集成产品开发过程规划及其微观特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成产品开发(IPD)是并行工程设计理念的外延,它站在全生命周期的高度对产品及其开发过程进行建模以满足现代企业TQCSE的战略目标。从其实质来讲,IPD是一个满足约束条件下的最优控制过程,集成、并行、协调与优化是其本质特征。本文立足于对集成产品开发过程的微观分析,以开发过程的约束规划、信息反馈和协同优化为切入点,对IPD的理论和方法进行详细的研究。
     以集成产品开发过程的微观分析为切入点,进行集成产品开发过程建模与微观特性的分析。建立了全过程的约束网络与过程网络模型,并依据反馈控制原理建立了基于约束网络的产品开发过程模型及其过程约束网络模型、过程动态模型和过程协调模型等扩展模型。对开发过程的约束规划、时序关系、依赖关系、信息反馈机制、流向控制、状态转移、动力学特性以及过程间的交互协调进行了详细的阐述和分析。建立了系统动态模型的设计结构矩阵,通过对其分析使过程间的依赖与反馈关系得到优化。运用物理规划、多目标优化、模糊数学原理提出并建立了产品开发过程的规划——评估——反馈三阶控制模式,指出合理的微观过程建模是实现产品开发全过程、全系统、全性能优化的全生命周期设计目标的重要手段。
     将产品全生命周期视为一个连续的时变过程,建立了产品开发过程的状态方程和支持全生命周期的开发过程集成化数字定义模型。率先剖析了概念设计、详细设计和改正设计等不同设计阶段上功能域和物理域间映射关系的内容和涵义。综合领域专家知识、设计者偏好和顾客需求等主客观信息,建立了各设计阶段上功能域与物理域之间的模糊映射关系,并依此建立了结构行为参数的特性表。
     建立了以产品数据管理系统为信息交换接口和操作平台的基于产品模型与过程模型集成的开发框架。对产品模型与其相关过程模型间的耦合效应进行了分析,提出了以两个模型主线相交织而展开的集成开发模式,并从模型集成的角度剖析产品模型和过程模型间的关系并建立了模型间的耦合机制。既注重过程的逻辑性,又强调了模型信息的完备性,从而可有效地推动产品开发过程的演化。
     给出了模糊质量屋的构筑方法,分析了质量屋构筑的优化本质,指出技术要求优先级的变迁和技术要求实现的资源约束是质量屋运用中存在的两个基本问题,并给出了问题解决的途径。建立了反馈信息对需求的影响规则以及信息的反馈控制机制。通过由信息反馈而带来的开发过程重组、过程约束重组和设计者偏好结构重组三种重组活动而实现开发过程从一平衡点向另一平衡点的跃迁或原平衡点处的优化,从而实现产品全生命周期快全优的设计目的。
     建立了产品立体式生命周期非线性多目标优化模型,将设计从面向某一特定阶段或特定性能指标的平面式局部规划扩展到立体式整体规划。针对设计参数内关外联的属性和设计约束的模糊性、相关性和传播性导致多目标优化设计中冲突发生和目标间协调性差等现象,应用模糊数学原理,构造尺度函数,增加附加约束,并基于解处的冲突矩阵、协同灵敏度分析以及目标重要度阈值的交互选择建立了基于Pareto解的模糊交互式多目标优化模型。针对产品开发中设计任务的分配问题,提出建立尽可能完备的设计方案备择集,经竞争机制对初始方案进行遴选后,根据设计任务分配的复杂程度分别构造整数规划或交互式物理规划模型进行设计方案的优选,从而得到满足任务分配要求和设计者偏好的方案组合。
Integrated product development (IPD) is an extension of concurrent engineering. It develops both product models and process models from the point of view of whole life cycle in order to meet the strategic targets of modern enterprises. The strategic targets on time, quality, cost, service and environment must face fierce competition from the manufacturing market. In fact, IPD is an optimal control process subjected to development constraints. Concurrency, cooperation and optimization are the essential features of IPD. Based on a microscopic analysis of the product development process, this dissertation documents a study of the theory and the methodology of IPD in the aspects of constrained programming, information feedback, and cooperative optimization.The constraint nets and the process nets were developed first. Based on the feedback-control theory, we then formulated the development process model subjected to the constraint nets. Several expanded models, including a constraint nets model, a process dynamic model, and a process coordination model, were established. A thorough description and a detailed analysis were provided on the constraint programming, logic relations, flow controls, state transitions, information-feedback mechanism, and the dynamic features of the product development process. The coordination among these processes was also elaborated. The design structure matrix of the dynamic model was established. Through an analysis of the dynamic model and its design structure matrix, the interdependence and feedback relationships among processes were optimized. The three steps of the control model of the product development process, which are process programming, process evaluation and process feedback, were established to speed up information flow. Physical programming, multi-objective optimization, and fuzzy evaluation were synthesized to optimize the product design process. Results show that microscopic process modeling is an important method for realizing life cycle design and optimizing the whole development process and product performance.A product's life cycle can be divided into a sequence of life phases. The status of the product evolves form one phase to another through these life phases. The state equations, the framework, and the integrated numeric model of the development process covering the entire life cycle were developed. The contents and the meanings of the mapping relationships between the physical domains and the functional domains in different design stages, such as the conceptual design, the detailed design, and the correctional design, were analyzed. According to the obtained results, the fuzzy mapping between the physical domains and the function domains in different design stages was established by integrating both objective and subjective information, such as specialist's knowledge, designer's preferences, and customer's requirements, in the design process. The characteristics of the structure behavior parameters were tabulated based on the fuzzy mapping relationships. The fuzzy mapping is very
引文
[1] Unger D W. Product development process design: improving development response to market, technical, and regulatory risks. Ph.D Dissertation, MIT, Cambridge, 1999
    [2] 熊光楞.并行工程的理论与实践.北京:清华大学出版社,2001
    [3] 熊光楞.并行工程在我国的研究与应用.计算机集成制造系统-CIMS,2000,6(2):1-6
    [4] Kusiak A, Park K. Concurrent engineering: decomposition and scheduling of design activities. International Journal of Production Research, 1990, 28(10): 1883-1900
    [5] Sohlenius G. Concurrent engineering. Annuals of the CIRP, 1992, 41(2): 645-655
    [6] Sprague R A, Singh K J, Wood R T. Concurrent engineering in product development. IEEE Design & Test of Computers, 1991, 8(1): 6-13
    [7] Smith R P. The historical roots of concurrent engineering fundamentals. IEEE Transactions on Engineering Management, 1997, 44(1): 67-78
    [8] 白英彩,唐冶文,余巍.计算机集成制造系统-CLMS概论.北京:清华大学出版社,1997
    [9] Beekman D. CIMOSA: computer integrated manufacturing - open system architecture. Intemational Journal of Computer Integrated Manufacturing, 1989, 2(2): 94-105
    [10] 任守榘.现代制造系统分析与设计.北京:科学出版社,1999,178-190
    [11] 芮延年,刘文杰,郭旭红.协同设计.北京:机械工业出版社,2003
    [12] Kimura F. Product and process modeling as a kernel for virtual manufacturing environment. 1993, Annals of CIRP, 42(1): 147-157.
    [13] Shukla C, Nazquez M, Chen F F. Virtual manufacturing: an overview. Computers & Industrial Engineering,. 1996, 31 (1-2): 79-82
    [14] Onosato M, Iwata K. Development of a virtual manufacturing system by integrating product models and factory models. 1993, Annals of the CIRP, 42(1): 475-479
    [15] Moody T. Integrated product development process at Ti/dseg. Proceedings of Eighth IEEE-USA Careers Conferences, 1994, 74-77
    [16] US Department of Defense. Guide to integrated product and process development. http://www.acq.osd.mil/io/se/ippd/
    [17] US Department of Defense. Integrated product and process development. http://www, acq.osd.mil/io/se/ippd/ippd pubs.html
    [18] 谢列为.集成产品开发过程的理论、方法及应用研究[博士学位论文].浙江大学,2000
    [19] 王隆太.先进制造技术.北京:机械工业出版社,2003
    [20] 中国机械设计大典编委会.中国机械设计大典:第1卷,现代机械设计方法.南昌:江西科学技术出版社,2002
    [21] 路甬祥.团结奋斗,开拓创新,建设制造强国.2002年中国机械工程学会年会主旨报告
    [22] 吴澄.现代集成制造系统导论-概念、方法、技术和应用.北京:清华大学出版社,施普林格出版社,2002
    [23] 绪亚斌.产品开发过程建模的研究[博士学位论文].西北工业大学,2000
    [24] Tate D. A roadmap for decomposition--activities, theories, and tools for system design. Ph.D Dissertation, MIT, Cambridge, 1999
    [25] 熊光楞,吴祚宝,徐光明.计算机集成制造系统的组成与实施.北京:清华大学出版社,1997
    [26] 邓家褆,韩晓建,曾硝.产品概念设计理论、方法与技术.北京:机械工业出版社,2002
    [27] Yoshikawa H. Design theory for CAD/CAM integration. Annuals of the CIRP, 1985, 34(1): 173-178
    [28] Paul G, Beitz W. Engineering design. Springer-Verlag, 1998
    [29] 傅仕伟.产品开发过程的并行规划与协作设计的研究[博士学位论文].上海:上海交通大学,1998
    [30] Tate D, Nordlund M. A design process roadmap as a general tool for structuring and supporting design activities. Proceedings of the Second World Conference on Integrated Design and Process Technology, Society for Design Process Science, Austin 1996, 97-104
    [31] Park H, Cutkosky M R. Framework for modeling dependencies in collaborative engineering processes. Research in Engineering Design, 1999, 20(11): 84-102
    [32] Krause F L, Kimura F, Kjellberg T, Lu S C Y. Product modeling. Annals of the CIRP, 1993, 42(2): 695-706
    [33] http://www.cimsnet.com/MonographicTech/cimstotal/cim1ssystem/svs3guo2.htm, DEM 方法
    [34] http://www.cimsnet.com/MonographicTech/cimstotal/cimssvstem/svs25.htm, ARIS 方法
    [35] http://www.cimsnet.com/MonographicTech/cimstotal/cimssvstem/svs24.htm, PERA 方法
    [36] Ross D T. Structured analysis (SA): a language for communicating ideas. IEEE Transactions on Software Engineering, 1977,3(1): 16-34
    [37] http://www.cimsnet.com/MonographicTech/cimstotal/cimssvstem/svs3guo3.htm , PERTI 方法
    [38] http://www.cimsnet.com/MonographicTech/cimstotal/cimssvstem/svs3zi2.htm, RAD 方法
    [39] http://www.cimsnet.com/MonographicTech/cimstotal/cimssvstem/svs33.htm, GRAI 方法
    [40] Smith P, Morrow A. Product development process modeling. Design Studies, 1999, 22(3): 237-261
    [41] http://web.mit.edu/dsm
    [42] Browning T R. Applying the design structure matrix to system decomposition and integration problems: a review and new directions. IEEE Transactions on Engineering Management, 2001, 48(3): 202-306
    [43] Kusiak A, Park K. Concurrent engineering: decomposition and scheduling of design activities. International Journal of Production Research, 1990,28(10): 1883-1900
    [44] Kusiak A, Wang J. Effective organizing of design activities. International Journal of Production Research, 1993,31(4): 754-769
    [45] Kusiak A, Wang J. Decomposition of the design process. ASME Journal of Mechanical Design, 1993, 115(12): 687-695
    [46] Kusiak A, Wang J, He D W, Feng C X. A structured approach for analysis of design processes. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, 1995, 18(3): 664-673
    [47] Michelena N F, Papalambros P Y. A network reliability approach to optimal decomposition of design problems. Journal of Mechanical Design, 1995,117(9): 433-440
    [48] Michelena N F, Papalambros P Y. Optimal model-based decomposition of powertrain system design. Journal of Mechanical Design, 1995,117(12): 499-505
    [49] Carrascosa M C, Eppinger D, Whitney E. Using the design structure matrix to estimate product development time. Proceedings of the ASME DETC'98, Atlanta, Georgia, 1998
    [50] Carrascosa M. Product development timing and cost analysis using information flow modeling. Ph.D Dissertation, MIT, Cambridge, 1999
    [51] Belhe U, Kusiak A. Modeling relationship among design activities. ASME, Journal of Mechanical Design, 1996, 118(4): 454-460
    [52] Smith P, Eppinger D. Identifying controlling features of engineering design iteration. Management Science, 1997, 43(3): 276-293
    [53] Smith P, Eppinger D. A predictive model of sequential iteration in engineering design. Management Science, 1997, 43(8): 1104-1120
    [54] Steward D V. The design structure system: a method for managing the design of complex systems. IEEE Transactions on Engineering Management, 1981, EM-28: 71-78
    [55] Blessing L T M. A process-based approach to computer supported engineering design. Proceedings of ICED'93, 1993
    [56] Eppinger S D, Whitney D E, Smith R P, et al .A model-based method for organizing tasks in product development. Research in Engineering Design, 1994, 6(1): 1-13
    [57] Dixon J R, Simmons M K. Expert systems for mechanical design: a program of research. ASME Design Engineering Technical Conference, 1985: 9p
    [58] Krishnan V, Eppinger S D. A model-based framework to overlap product development activities. Management Science, 1997,43(4): 437-451
    [59] Krishnan V, Eppinger S D, Whitney D. Accelerating product development by the exchange of preliminary product design information. ASME Journal of Mechanical Design, 1995, 117(12): 491-498
    [60] Krishnan V. Managing the simultaneous execution of coupled phases in concurrent product development. IEEE Transactions on Engineering Management, 1996, 43(5): 210-217
    [61] Ramachaandran N, Langrana, Steinberg I. Initial design strategies for iterative design. Research in Engineering Design, 1992,4:159-169
    [62] Albert Y, Porteus L. Optimal timing of reviews in concurrent design for manufacturability. Management Science, 1995,41(9): 1431-1447
    [63] Eppinger D, Nukala M, Whitney D. Generalized models of design iteration using signal flow graphs. Research in Engineering Design, 1997,9:112-113
    [64] Joglekar R, Yassine A. Management of information technology driven product development processes. http://www.mit.edu/yassine
    [65] Yassine A A, Chelst K R, Falkenburg D R. A decision analytic framework for evaluating concurrent engineering. IEEE Transactions on Engineering Management, 1999, 46(2): 144-157
    [66] Fricke E, Negele H, Schrepfer L, Dick A, Gebhard B, Hartlein N. Modeling of concurrent engineering processes for integrated systems development. Proceedings of 17th DASC Digital Avionics Systems Conference, The AIAA/IEEE/SAE, 1998,1: B13/1, B13/3 - B13/8
    [67] Negele H, Fricke E, Lschrepfer L, et al. Modeling of integrated product development processes. Proceedings of the 9th Annal Symposium of INCOSE, UK, 1999
    [68] Yan P T, Zhou M C, Donald S. An integrated product and process development methodology: concept formulation. Robotic and Computer Integrated Manufacturing. 1999, 5: 201-210
    [69] Yan P T, Zhou M C, Sebastian D. Formulation of a generic framework for integrated product and process development. Proceedings of 1998 IEEE International Conference on Systems, Man, and Cybernetics, 1998, 3: 2609-2614
    [70] Klein M. Core services for coordination in concurrent engineering. Computers in Industry, 1996, 29(1-2): 105-115
    [71] Klein M. Capturing design rationale in concurrent engineering teams. IEEE Computer, 1993, 26(1): 39-47
    [72] Sycara K P. Problem restructuring in negotiation. Management Science, 1991, 37(10): 1248
    [73] Belhe U, Kusiak A. Resource-constrained scheduling of hierarchically structured design activity networks. IEEE Transactions on Engineering Management, 1995, 42(2): 150-158
    [74] Tan G W, Caroline C. An intelligent-agent framework for concurrent product design and planning. IEEE Transactions on Engineering Management, 1996, 43(3): 297-306
    [75] Cho S H, Eppinger S. D. Product development process modeling using advanced simulation. Proceeding of DETC'01 ASME 2001 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2001
    [76] Zakarian A. Analysis of process models: a fuzzy logic approach. Advanced Manufacturing Technology, 2001,17: 444-452
    [77] Chen L, Li S. A computerized team approach for concurrent product and process design optimization. Computer-Aided Design, 2002, 34: 57-69
    [78] Hatch M, Badinelli R D. A concurrent optimization methodology for concurrent engineering. IEEE Transactions on Engineering Management, 1999, 46(1): 72-86
    [79] Feng C X, Li P G, Liang M. Fuzzy mapping of requirements onto functions in detail design.. Computer-Aided Design, 2001, 33:425-437
    [80] Larson N, Kusiak A. Managing design processes: a risk assessment approach. IEEE Transactions on System, Man, Cyberntic, 1996, 26:749-759
    [81] Kusiak A, Zakarian A. Reliability evaluation of process models. IEEE Transactions on Components, Packaging, and Manufacturing Technology- Part A, 1996a, 19(3): 268-275
    [82] Kusiak A, Zakarian A. Risk assessment of process models. Computer and Industrial Engineering, 1996b, 30(4): 599-610
    [83] Ozer M. A survey of new product evaluation models. Journal of Product Innovation Management, 1999, 16:77-94
    [84] Paul J C, Jack B J. Utilizing cluster analysis to structure concurrent engineering teams. IEEE Transactions on Engineering Management, 2000, 47(2): 296-280
    [85] Kemaghan J, Cooke R. The contribution of the group process to successful project planning R&D settings. IEEE Transactions on Engineering Management, 1986, EM-33, 3:131-140
    [86] Thamhain H L. Managing engineers effectively. IEEE Transactions on Engineering Management, 1983, EM-30:231-237
    [87] Safoutin M J, Thurston D L. A communication-based technique for interdisciplinary design team management. IEEE Transactions on Engineering Management, 1993, 40(4): 360-372
    [88] Oscar H, Karim H. The influence of process concurrency on project outcomes in product development: an empirical study of cross-functional teams. IEEE Transactions on Engineering Management, 1996, 43(2): 153-160
    [89] Olson M, Orville C, Rueket W. Organizing for effective new product development: the moderating role of product innovations. Journal of Marketing, 1995, 1:23-31
    [90] 许维胜,吴启迪.并行工程过程研究.同济大学学报2001,29(2):185-190
    [91] 施群,秦现生,彭炎午.并行工程环境下产品开发活动模型的建立与研究.制造业自动化,2003,22(3):28-31
    [92] 秦现生,王润孝,武子昉,徐亚斌.并行工程中的三域原理及其体系结构研究.西北工业大学学报,2001,19(2):181-185
    [93] 陈时昕,熊光楞,吴祚宝,陈加栋,张玉云.产品并行开发过程监控系统的研究与实现.计算机集成制造系统-CIMS,1997,5:29-33
    [94] 王计斌,熊光楞,陈加栋.支持并行迭代的基于规则的产品开发过程建模.清华大学学报(自然科学版),1999,39(11):114-117
    [95] 张天兵,吴俊军,张新访,钟毅芳,周济.并行工程下产品协调模型的研究.计算机辅助设计与图形学学报,2000,12(10):772-776
    [96] 赵晋敏,刘继红,钟毅芳,金国栋.基于CORBA的并行工程产品开发过程管理系统.华中理工大学学报,2000,28(9):91-93
    [97] 马万太,王宁生.并行工程下集成设计框架的研究.航空学报,1999,20(2):179-183
    [98] 李秀,姜澄宇,王宁生.基于并行工程的产品开发过程建模.机械设计与制造工程,2000,29(1):34-38
    [99] 陈希,王宁生.虚拟企业环境下的复杂产品并行开发框架模型研究.控制与决策,18(6):716-719
    [100] 曹健,张申生.并行工程中的产品开发过程规划方法研究.高技术通讯,2002,4:68-72
    [101] 曹健,张申生,胡锦敏.面向并行工程的集成化产品开发过程管理系统研究.中国机械工程,2002,13(1):80-83
    [102] 何煜琛,王先逵,刘成颖,李海峰.并行工程中的两种并行实现模式研究.计算机集成制造系统-CIMS,2002,7:538-541
    [103] 闫纪红,吴澄,姜浩.产品开发活动的并行规划.计算机集成制造系统-CIMS,2001,7(2):6-9
    [104] 宋玉银,褚秀萍,蔡复之.基于时间Petri网的实时并行设计过程建模研究.计算机集成制造系统-CIMS,1999,5(6):17-22
    [105] 范文慧,葛正宇,熊光楞,周来胜,李云朋,苏小华.基于PDM的产品开发过程管理方法的研究与实现.高技术通讯,2004,3:63-68
    [106] 陈文培,严隽琪,傅仕伟,马登哲,蒋祖华.并行设计的进程模型.机械科学与技术,2000,19(5):857-860
    [107] 蒋祖华,严隽琪,金烨,马登哲,傅仕伟.设计过程数字化描述的研究.中国机械工程,2000,11(11):1274-1277
    [108] 李小燕,刘敬军,张琴舜.基于P-PROCE集成多视图模型的产品开发过程管理.机械科学与技术,2000,19(2):57-5
    [109] 窦万春,李东波,王栓虎,张世琪.基于并行工程广义C4P集成系统复合建模研究.计算机集成制造系统-CIMS,1999,5(2):36-40
    [110] 谢列卫,吴祚宝.集成产品设计多视图建模问题研究.浙江工业大学学报,2000,28(1):37-42
    [111] 徐文胜,熊光楞,钟佩思.并行工程冲突管理总论.计算机集成制造系统-CIMS,2001,17(1):2-6
    [112] 常天庆,熊光楞,李敬逸.并行工程约束管理系统研究.计算机集成制造系统-CIMS,1997,6:16-20
    [113] 熊光楞,马海波.并行设计中冲突的协商解决研究.控制与决策,2001,16(supp):721-724
    [114] 徐文胜,常天庆,张新访,周济.并行工程冲突协商支持系统的应用研究.华中理工大学学报,1998,26(1):95-97
    [115] 徐文胜,熊光楞,肖田元.并行工程中时间约束网络建立及冲突检测研究.系统仿真学报,2003,15(2):185—189
    [116] 陈文培,严隽琪,马登哲,金烨.并行工程中的冲突及其协调策略.机械科学与技术,1999,18(5):838-840
    [117] 朱湘毅,唐泉,陈文培,严隽琪,马登哲.并行工程中基于约束的冲突检测研究.机械科学与技术,2000,19(5):849-852
    [118] 杨秋琼,曹健,张友良.协同产品开发中分布式约束管理系统的研究与实现.机械科学与技术,2000,19(4):638-640
    [119] 李祥,袁国华,周雄辉,阮雪榆.基于集成的协同设计冲突消解系统研究.计算机集成制造系统-CIMS,2000,6(4):61-64
    [120] 蹇崇军,王润孝,秦现生,殷磊,李翌辉.并行工程中的冲突协商模型研究.机械科学与技术,2003,22(3):508-51
    [121] 武子昉,秦现生,王润孝,杨建华.并行工程中的约束管理研究.西北工业大学学报,2001,19(1):110-113
    [122] 武子昉,秦现生,王润孝,杨建华.并行工程中约束管理系统的开发研究.航空制造工程,1998,6:36-38
    [123] 许宇荣,孙守迁,潘云鹤.基于约束的智能协同设计系统模型的研究.中国机械工程,2002,13(4):333-336
    [124] 李洪杰,肖人彬.基于约束网络的机械产品设计方法原理:机械工程学报,2004,40(1):121-126
    [125] 陈晓川,刘晓冰,张暴暴,冯辛安.约束网络及约束传播技术在并行设计中的应用研究.中国机

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700