,1987:138-148.
    [75]郑国昌.生物显微技术[M].人民教育出版社,1978.
    [76]杨轶囡,陆静梅.天女木兰演化结构及抗寒机理研究[D].长春:东北师范大学,2009.
    [77]闫桂华,王立军,聂晓兰.梓树幼苗初生维管系统的研究[J].植物研究,2011,31(3).
    [78]Namboodiri K K, Beek C B. A comparative study of the primary vascular system of conifers.Ⅰ. Genera with helical phyllotaxis[J]. Amer J Bot,1968,55:447-451.
    [79]Namboodiri K K, Beek C B. A comparative study of the primary vascular system of conifers.Ⅱ. Genera with opposite and whorled phyllotaxis[J]. Amer J Bot,1968,55:458-463.
    [80]Devadas C, Beek C B. Development and morphology of stelar components in the stems of some members of the Leguminosae and Rosaceae[J]. Amer J Bot,1971,58:432-446.
    [81]唐耀.云南热带及亚热带材[M].北京:科学出版社,1964:97-103.
    [82]黄桂玲,李正理.山铜材属木材的比较解剖观察[J].植物学报,1982,24(6):506-511.
    [83]谷安根,陆静梅,王立军.维管植物演化形态学[M].长春:吉林科学技术出版社,1993:124-127.
    [84]Metcalfe C R, Chalk L. Anatomy of the Dicotyledons[M]. Oxford:Clarendon Press,1957,1:587-593.
    [85]Solerender H. Systematic Anatomy of the Dicotyledons[M]. Oxford:Clarendon Press,1908,1:328-332.
    [86]Crongquist J M. An Integrated System of Classification of the Flowering Plants[M]. NewYork:Columbia University Press,1981:163-177.
    [87]Outer R W den. Variation in wood anatomy of species with a distribution covering both rain forest and Savanna areas of the Ivory coast, West Africa[M]. Leiden:Leiden University Press,1976. In:Leiden Botanical Series No.3,182-195.
    [88]苏印泉,张军侠.10种茶树叶片比较解剖学及与抗性关系的研究[J].西北林学院学报,1997,13(4):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700