金刚石薄膜表面的含氧基修饰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石是一种集多种优良性能于一体的功能材料,它拥有优良的电化学性能:宽电化学势窗和低背景电流,也具有极其优异的物理性质、良好的化学稳定性以及优良的机械、磨擦和耐高温等性能。更重要的是金刚石是由碳元素组成,可与生物体有良好的兼容性。因此金刚石薄膜在许多领域有着极其广泛的应用前景。化学气相沉积法制备金刚石薄膜的技术,使人们大规模利用金刚石的愿望得以实现。
     金刚石薄膜的高化学稳定性是它的优点,然而在实际应用中又成为它的弱点,因此,如何有效地改善金刚石薄膜表面性能使其功能化,提高应用的广泛性是其发展的重点。
     本文首先介绍了金刚石薄膜电极的制备与表征,研究了金刚石薄膜制备的工艺流程。然后介绍了对金刚石薄膜电化学性能的研究以及目前对金刚石表面修饰的主要方法和其研究的现状前景。最后重点介绍了用电化学氧化的方法在金刚石薄膜表面引入含氧基,并利用X光电子能谱仪(XPS)对其表面进行分析。经含氧基修饰后的金刚石薄膜的性质发生变化,如:电导率变小、电化学势窗更宽。利用修饰前后金刚石薄膜性质的不同将其应用于对某些特定物质的检测。
The diamond is an excellent functional material. It has outstanding electrochemical features, such as wide potential window in aqueous solutions, low background current, and also has excellent physical property, good chemistry stability. Otherwise it can bear friction and high temperature and has good mechanical functions. The more important thing is that the diamond is consistent of carbon chemical element. So it has better compatibility with organism. The diamond film has very extensive application in many fileds. The diamond film fabricated by CVD makes the dream of using it extensively come true.
     The high chemical stability of diamond film has its advantage; however it becomes its weakness in practical application. So how to improve the diamond film’s surface function is the point of its development.
     This article introduces the relevant knowledge of diamond film electrode preparation and token, including the growth process of diamond film. Then we study the electrochemical character of diamond film and the mainly modify method of diamond film at present. Lastly, we use the electrochemical oxidation's method to import oxygen in the diamond film, and use the X-ray Photoelectron Spectroscopy (XPS) to examine the surface of diamond film. The property of diamond film after modification has changed, such as the conductance diminishing, wider potential window in aqueous solution. So we can use the modified diamond film to detective some particular materials.
引文
[1] Dergagin, B. V. , et al,powder Technol[J].9(1974),14-18
    [2] Eversol. W.G.,US paten[R].No3030187,No303O188 (1958)
    [3] Derjaguin B V.DokIAKAD Nuak USSR[J].1975, 31:333
    [4]蒋翔六,陈天鹏,吕反修,金刚石薄膜研究进展[M].化学工业出版社,1991:4
    [5]罗广南,谢致薇,郑健红等,功能材料[M].1995,26(5):417
    [6]沈元华,应首同,邢中菁等,真空科学与技术学报[N].1996,16(4):286
    [7] Zhang Wz et al,金刚石及其相关材料的应用.第三届国际年会论文集[C].1995:137
    [8]苏堤,陈本敬,材料导报[N].1995,5:33
    [9] John.V.Busch et al.,Diamond and Related Materials[M].1994,3:295
    [10] Yukio Saito,Kouju Sato,et al.,Journal of Materials Science[M].1990,25:1246
    [11] K.Aoyama,H. Vyama and 0.Matsomoto.,Diamond and Related Materials[M].1993,2:337
    [12] LaneR.E,Hubbard A.. T. Eleetorehemist of chemisobred molecules.1[N].reactnats connected to electrodes through olefinic substiutents.J.PhysChem.1973,77:1401
    [13] WatkinsB.F.,BehlingJ.R,KarivE.nadMillerL.L.J.Am.ehem.soe[J].l975,97:3549
    [14] s.Iijima,T.Ichihashi. Single shell carbon nanotubes of one nanometer diameterNature[J].1993,363:603
    [15] LV J Q, CHEN R, HE X W, J. Chem. Electroanal[M].2002,528:33-38
    [16] Chen H.M.,LI.F,Su G,Pan H..Y,Dresselhaus M.S.. Large—scale and low—costsynthesis of single—walled carbon nanotubes by the catalytic Pyrolysis of hydorearbons,APPI.Phys.Lett[N].1998,72:3282
    [17] S.Hosomi and I.Yoshida, Applications of Diamond Films and Related Materials[J]. Ed. By.Y.Tzeng,et al.,(1991)15
    [18]张进,冉均国,苟立.循环刻蚀工艺对金刚石膜形貌和电阻率的影响[J].电子元件与材料. 2005, 24(3):7~9
    [19]刘东红,闫翠霞,俞琳等.硼/氢掺杂金刚石薄膜导电特性研究[J].半导体技术, 2004, 22(4): 48~50
    [20]王勇,马玉平,孙方宏等.光滑硬质合金衬底渗硼预处理对CVD金刚石薄膜性能的影响[J].中国机械工程,2006,17(5):10
    [21] Evstefeeva Yu E, Krotova M D, Pleskov Yu V, et al. Synthetic semiconductor diamond electrodes: a comparison of single-crystal and bolycrystalline films[J].Russian Journal Electrochemistry, 1998,34(11): 1055-1061
    [22] Pleskov Yu V, Sakharova A Ya, Krotova M D. Photoelectrochemical properties of semiconductor diamond[J].Journal of Electroanalytical Chemistry, 1987, 228(1), 19-27
    [23] Lou Z, Chen Q, Zhang Y, et al. Diamond Formation by Reduction of Carbon Dioxide at Low Temperatures[J].Journal of the American Chemical Society, 2003, 125(31): 9302-9303
    [24] Honda K, Noda T, Yoshimura M, et al. Microstructural Heterogeneity for Electrochemical Activity in Polycrystalline Diamond Thin Films Observed by Electrogenerated Chemiluminescence Imaging[J].Journal of the Physical. Chemistry B, 2004, 108(41): 16117-16127
    [25] Ferro S D, Battisti A. The 5-V Window of Polarizability of Fluorinated Diamond Electrodes in Aqueous Solutions[J].Analytical Chemistry, 2003, 75(24): 7040-7042
    [26] Pagels M, Hall C. E, Lawrence N S, et al. All-Diamond Microelectrode Array Device [J],Analytical Chemistry, 2005, 77(11): 3705-3708
    [27] Chen Q, Swain G M. Structural characterization, electrochemical reactivity, and response stability of hydrogenated glassy carbon electrodes [J]. Langmuir, 1998, 14(24): 7017-7026
    [28]戴达煌,周克崧等.金刚石薄膜沉积制备工艺与应用[M].北京:冶金工业出版社.2001
    [29]只金芳,关波.金刚石表面的功能化修饰[N].北京:中国科学院理化技术研究所. 2006
    [30]谢晶堆.红外光谱在有机和药物化学中的应用[M].北京:科学出版社.1987
    [31]周永冶.分子结构分析[M].北京:化学工业出版杜.1991
    [32]陆家和,陈长彦.表面分析技术[M].北京:电子工业出版社.1987
    [33] Briggs D(桂琳琳等译).x射线与紫外光电子能谱[M].北京:北京大学出版社,1984.Briggs D.Handbook of X—ray and Ultraviolet Photoelectron Spectroscopy. Heyden & Son Ltd.1977
    [34]谭忠印,周丹红编著.电化学分析原理及技术[M].辽宁师范大学出版社. 2001
    [35]王红卫,沈风雷,孙敏等.液相沉积类金刚石膜的沉积机理研究[N].化学工业与工程技术, 2006, 27(2): 9~12
    [36] Sarada B V, Rao T N, Tryk D A, et al. Electroanalytical application of conductive diamond electrodes[N]. New Dia Fron Carbon Tech, 1999, 5: 365~376
    [37] Popa E, Notsu H, Miwa T, et al. Selective electrochemical detection of dopamine in the presence of ascorbic acid at anodized diamond thin film electrodes[N]. Electrochem Solid-State Lett, 1999, 2(1): 49~51
    [38] Popa E, Kubota Y, Tryk D A, et al. Selective voltammetric and amperometric detection of uric acid with oxidized diamond film electrodes[J]. Anal Chem, 2000, 72(7): 1724~1727
    [39] Chen X M, Chen G H, Yue P L. Anodic oxidation of dyes at Ti/B-diamond electrodes[J]. Chemical Engineering Science, 2003, 58(3-6): 995-1001
    [40] Wu J, Zhu J, Shan L, Cheng N. Voltammetric and amperometric study of electrochemical activity of boron-doped polycrystalline diamond thin film electrodes [J]. Analytica Chimica Acta, 1996, 333(1-2):125-130
    [41] Almeida E C, Diniz A V, Rosolen J M, et al. Structural and voltammetric studies at boron-doped diamond electrode grown on carbon felt produced from different temperatures [J]. Diamond Related Materials, Diamond and Related Materials, 2005, 14(3-7): 679-684
    [42] Eaton S C, Evstefeeva Y E, Angus J C, et al. Sulfur-doped n-type diamond:Preparation and electrochemical properties[J].Russian Journal of the Electrochemistry, 2003, 39(2): 154-159
    [43]刘敬明,黄天斌,吕反修,CVD金刚石膜氧化热重分析[J].热处理学报,21(2000)4:1
    [44] S.E.Coe.,R.S.Sussmann.,Diamond and related Materials[M].9 (2000):1726
    [45] C.S.J.Pickles.,T.D.Madgwick.,R.S.Sussmann and C.E.Hall.,Industrial Diamond Review[M]. 60(587):293
    [46] J.A.Savage.,C.J.H.wort et al.,SPIE[J].3060 (1997):144
    [47] Daniel.C.Harris., SPIE[J].2286 (1994):218
    [48] Su L, Qiu X, Guo L, et al. Amperometric glucose sensor based on enzyme-modified boron-doped diamond electrode by cross-linking method[J].Sensors and Actuators,B, 2004, 99(2-3): 499–504
    [49] Manivannan A, Tryk D A, Fujishima A. Abrasive Stripping Voltammetry at Polycrystalline Diamond Electrodes[J]. Chemical Letter, 1999, (28): 851-852
    [50] Bellagamba R, Michaud P A, Comninellis C, et al. Electro-combustion of polyacrylates with boron-doped diamond anodes[J]. Electrochemistry Communication, 2002, 4(2): 171-176
    [51] Leronz J, Pupunat L, Comninellis C, et al. 51st ISE Meeting[R].Warsaw, Poland,2000, Abstract, 4-228
    [52] Abstracts of Papers, 3rd Workshop“Diamond Electrodes”Neushatel Switzerland[R].Neushatel: Swiss Center for Electronics and Microtechnology, 2000
    [53]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社, 2002,35-41
    [54] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colormetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997, 277(22): 1078-1081
    [55] G.W. Bryan, in: R. Johnston (Ed.), Marine Pollution–Heavy Metal Contamination in the Sea[J]. Academic Press, London, 1976, 185
    [56] Miller J B, Brown D W. Amines and thiols on diamond surfaces[J]. Diamond Related Materials, 1995, 4: 435~440
    [57] Ohtami B, Kim Y, Yano T, et al. Surface functionalization of doped CVD diamond via covalent bond and XPS study on the formation of surface-bound quaternary pyridinium salt[J]. Chem Lett, 1998: 953~954
    [58] Tsubota T, Ida S, Hirabayashi O, et al. Chemical modification of the diamond surface using diacyll peroxide as radical initiator and CN group-containing compounds for the introduction of the CNgroup[J]. Phys Chem Chem Phys, 2002, 4: 3881~3886
    [59] Sarada B V, Rao T N, Tryk D A, et al. Electroanalytical application of conductive diamond electrodes[J]. New Dia Fron Carbon Tech, 1999, 5: 365~376
    [60] Popa E, Notsu H, Miwa T, et al. Selective electrochemical detection of dopamine in the presence of ascorbic acid at anodized diamond thin film electrodes[J]. Electrochem Solid-State Lett, 1999,2(1): 49~51
    [61] Popa E, Kubota Y, Tryk D A, et al. Selective voltammetric and amperometric detection of uric acid with oxidized diamond film electrodes[J]. Anal Chem, 2000, 72(7): 1724~1727
    [62] Ida S, Tsubota T, Hirabayashi O, et al. Chemical reaction of hydrogenated diamond surface with peroxide radical initiators[J]. DiaRelat Mater, 2003, 12: 601~605
    [63] Ida S, Tsubota T, Tani S, et al. Chemical modification of the diamond surface using benzoyl peroxide and dicarboxylic acids[J]. Langmuir, 2003, 19: 9693~9698
    [64] Hamers R J, Hovis J S, Liu H, et al. Formation of ordered, anisotropic organic monolayers on the Si (001) surface[J]. J Phys Chem B, 1997, 101: 1489~1492
    [65] Konecny R, Soren D J. Theoretical prediction of a facile diels-alder reaction on the Si(100)-2*1 surface[J]. J Am Chem Soc, 1997, 119: 11098~11099
    [66] Hovis J S, Coulter S K, Hamers R J. Cycloaddition chemistry at surface: reaction of alkenes with diamond (001)-2*1 surface[J]. J AmChem Soc, 2000, 122: 732~733
    [67] Strother T, Knickerbocker T, Russell J N, et al. Photochemical functionalization of diamond films[R]. Langmuir, 2002, 18: 968~ 971
    [68] Krysinski P, Show Y, Scotter J, et al. Covalent adlayer growth on a diamond thin film surface[R]. J Am Chem Soc, 2003, 125: 12726~12728
    [69] Danesha R F, Douglas J D. Functionalization of diamond (100) by cycloaddition of butadiene: First principles theory[R]. J Am Chem Soc, 2000, 122: 12334~12339
    [70] Nakamura T, Suzuki M, Ishihara M, et al. Photochemical modification of diamond films: introduction of perfluorooctyl functional groups on their surface. Langmuir[N]. 2004, 20: 5846~5849
    [71] Tian R H, Rao T N, Zhi J F, et al. Construction of two-dimensional arrays gold nanoparticles monolayer onto boron-doped diamond electrode surfaces[J]. Chem Mater, 2006, 18: 939~945
    [72] Knickerbocker T, Strother T, Michael P, et al. DNA-modified diamond surfaces. Langmuir[C]. 2003, 19: 1938~1942
    [73] Wensha Y, Orlando A, James E B, et al. DNA-modified nanocrystalline diamond thin-films as stable, biogically active substrates[N]. Nature Materials, 2002, 1: 253~257
    [74] Ushizawa K, Sato Y, Mitsumori T, et al. Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy[R]. Chem Phys Lett, 2002, 351: 105~108
    [75] Honda K, Yoshmura M, Rao T N, et al. Electrochemical properties of Pt-modified nano-honeycombdiamond electrodes[J]. J Electroanal Chem, 2001, 514: 35~50
    [76] Zhang Y, Asahina S, Yoshihara S, et al. Oxygen reduction on Au nanoparticle deposited boron-doped diamond films[J]. Electrochim Acta, 2003, 48: 741~747
    [77] Awadam, Strojek J W, Swain G M, et al. Electrodeposition of metal adlayers on boron-doped diamond thin-film electrodes[J]. J Electrochem Soc, 1995, 142: 42~45
    [78] Battisti A D, Ferro S, Colle M D, et al. Electrocatalysis at conductivediamond modified by noble-metal oxides[J]. J Phys Chem B, 2001, 105: 1679~1682

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700