长43-39区块扶余油层点坝识别及建筑结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大庆油田勘探开发的不断深入,如何在油田开发中后期高含水阶段利用科学、合理的方法寻找剩余油和开发油田是今后油田研究的主要方向。开展油藏精细描述和单砂体内部建筑结构研究,可以为寻找剩余油的分布,寻找新的油气储备和完善油田的开发方案提供科学的依据。
     本文运用小层对比理论、精细沉积学理论、储层沉积学、油气田开发地质学等对朝阳沟油田长43-39区块扶余油层进行了精细的对比,借助区域地质背景和岩心资料对研究区的沉积体系、沉积微相进行精细的研究,并建立了研究区沉积微相模式,总结了研究区点坝和废弃河道的识别方法,精细刻画了21张沉积相图。针对单砂体已不能满足高含水期以及三次采油阶段的需求,重点研究单砂体内部侧积体和非渗透薄夹层的分布,对指导以后的油田开发具有重要的指导作用。由于点坝内部薄夹层的非渗透性,造成点坝内部的非均质性特别严重,从而造成了油气分布的非均质性,影响了油气的分布。为了更好的研究薄夹层对油气分布的影响和寻找剩余油,以单砂体内部三维非均质性为指导思想,结合点坝内部侧积体垂向和平面上的侧叠模式,建立侧积体内的渗透率和孔隙度空间模式,即向凸岸、向上减小的新月形楔状侧积体,逐一斜列侧叠,其间被非渗透侧积薄夹层隔开的点坝空间模式,并且分析了其形成的原因,从而真正反映了单砂体内部三维非均质性的本质,在此基础上建立了三维储层模型。为更好的挖潜剩余油和更好的开采点坝砂体提供了新的理论指导。
With the continuous exploration and development of Daqing oil field, how to use scientific and reasonable method to develop oil fields in the late of oil field development and search for the remaining work is the subject of oil field development. To carry out detailed field geology and single sand body within the building structure, able to find new oil and gas reserves, find the distribution of remaining oil and improve the oil field development program provides a scientific basis.
     In this paper, it uses high resolution sequence stratigraphy, sedimentology fine theory, reservoir sedimentology, oil and gas field development of geology and so on to fine contrast the oilfield blocks long 43-39 Fuyu oil layer,uses the regional geological setting and core to study deposition system- fine sedimentary facies of study area, establishes sedimentary facies patterns in the study area and summarizes point bars of the study area,abandoned channel identification methods and fine characterization of the 21 sedimentary facies map. For a single sand body can not meet the high water cut and the demand for tertiary oil recovery stage, it ignores the impact of the single sand body impermeable thin sandwich (multi<30cm) on reservoir heterogeneity, summing up the single sand body genesis, the formation of micro-process and internal structure; using ideas of a single sand body within the three-dimensional heterogeneity with one side of the meandering point bar deposition model and the side of the integrated stack model, it establishes of a "porosity and permeability to the convex bank crescent-shaped wedge-shaped decrease upward lateral accretion, each echelon side of the stack, during which product is non-permeate side separated by a thin sandwich "and meandering channel sands" Structural control of three-dimensional heterogeneous model of "one side of the main Integrated depositional model, and analyzes the reasons for its formation. Thus it truly reflects a single sand body within the three-dimensional nature of heterogeneity, in this basement to establish a three-dimensional reservoir model. This has the important impact on the internal flow field of a single sand body, flooding into the agent and distribution of remaining oil, which will be important for ertiary oil recovery stage, high water cut staget and after the stage for forecasting and studying residual oil,which for the future point bar sand mining plan provides a new theoretical guidance.
引文
[1]Miall A D. Reservoir heterogeneities in fluvial sandstone:lessons from outcrop studies[J]. AAPG,1988,72(6):682-697.
    [2]Miall A D. Architecture element analysis:a new method of facies analysis applied to fluvial deposits[J]. Earth Science Review,1985,22(4):261-308.
    [3]Miall A D.The Geology of Fluvial Deposits [M]. SPRINGER-Verlag Berlin Heidelberg, NewYork,1996,1-190,453-478.
    [4]闫百泉.曲流点坝建筑结构及驱替实验与剩余油分析[D].大庆石油学院:地球科学学院,2007,21-93.
    [5]闫百泉.曲流点坝建筑结构及驱替实验与剩余油分析[D].大庆石油学院:地球科学学院,2007,1-3.
    [6]Miall A D. Reconstructing Fluvial Macroform Architecture from Two-dimensional Outcrops:Examples from The Castlegate Sandstone, Book Cliffs, Utah[J]. Journal of Sedimentary Research,1994,64(2):146-158.
    [7]Church M. Pattern of instability in a wandering gravel bed channel. In:Collinson J D, Lewin J (eds). Modern and Ancient Fluvial Systems [A]. Special Publication of the International Association of Sedimentologists[C].6, Blackwell, Oxford,1983,169-180.
    [8]Carson M A. The meandering-braided river threshold areappraisal[J]. Journal of Hydrology,1984,73:315-334.
    [9]Nanson G C, Croke J C. Agenetic classification of floodplains[J]. Geomorphology,1992, 4:459-486.
    [10]Hickin E J. Vegetation and river channel dynamics[J]. Canadian Geographer,1984, 28(2):111-126.
    [11]Miall A D. Rescription and Interpretation of Fluvial Deposits:a Critical Perspective: Discussion[J]. Sedimentology,1995,42:379-384.
    [12]Nanson G. G, Knighton A D. An abranching rivers:their cause, character and classification[J]. Earth Surfase Processesand Landforms,1996,21:217-239.
    [13]Kale V C, Baker V R, Mishra S. Multi- channel patterns of bedrock rivers:an example from the central Narmada basin, India[J]. Catena,1996,26:85-98.
    [14]Miller J R. Controls on channel form along bedrock~influenced alluvial streams insouth-central Indiana[J]. Physical Geography,1991,12(2):167-186.
    [15]Bridge J S, Leeder M R. Asimulation model of alluvial stratigraphy [J]. Sedimentology, 1979,26:617-644.
    [16]Mackey, S D, Bridge J S. Three-imensional Model of Alluvials Tratigraphy:Theory and Application[J]. Journal of Sedimentary Research,1995, B65(1):7-31.
    [17]Bridge J S, Mackey S D. Revised alluvials tratigraphy model [A]. In:Marzo M, Puigdefa bregas C(eds). Alluvial Sedimentation[C]. Special Publication of the International Association of Sedimentologists 17, Blackwell, Oxford,1993,319-336.
    [18]Bridge J S. Rivers and Floodplains[M]. Oxford:Blackwell Publishing company,2003, 214-244.
    [19]Heller P L, Paola C. Downstream changes in alluvial architecture:an exploration of controls on channel-tacking patterns [J]. Journal of Sedimentary Research,1996,66(2): 297-306.
    [20]Bryant M, Falk P, Paola C. Experimental study of avulsion frequency and rate of deposition[J]. Geology,1995,23(4):365-368.
    [21]薛培华.河流点坝相储层模式概论[M].北京:石油工业出版社,1991,51-55.
    [22]尹燕义,王国娟.曲流河点坝储集层侧积体类型研究[J].石油勘探与开发,1998,25(2).44-66.
    [23]马世忠,杨清彦.曲流点坝沉积模式、三维构形及其非均质模型[J].沉积学报,2000,18(2):241-247.
    [24]赵翰卿,付志国,吕晓光,等.大型河流-三角洲沉积储层精细描述方法[J].石油学报,2000,21(4):109-113.
    [25]束青林.孤岛油田河流相储层结构与剩余油分布规律研究[D].中国科学院:广州地球化学研究所,2005,119-126.
    [26]隋新光.曲流河道砂体内部建筑结构研究[D].大庆石油学院,2006,55-60.
    [27]闫百泉.曲流点坝建筑结构及驱替实验与剩余油分析[D].大庆石油学院:地球科学学院,2007,21-93.
    [28]Miall A D. Architecture element analysis:a new method of facies analysis applied to fluvial deposits[J]. Earth Science Review,1985,22 (4):261-308.
    [29]Miall A D. Reservoir heterogeneities in fluvial sandstone:lessons from outcrop studies[J]. AAPG,1988,72 (6):682-697.
    [30]Miall A D. The Geology of Fluvial Deposits[M]. SPRINGER-Verlag Berlin Heidelberg, NewYork,1996,1-190,453-478.
    [31]马世忠.松辽盆地河流-三角洲体系高分辨率层序地层学、储层构型及非均质模型研究[D].中国科学院:地质与地球物理研究所,2003,232-238.
    [32]徐安娜,穆龙新,裘亦楠,等.我国不同沉积类型储集层中的储量和可动剩余油分布规律[J].油勘探与开发,1998,25(5):43-47.
    [33]俞启泰,罗洪,冯明生,等.我国油田河流相与三角洲相储层参数统计研究[J].大
    庆石油地质与开发,1999,18(5):29-31.
    [34]魏斌,陈建文.应用储层流动单元研究高含水油田剩余油分布[J].地学前缘,2000,7(4):403-409.
    [35]文健,裘铎楠.油藏早期评价阶段储层建模技术的发展方向[J].石油勘探与开发,1994,21(5):88-93.
    [36]钟宝荣,李龙淞.储层随机建模与条件模拟的计算机实现.油气成藏机理及油气资源评价国际研讨会[M].北京:北京石油工业出版社,1996.
    [37]张团峰.王家华.储层随机建模和随机模拟原理[J].测井技术,1995,19(6):391-397.
    [38]杨勇.露头区辫状河砂体建模方法探讨[J].石油与天然气地质,1997,18(1):50-53.
    [39]王端平,杨耀忠,龚蔚青,等.沉积微相约束条件下的随机地质建模方法及应用研究[J].科技通报,2004,2:121-126.
    [40]骆杨,赵彦超.多点地质统计学在河流相储层建模中的应用[J].地质科技情报,2008,27(03):68-72.
    [41]林博,戴俊生,冀国盛,等.河流相建筑结构随机建模与剩余油分布研究[J].石油学报,2007,28(4):81-85.
    [42]舒治睿.鄂尔多斯盆地镇北地区长长储层地质建模[J].西北大学,2006,12(23):125-128.
    [43]林博,戴俊生.冀国盛,等.河流相建筑结构随机建模与剩余油分布研究[J].石油学报,2007,28(4):81-85.
    [44]吕晓光,于洪文,田东辉,等.高含水后期油田细分单砂层的地质研究[J].新疆石油地质,1993,14(4):345-349.
    [45]刘吉余,郝景波,尹万泉,等.流动单元研究方法及其研究意义[J].大庆石油学院学报,1998,22(1):5-7.
    [46]雷启鸿,宋子齐,谭成仟,等.利用流动单元建立渗透率模型的方法[J].新疆石油地质,2000,21(3):216-219.
    [47]马世忠,杨清彦.曲流点坝沉积模式、三维构形及其非均质模型[J].沉积学报,2000,18(2):241-247.
    [48]马世忠.松辽盆地河流-三角洲体系高分辨率层序地层学、储层构型及非均质模型研究[D].中国科学院:地质与地球物理研究所,2003,232-238.
    [49]马世忠,付春权.单砂体三维地质的优势渗透率分析方法[J].大庆石油学院学报,2000,24(3),1-5.
    [50]王志章.现代油藏描述技术[M].北京:石油工业出版社,1997,48-50.
    [51]俞启泰.关于剩余油研究的探讨[J].石油勘探与开发,1997,24(2):46-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700