在金刚石电极上利用ASV法检测自来水中的Pb~(2+)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属离子在环境化学与公众健康中的重要作用是已被人们广泛认知。在这些重金属离子中,其中Pb~(2+)最为人们关注,这是因为铅的化合物具有高度的毒性,并容易在各种生物体中积累。而且铅经常用来作为供水管道的材料,因此自来水与铅管有长时间的接触(比如说,一晚上),从而自来水中含有较高量的铅。基于这些原因,在自来水中检测Pb~(2+)的浓度变得越来越重要。
     目前主要利用电感耦合等离子体质谱仪(ICP-MS)或原子吸附法来检测在饮用水中的铅含量,并且采用离子色谱仪也可以得到比较令人满意的检测。虽然这些方法都具有高灵敏度,但它们不适合广泛使用,因为它们需要昂贵和笨重的检测设备。
     阳极溶出伏安法本来就是一种非常灵敏的检测方法,而且使用其来痕量分析重金属已经在很多实验中得到证实。几种ASV仪器已成功的用于铅检测,但它们中的大多数工作电极都使用滴汞电极,或汞膜电极。然而,考虑到这些电极都具有明显毒性的,所以目前正在努力寻求用于铅检测的无汞分析仪。
     可导性金刚石是一种在电化学分析中引起人们广泛关注的电极材料,由于它显著的电化学特性:在水溶液中有宽的电势窗口,低背景电流,在反应中长期的稳定性和对溶解氧而言低敏感度。多晶金刚石的这些独特的特性,和它的弱吸附性,使得这种材料非常适合利用溶出伏安法来检测自来水中的Pb~(2+)。
     因此,将金刚石膜电极的制备、ASV法检测自来水中Pb~(2+)的相结合,不仅拓宽了金刚石膜的应用领域,具有较好的理论意义,同时也使得铅检测设备简单且易行成本相对降低,具有很好的实际效用。
     本文首先介绍了铅检测的几种方法,并着重介绍了伏安分析法的过程和它的几种工作电极。然后介绍了金刚石膜电极的制备与表征,包括探索其成膜影响因素、工艺参数等。最后研究金刚石膜优异的电化学特性,将金刚石膜电极应用于在自来水中检测Pb~(2+)。通过在掺硼金刚石电极(BDD)上利用线性扫描阳极溶出伏安法来检测自来水中痕量Pb~(2+)。相对于其他电极材料而言低检测限(2 nM)是掺硼金刚石电极的一个优势,并在实验中发现,当支持电解液处于低PH值时,且在自来水水中存在一定浓度的Cu~(2+)时,在很大程度上并不影响Pb~(2+)的检测。这些实验结果表明,在BDD电极上利用阳极溶出伏安法来检测在自来水中的痕量Pb~(2+)是一种较好的无汞测量法。且得到的将自来水作为实际检测样品时检测铅得到的检测结果与电感耦合等离子体质谱仪(ICP-MS)检测结果非常吻合。这表明了在掺硼金刚石电极(BDD)上利用线性扫描阳极溶出伏安法来检测痕量Pb~(2+)是一种切实可行的具有分析效用的方法。
The important role that heavy transition metals play in environmental chemistry and public health is widely recognized. Among these metal ions, Pb~(2+) is of great concern both because of the high toxicity of its compounds, and accumulation in various organisms. Furthermore, lead is frequently used as a material for water supply pipes, and tap water that has been in contact with a lead pipe for a long time (e.g., overnight) can contain relatively high amounts of lead. For these reasons, it has become increasingly important to monitor lead in drinking water.
     At present, lead in tap water is mainly measured by inductively coupled plasma-mass spectrometry (ICP-MS) or atomic adsorption, but promising results have been also obtained by using ion chromatography techniques. Although these methods are highly sensitive, they are not suitable for extensive use because they require expensive and cumbersome equipment.
     Anodic stripping voltammetry (ASV) is inherently a very sensitive method and its use for trace analysis of heavy metals is well substantiated. Several techniques of ASV have been successfully employed for lead detection, but most of them involved either hanging mercury drop electrodes, or mercury film electrodes. Nevertheless, due to obvious toxicity considerations, mercury-free analytical systems for lead determination are currently sought. Conductive diamond represents an electrode material that has attracted great interest in electroanalysis, due to its outstanding electrochemical features: wide potential window in aqueous solutions, low background current, long-term stability of the response and low sensitivity to dissolved oxygen. These unique properties of the polycrystalline diamond, together with its extreme robustness, strongly recommend this material as very well suited for stripping voltammetry analysis of Pb~(2+) in tap water.
     Therefore, if we combine the diamond film electrode preparation with detecting trace levels of lead by linear-sweep anodic stripping voltammetry. It can not only advance energy utilized efficiency, but also simple and reduce the cost,have practical analytical utility.
     The present article introduces the relative knowledge about different methods of detecting trace levels of lead, That emphasizes the process of the ASV and the working electrode. Then, it introduces the relevant knowledge of diamond film electrode preparation and token, including exploring its growth influence, craftwork parameter etc. Lastly, it studies the electrochemistry character of diamond film, in order to put diamond film electrode in analysis of Pb~(2+) in tap water. Boron-doped diamond (BDD) electrodes were used to investigate the possibility of detecting trace levels of lead by linear-sweep anodic stripping voltammetry. The low limit of detection (2 nM) is an advantage compared to other electrode materials, and it was found that at low PH values, copper concentrations that are usually present in drinking water do not affect to a large extent the detection of lead. These findings recommend anodic stripping voltammetry at the BDD electrodes as a suitable mercury-free method for the determination of trace levels of lead in drinking water. The results obtained for the lead detection in tap water real samples are in excellent agreement with those found by inductively coupled plasma-mass spectrometry (ICP-MS), demonstrating the practical analytical utility of the method.
引文
[1]汪尔康,电分析化学[M],中国科学技术大学出版社,1993
    [2]李荻,电化学原理(修订版)[M],北京航空航天大学出版社,199,418
    [3]A.Rudge,J.Davey,1.Raistrick,et al.Conducting polymers as active materials inelectrochemical capacitors.J.Power Sources.1994.47-89-107
    [4]张庆武,周啸,汤孝平等.Ⅲ型聚合物超电容器国外研究进展.电子元件与材料,2042,21(5):22-30
    [5]K.Miura,H.Nakagawa,H.Okamoto.Production of high density activated carbon fiber by a hot briquetting method.Carbon,2000,38:119-125
    [6]H.Nakagawa,A_Shudo,1C.Miura.High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes.J.Electrochem.Soc.2004,1470);38-42
    [7]C.T.Hsieh,H.Teng.Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics.Carbon,2002,40;667-674
    [8]T.Mamma,X.Liu,T.Osaka,et al.Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor.J.Power Sources,1996,50:249-253
    [9]W.V.Smith et al.,Phys.Rev.Lett.2(1952):39
    [10]M Frenklach and H Wang.Delailed Surface and Gas-phase Chemical-kinetics of Diamond Deposition.Phys Rev,1991,B43(2):1520-1545
    [11]M Tsuda,M Nakajima and S Oikawa.The Importance of the Positively Charged Surface for the Epitaxial-Growth of Diamond at Low-Pressure.]pn J Appl phys 2,1987,26(5):L527-L529
    [12]D Hung,M Frenklach and M Maroncelli.Energetics of Acetylene-addition Mechanism of Diamond Growth.J Phys Chem,1988,92(22):6379-6381
    [13]S J Harris.Mechanism for Diamond Growth from Methyl Radicals.Appl Phys Lett,1990,56(23):2298-2300
    [14]P W May.Diamond Thin Films:a 21st-century Material.Phil Trans R Soc Lond A,2000,238:473-495
    [15]Sheldon B Wet al.Proce,3rd Internat.Symp.on Diamond Mater.[M],1993:229-235
    [16]刘卫平,王庆选,田宇全等.硼掺杂兑金刚石薄膜生长特性的研究[J].无机材料学报,2005,20(5):1271-1273
    [17]刘刚,刘忆.热丝法CVD生长金刚石薄膜的简化工艺研究[J].半导体技术,2006,31(7):498-501
    [18]张进,冉均国,苟立.循环刻蚀工艺对金刚石膜形貌和电阻率的影响[J].电子元件与材料.2005,24(3):7-9
    [19]刘东红,闫翠霞,俞琳等.硼/氢掺杂金刚石薄膜导电特性研究[J].半导体技术,2004,22(4):48-50
    [20]王勇,马玉平,孙方宏等.光滑硬质合金衬底渗硼预处理对CVD金刚石薄膜性能的影响[J].中国机 械工程,2006,17(5):10
    [21]程小华.金刚石薄膜的高速生长工艺研究[D].陕西:西北大学硕士学位论文.2005
    [22]刘健敏,夏本义,王林军等.工艺条件对热丝CVD金刚石薄膜电学性能的研究[J].无机材料学报,2006,21(4):1019-1021
    [23]Evstefeeva Yu E,Krotova M D,Pleskov Yu V,et al.Synthetic semiconductor diamond electrodes:a comparison of single-crystal and bolycrystalline films[J].Russian Journal Electrochemistry,1998,34(11):1055-1061
    [24]Pleskov Yu V,Sakharova A Ya,Krotova M D.Photoelectrochemical properties of semiconductor diamond[J].Journal of Electroanalytical Chemistry,1987,228(1),19-27
    [25]Lou Z,Chen Q,Zhang Y,et al.Diamond Formation by Reduction of Carbon Dioxide at Low Temperatures[J].Journal of the American Chemical Society,2003,125(31):9302-9303
    [26]Honda K,Noda T,Yoshimura M,et al.Microstructural Heterogeneity for Electrochemical Activity in Polycrystalline Diamond Thin Films Observed by Electrogenerated Chemiluminescence Imaging[J].Journal of the Physical.Chemistry B,2004,108(41):16117-16127
    [27]Ferro S D,Battisti A.The 5-V Window of Polarizability of Fluorinated Diamond Electrodes in Aqueous Solutions[J].Analytical Chemistry,2003,75(24):7040-7042
    [28]Pagels M,Hall C.E,Lawrence N S,et al.All-Diamond Microelectrode Array Device[J].Analytical Chemistry,2005,77(11):3705-3708
    [29]Chen Q,Swain G M.Structural characterization,electrochemical reactivity,and response stability of hydrogenated glassy carbon electrodes[J].Langmuir,1998,14(24):7017-7026
    [30]李天成,朴香兰,朱慎林.电化学氧化技术去除废水中的持久性有机污染物[J].化学工业与工程,2004,21(4):269-270
    [31]王翠,史佩红,杨春林等.电化学氧化法在废水处理中的应用[J].河北工业科技,2004,21(1):49-51
    [32]韦朝海,林轶.难降解毒性有机污染物废水高级氧化技术[J].环境保护,1998(11):30-31
    [33]李学敏,汪家道,陈大融.金刚石薄膜电极处理含氯酚废水的实验研究[J].清华大学学报(自然科学版),2006,46(5):642-644
    [34]赵国华,肖小娥,祁源.金刚石膜电极电化学处理污染物的研究[J].工业水处理.2005,25(6):17-19
    [35]周艳丽,只金芳.酪氨酸酶在硼掺杂金刚石薄膜电极上的固定及酚类化合物的检测[J].电化学,2006,12(2):214-217
    [36]P.Canizares,F.Larrondo,J.Lobato,M.A.Rodrigo,z and C.Saez Electrochemical Synthesis of Peroxodiphosphate Using Boron-Doped Diamond Anodes[J]Journal of The Electrochemical Society,2005,152(11):191-196
    [37]Yoshimura M,Honda K,Kondo T,et al.Factors controlling the electrochemical potential window for diamond electrodes in non-aqueous electrolytes[J].Diamond and Related Materials,2002,11(1):67-74
    [38]Soh K L,Kang W P,Davidson J L,etal Diamond-derived microelectrodes array for electrochemical analysis[J].Diamond and Related Material,2004,13(11-12):2009-2015
    [39] Chen X M, Chen G H, Yue P L. Anodic oxidation of dyes at Ti/B-diamond electrodes [J]. Chemical Engineering Science, 2003,58(3-6): 995-1001
    
    [40] Wu J, Zhu J, Shan L, Cheng N. Voltammetric and amperometric study of electrochemical activity of boron-doped polycrystalline diamond thin film electrodes[J]. Analytica Chimica Acta, 1996,333(1-2): 125-130
    
    [41] Almeida E C, Diniz A V, Rosolen J M, et al. Structural and voltammetric studies at boron-doped diamond electrode grown on carbon felt produced from different temperatures[J]. Diamond Related Materials, Diamond and Related Materials, 2005, 14(3-7): 679-684
    
    [42] Eaton S C, Evstefeeva Y E, Angus J C, et al. Sulfur-doped n-type diamond :Preparation and electrochemical properties[J].Russian Journal of the Electrochemistry, 2003, 39(2): 154-159
    
    [43] Ferreira N G, silva L L G, Corat E J, et al. Kinetics study of diamond electrodes at different levels of boron doped as quasi-reversible systems[J]. Diamond and Related Materials, 2002,11(8): 1523-1531
    
    [44] Iniesta J, Michaud P A, Panizza M, et al. Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode:application to electroorganic synthesis and wastewater treatment[J]. Electrochemistry Communication, 2001,3(7): 346-351
    
    [45] Manivannan A, Tryk D A, Fujishima A. Electrochem. Detection of trace lead at boron-doped diamond electrodes by anodic stripping analysis[J]. Solid-state Letter 1999,2(2): 455-456
    
    [46] Rao T N, Sarada B V, Tryk D A, et al. Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection[J]. Journal of the Electroanalytical Chemistry, 2000, 491(1-2): 175-181
    
    [47] Spataru N, Sarada B V, Popa E, et al. Voltammetric determination of L-cysteine at conductive diamond electrodes[J]. Analytical Chemistry, 2001, 73(3): 514-519
    
    [48] Su L, Qiu X, Guo L, et al. Amperometric glucose sensor based on enzyme-modified boron-doped diamond electrode by cross-linking method[J].Sensors and Actuators, B, 2004, 99(2-3): 499-504
    
    [49] Manivannan A, Tryk D A, Fujishima A. Abrasive Stripping Voltammetry at Polycrystalline Diamond Electrodes[J]. Chemical Letter, 1999, 280: 851-852
    
    [50] Bellagamba R, Michaud P A, Comninellis C, et al. Electro-combustion of polyacrylates with boron-doped diamond anodes[J]. Electrochemistry Communication, 2002, 4(2): 171-176
    
    [51] Leronz J, Pupunat L, Comninellis C, et al. 51st ISE Meeting[R], Warsaw, Poland,2000, Abstract, 4-228.
    
    [52] Abstracts of Papers, 3rd Workshop "Diamond Electrodes,"[R] Neushatel,Switzerland, 2000,Neushatel:Swiss Center for Electronics and Microtechnology, 2000
    
    [53] 徐国财,张立德.纳米复合材料[M].北京: 化学工业出版社, 2002,35—41
    
    [54] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colormetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997, 277(22): 1078-1081
    
    [55] G.W. Bryan, in: R. Johnston (Ed.), Marine Pollution-Heavy Metal Contamination in the Sea[J], Academic Press, London, 1976,p. 185.
    
    [56] Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO_2 electrodes[J].J.Am.Chem.Soc.,1996,118:1154-1157
    [57]Martin R,Mitchell D T.Nanomaterials in analytical chemistry[J].Anal.Chem.,1998,5:322A-327A
    [58]Bharathi S,Nogami M,A glucose biosensor based on electrodeposited biocomposities of gold nanoparticles and glucoseoxidase enzyme[J].Analyst,2001,126:1919-1922.
    [59]Michael O F,George D B,Mark T M.Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes[J].J.Electroanal.Chem.1999,466:234-241
    [60]Jan Vacek,Jiri Petrek,Rene Kizek,et al.Electrochemical determination of lead and glutathione in a plant cell culture[J],Bioelectrochemistry,2004,63:347-351.
    [61]Hajian R,Shams E.Application of adsorptive stripping voltammetry to the determination of bismuth and copper in the presence of morin[J].Anal.Chim.Acta 2003,491:63-69.
    [62]Van Staden J F,Matoetoe M C.Simultaneous determination of copper,lead,cadmium and zinc using differential pulse anodic stripping voltammetry in a flow system[J].Anal.Chim.Acta 2000,411:201-207.
    [63]Rodrigo AA M,Lucio A.Simultaneous determination of copper and lead in ethanol fuel by anodic stripping voltammetry[J].Microchem.J.77(2004) 157-162..
    [64]范大和,严金龙,孙汝东,阳极溶出方波伏安法测定食醋的痕量铅[J],山东化工,2000,29(6):40-41
    [65]宋亮,微分脉冲伏安法侧定降水中锌、锅、铅和铜[J],甘肃环境研究与监测,2001,14(4):217-218.
    [66]陈立钦,杨晓红,硫杂冠醚PVC膜铅(Ⅱ)离子选择电极的研制[J],武汉化工学院学报,1998,20(2):9-11.
    [67]范瑞溪,朱海萍,卡尔曼滤波一示差脉冲极谱法同时测定铅(Ⅱ),铭(Ⅰ),锢(Ⅲ),镉(Ⅱ)的研究[J],分析化学,1991,19(8):859-863.
    [68]Wheatly B.Wheatley M A.Methymercury and the health of indigenous peoples:a risk management challenge for physical and social sciences and for public health policy[J].The science of the total environment,2000,259:23-29
    [67]A.Manivannan,M.S.Seehra,A.Fujishima.Detection of mercury at the ppb level in solutionusing boron-doped diamond electrode[J].Fuel Processing Technology,2004,85:513-519
    [68]Zhang Deqiang,Yang Lili,Sun Hanwen.Determination of mercury by cold vapour atomic absorption spectrometry with derivative signal processing[J].Anal Chim Acta,1999,395:173-178
    [69]U illus F,Alegria A,Barbern R.et al.Lagarda Methymercury and inorganic mercury determination in fish by cold vapour generation atomic absorption spectrometry[J].Food Chemistry,2000,71:529-533
    [70]谢永臻,庄峙厦,张志刚.流动注射氢化物发生原子荧光法测定中药中的微量As、Hg[J].分析科学学报,1997,13(4):296-299.
    [71]程祥圣,秦晓光,陈东.海洋生物样品中痕量汞的悬浮液进样流动注射-原子荧光法测定[J].分析测试学报,2003,22(3):66-68.
    [72]Zhang De-qiang,Ni Zhe-ming,Sun Han-Wen.Stabilization of organic and inorganic mercury in the graphite furnace with(NH4)PdC16-(NH4)3RhC16 as a missed chemical modifier[J].Spectrochimica Acta,Part B,1998,52:1049-1055.
    [73]Sanchezuria J E,Sanz Medel A.Inorganic and methyl mercury speciation in environmental samples[J].Talanta,1998,47:509-524.
    [74]Razagui I B A,Haxwell S J.The determination of mercury and selenium in maternal and neonatal scalp hair by inductively coupled plasma mass spectrometry[J].J Anal Toxicol,1997,21(2):149-153.
    [75]T.H.Lee,S.J.Jiang.Determination of mercury compounds by capillary electrophoresis inductively coupled plasma mass spectrometry with microconcentric nebulization[J].Anal.Chim.Acta.,2000,413:197-205
    [76]R.M.Blanco,M.T.Villanueva,J.E.S.Uria,A.S.Medel.Field sampling,preconcentration and determination of mercury species in river waters[J].Anal.Chim.Acta.,2000,419:137-144
    [77]B.Bouyssiere,F.Baco,L.Savary,R.Lobinski.Speciation analysis for mercury in gas condensates by capillary gas chromatography with inductively coupled plasma mass spectrometric detection[J].Journal of Chromatography A,2002,976:431-439
    [78]朱振中,李在均,虞学俊,等,二澳对甲基偶氮甲磺光度法测定食品中微量铅[J],无锡轻工大学学报,1997,17(3):82-85
    [79][173]S.Meyer,F.Scholz,R.Trittler.Determination of inorganic ionic mercury down to 5×10-14 mol 1-1 by differential-pulse anodic stripping voltammetry[J].Fresenius J.Anal.Chem.1996,356:247
    [80]I.Turyan,D.Mandler.Electrochemical determination of ultralow levels(<10~(-12) M)of mercury by anodic stripping voltammetry using a chemically modified electrode[J].Electroanalysis,1994,6:838
    [81]M.A.Nolan,S.P.Kounaves.Microfabricated Array of Iridium Microdisks as a Substrate for Direct Determination of Cu~(2+) or Hg~(2+) Using Square-Wave Anodic Stripping Voltammetry[J].Anal.Chem.,1999,71:3567
    [82]N.Y.Stojko,K.Z.Brainina,C.Failer,G.Henze.Stripping voltammetric determination of mercury at modified solid electrodes:I.Development of the modified electrodes[J].Anal.Chim.Acta,1998,371:145-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700