金刚石膜电极在污水制氢中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能作为一种清洁高效的可再生能源,在能源日渐枯竭的今天,具有重要的战略地位。如何开发经济廉价的制氢方法至关重要。在诸多制氢方法中,电解法具有设备简单、工艺成熟、制取氢气纯度高等特点一直被广泛应用。但不足之处是该法能耗较高、效率偏低。另外传统电极易腐蚀,寿命短或钝化,失去活性,故常采用去离子水作为原料。这不仅增加了耗能成本,且耗费了大量的水资源。尤其在条件恶劣的缺水地区,电解法应用更加困难。为此,我们采用电解污水制氢,该法可省掉水去离子化过程,且节省大量的水资源,经济环保,但对电极的要求也更高。因此,探索新的电极材料成为电解法制取氢气的一个重要内容。
     随着金刚石低压沉积技术日益成熟,在一定基底上制备金刚石电极成为人们研究的焦点。金刚石膜电极具有宽的电势窗口、低的背景电流、良好的催化活性、耐腐蚀、耐高温等化学特性,因此利用金刚石膜电极进行污水处理,尤其是对于具有超高COD毒性很强的很难降解的有机污水,具有电流效率高、降解完全、不易反复等特点。
     因此,将金刚石膜电极的制备、污水处理、氢气制取相结合,不仅可以提高能量的利用效率,还可以保护环境,节约水资源,使氢能利用更方便。
     本文首先介绍了氢能的有关知识,包括氢能的特点与应用、氢的制取、氢的干燥提纯等。其中着重介绍了制氢的各种方法,并比较其优缺点。然后介绍了金刚石膜电极的制备与表征,包括探索其成膜影响因素、工艺参数等。最后研究金刚石膜优异的电化学特性,将金刚石膜电极应用于污水制氢。实验结果表明,采用金刚石膜电极污水制氢不仅可有效降解有机物,还可制取较高纯度的氢气。
Hydrogen energy has the important strategic status as a clean and effectively reproducible energy when the energy is drying up. It is very important to know about how to explore an economically and low-cost method to produce hydrogen. In a good many methods, electrolysis is broadly applied with its simple equipment, ripe craftwork and high hydrogen purity. But the disadvantage of this method is high energy consume and low efficiency. Besides, traditional electrode can be easily eroded, and easily lost activity. So people often make use of water without iron as material. That way not only increases cost but also wastes much water resource . Especially It is in the area where water is rare. Under the condition, we can electrolysis the polluted water to produce hydrogen. It can save the process of wiping off ion, and economize water resource. It is economical and environment–protected, but it requires higher standard to electrode water.
     With the development of the deposition technique, people focus on studying the preparation the diamond thin film electrode on some fund. The diamond film has good characters, for example, it has wide potential window, low background current, good catalyzing activity, bearing erosion and high temperature, so it has some characteristics such as high current efficiency, complete decomposition, and little repeating when the diamond film electrode applied to polluted water treatment, especially when applied to waste water treatment with super high COD .
     Therefore, if we combine the diamond film electrode preparation with polluted water treatment and hydrogen production. It can not only advance energy utilized efficiency, but also can protect environment, economize water resource, which makes it convenient to hydrogen application.
     The present article introduces the relative knowledge about hydrogen energy, which includes characteristics and application about hydrogen energy, hydrogen production, hydrogen dryness and purification. That emphasizes the different methods of hydrogen production , by comparing their advantages and disadvantages. Then, it introduces the relevant knowledge of diamond film electrode preparation and token, including exploring its growth influence, craftwork parameter etc. Lastly,it studies the electrochemistry character of diamond film, in order to put diamond film electrode in producing hydrogen from polluted water. The experimental result shows that it can availably decompose organic substance and produce high purity hydrogen
引文
[1]毛宗强.我国未来的清洁能源[J].太阳能,2005(3):6~8
    [2]沈杰.世界各国竞相开发氢能源[J].能源研究与信息,2006(22):62
    [3]孙晓君,冯玉杰,蔡伟民等.废水中难降解有机物的高级氧化技术[J].化工环保,2001,21(5):266
    [4]赵苏,杨合,孙晓巍.高级氧化技术机理及在水处理中的应用进展[J].能源环境保护,2004,l18(3):5~6
    [5]赵国方,赵宏斌.有机废液湿式氧化处理的现状与进展[J].江苏化工,2000,28(5):23~25.
    [6]Yu Jianli,Savage P E. Kinetics of Catalytic Supercritical Water Oxidation of Phenol over TiO2[J]. Environ.Sci.Technol. ,2000,34(15):3191~3198.
    [7]丁一,梁恒国.超高浓度有机废水处理技术[J].北方环境,2004,29(4):50~51
    [8]Vlyssides A.G.,Loizidou M.,Karlid P.K.,et al. Electro-chemical oxidation of a textile dye wastewater using a Pt/Ti electrode[J].Journal of Hazardous Materials B,1999(70):41~46
    [9]崔艳萍,杨昌柱.电化学氧化法在难降解有机废水处理中的应用[J].工业安全与环保,2004,30(6):12~13
    [10]别继艳.电催化氧化技术处理难降解有机废水[D].浙江:浙江工业大学研究生学位论文.2003
    [11]崔宝臣,刘淑芝,罗洪君.有毒难降解有机物高级氧化电催化电极[J].环境污染治理技术与设备,2004,5(6):84~85
    [12]戴达煌,周克崧.金刚石薄膜沉积制备工艺与应用[M].北京:冶金工业出版社,2001
    [13]尹世平,孙毓超.天然金刚石的性质[J].工业金刚石.2003(1):22
    [14]Spitsyn B, V.Bowlov Ll,Derjaguin B V.J.[J].Crystal Crowth,1981,52:219
    [15]Matsumoto S et al.J.Mater[J].Sci.,1982,21:1183
    [16]Matsumoto S et al.Jpn.Appl[J].Phys.,1982,21:29
    [17]Matsumoto S et al.J.Mater[J].Sci.,1982,17:312
    [18]吕反修.CVD 金刚石膜研究近期进展及应用[J].物理,1995(10):606
    [19]顾忠茂.氢能利用与核能制氢研究开发综述浙江[J].原子能科学技术,2006,40(1):31~34
    [20]周立迎.氢能源在汽车行业中的应用及进展[J].移动电源与车辆,2006(2):35~38
    [21]庞志成,张静蓉.氢能燃料电池及半导体光解水制氢研究[J].贵州化工,2006,30(3):2~4
    [22]倪萌,M.K.H.Leung,K.Sumathy.电解水制氢技术进展[J].能源环境保护,2004,18(5),5~6
    [23]倪萌.可再生氢能应用前景--氢的制取[D].香港:香港大学机械工程系,2002
    [24]Hu W.K, Cao X.J, Wang F.P, Zhang Y.S. Short Communication: a novel cathode for alkaline water electrolysis [J], International Journal of Hydrogen Energy 1997(22): 441~443.
    [25]Schiller G, Henne R, Mohr P, Peinecke V. High performance electrodes for an advanced intermittently operated 10-kW alkaline water electrolyzer [J], International Journal of Hydrogen Energy 1998(23):761~765.
    [26]Hijikata T. Research and development of international clean energy network usinghydrogen energy (WE-NET) [J], International Journal of Hydrogen Energy,2002,27(2):115~129.
    [27]Hirano S, Kim J, Srinivasan S. High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes [J], Electrochimica Acta,1997,42(10): 1587~1593.
    [28]Hayre R, Lee S.J, Cha S.W, Prinz F.B. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading [J], Journal of Power Sources,2002, 109(2):483~493.
    [29]Carretta N, Tricoli V, Picchioni F. Ionomeric membranes based on partially sulfonated poly(styrene) synthesis, proton conduction and methanol permeation [J], Journal of Membrane Science ,2000, 166(2):189~197.
    [30]徐俊.太阳能裂解水制氢[J].太阳能,2004,(1)30~31
    [31]庞志成,张静蓉.半导体催化光解制氢技术研究[J].能源技术,2005,26(4)158~159
    [32]庞志成,罗震宁.电解制氢电极材料的研究进展[J].贵州化工,2006,31(3):33~35
    [33]秦娅,王桂赘,王延吉.用于光催化分解水制氢的含钛氧化物催化剂[J].化学世界,2005(11):690~692
    [34]庞志成,张静蓉.氢能燃料电池及半导体光解水制氢研究进展[J].贵州化工,2005,30(5):2
    [35]靳治良,吕功煊.光催化分解水制氢研究进展[J].分子催化,2004,18(4):310~314
    [36]王景儒.制氢方法及储氢材料研制进展[J].化学推进剂与高分子材料.2004,VO.2.No.2,13~14
    [37]郝树仁,李言浩,程玉春等.甲醇蒸气转化制氢技术[J].精细化工,1998,15(5):52~54
    [38]蔡迎春,徐贤伦.甲醇蒸气催化转化制氢研究进展[J].分子催化,2000,14(3):235~240
    [39]康铸慧,王磊,郑广宏等.微生物产氢研究的进展微生物产氢研究的进展工业微生物2005,35(2):41~48
    [40]赵永丰,鲍德佑.制氢方法[N].中国能源网,2003-07-25
    [41]王艳辉,吴迪镛,迟建.氢能及制氢的应用技术现状及发展趋势[J].化工进展,2001,1,6
    [42]侯世杰.100000Nm3/h变压吸附提纯氢装置运行总结[J].工厂动力,2004(1):43~47
    [43]高燕,宋怀河,陈晓红.超临界状态下炭基材料的储氢[J].化学通报,2002 ,65(3):153~156
    [44]唐晓鸣,刘应亮.贮氢材料研究进展[J].无机化学学报,2001,17(2):161~167
    [45]王方香,闫晓琦,高学平等.镁基复合储氢材料[J].化学通报,2002,65(2):85~89
    [46]袁华堂,冯艳,宋赫男等.镁基储氢合金改性的研究进展[J].化工进展,2003,22(5):454~458
    [47]王静.稀土在功能材料中的应用和新进展[J].化学推进剂与高分子材料,2003,1(5):29~33
    [48]杨洪润,刘吉平.纳米碳管吸附储氢[J].碳素,2004(1):7~20
    [49]付正芳,赵有中,王曙中.碳基吸附储氢材料[J].高科技纤维与应用,2004,29(3):41~45
    [50]张超,雪生,安忠.碳纳米纤维吸附储氢性能评价[J].太阳能学报,2005.26(1):14~18
    [51]Darkrim F,Levesgue D. Monte Carlo simulations of hydrogen adsorption in singlewalled carbon nanotubes[J]. J Chem Phys,1998,109(12):4981~4984
    [52]沈建其,何少龙,王新庆等.单壁碳纳米管储氢机理研究[J].新型炭材料,2001,16(2):24~26
    [53]刘治,陈晓红,宋怀河.一维碳纳米材料储氢机理及应用前景[J].新型炭材料,2002,17(2):73~76
    [54]白翔,侯鹏翔,范月英等.一种新型储氢材料—纳米炭纤维的制备及其储氢特性[J].材料研究学报,2001,15(1):77~85
    [55]毛宗强,徐才录,阎军等.炭纳米纤维储氢性能初步研究[J].新型炭材料,2000,15(1):64~67
    [56]王季陶,邹斯洵.等离子化学气相沉积(PCVD).材料表面技术及其应用手册[M].北京:机械工业出版社,1998,774
    [57]王季陶,张卫,刘志杰.金刚石低压气相生长热力学耦合模型[M].北京:科学出版社,1998.22
    [58]Sheldon B W et al.Proce,3rd Internat.Symp.on Diamond Mater.[M],1993:229~235
    [59]刘卫平,王庆选,田宇全等.硼掺杂兑金刚石薄膜生长特性的研究[J].无机材料学报,2005,20(5):1271~1273
    [60]刘刚,刘忆.热丝法CVD生长金刚石薄膜的简化工艺研究[J].半导体技术,2006,31(7):498~501
    [61]张进,冉均国,苟立.循环刻蚀工艺对金刚石膜形貌和电阻率的影响[J].电子元件与材料.2005,24(3):7~9
    [62]刘东红,闫翠霞,俞琳等.硼/氢掺杂金刚石薄膜导电特性研究[J].半导体技术,2004,22(4):48~50
    [63]王勇,马玉平,孙方宏等.光滑硬质合金衬底渗硼预处理对CVD金刚石薄膜性能的影响[J].中国机械工程,2006,17(5):10
    [64]程小华.金刚石薄膜的高速生长工艺研究[D].陕西:西北大学硕士学位论文.2005
    [65]刘健敏,夏本义,王林军等.工艺条件对热丝CVD金刚石薄膜电学性能的研究[J].无机材料学报,2006,21(4):1019~1021
    [66]Granger M C. Polycrystalline diamond electrodes: basic properties and applications as amperometric detectors in flow injection analysis and liquid chromatography [J]. Analytic aChimica Acta,1999,397(10):145~1611
    [67]赵国华,李明利,吴薇薇等.金刚石膜电极对有机污染物的电催化特性[J].环境科学,2004, 25(5):164~166
    [68]S.R.莫里森.半导体与金属氧化膜的电化学[M].北京:科学出版社,1988
    [69]刘峰斌,汪家道,刘兵.掺硼金刚石薄膜的电化学性能[J].功能材料与器件学报.2005,11(3):11
    [70]只金芳,田如海.金刚石薄膜电化学[J].化学进展,2005,17(1)56~61
    [71]李天成,朴香兰,朱慎林.电化学氧化技术去除废水中的持久性有机污染物[J].化学工业与工程,2004,21(4):269~270
    [72]王翠,史佩红,杨春林等.电化学氧化法在废水处理中的应用.河北工业科技,2004,21(1):49~51
    [73]韦朝海,林轶.难降解毒性有机污染物废水高级氧化技术[J].环境保护,1998(11):30~31
    [74]李学敏,汪家道,陈大融.金刚石薄膜电极处理含氯酚废水的实验研究[J].清华大学学报(自然科学版),2006,46(5):642~644
    [75]赵国华,肖小娥,祁源.金刚石膜电极电化学处理污染物的研究[J].工业水处理.2005,25(6):17~19
    [76]周艳丽,只金芳.酪氨酸酶在硼掺杂金刚石薄膜电极上的固定及酚类化合物的检测[J].电化学,2006,12(2):214~217
    [77]P. Ca?izares, F. Larrondo, J. Lobato, M. A. Rodrigo,z and C. Sáez Electrochemical Synthesis of Peroxodiphosphate Using Boron-Doped Diamond Anodes[J].Journal of The Electrochemical Society,2005,152(11):191~196
    [78]孙得志,于秀娟,冯玉杰.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.169~204
    [79]Comninellis C.,Nerini A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment[J].J.Appl.Electrochem,1995,25:23~29
    [80]P. Drogui ,S. Elmaleh ,M. Rumeau. Hybrid process microfil2 tration2electroper oxidation for water treatment[J]. Journal of Membrane Science,2001,186(1):123~132
    [81]吴越.催化化学[M].北京:科学出版社,2000:1297~1298
    [82]Comninellis C. Preparation of SnO2-Sb2O5 films by the spray surpluses technique[J]. J.Appl. Electrochem1 ,1996 (26):83~89
    [83]I.Troster,M.Fryda,D.herrmann. Electrochemical advanced oxidation process for water treatment using Di-aChem electrodes[J]. Diamond and Related Materials,2002,11(3):640~645
    [84]J.Iniesta,P.A.Michaud,M.Panizza,et al. Electrochemi-cal oxidation of phenol at boron-doped diamond electrode[J].Electrochimica Acta,2001,46(23):3573~3578
    [85]J.Iniesta,P.A.Michaud,M.Panizza,et al. Electrochemical oxidation of 32methylpyridine at a boron-doped diamondelectrode:Application to electroorganic synthesis and wastewater treatment[J]. Electrochemistry Communications,2001,3(7):346~351
    [86]朱宏丽,王书惠.三元电极电解在水处理中的应用[J].环境科学,1985,6(6):36~40
    [87]刁伟力.电解法生成自由基规律及处理有机废水的研究[D].吉林: 吉林大学硕士学位论文.2006
    [88]张云山,李日扬,吴怀等.电生羟基自由基在有机废水处理中的应用[J].化工时刊,2005,19(6)
    [89]赵国华,李明利,祁源等.苯酚在金刚石膜电极上的电化学氧化降解过程[J].中国环境科学,2005,25(3):370~374
    [90]潘鹏,周志刚,高宝红.在金刚石膜上电化学氧化对硝基苯酚[J].天津理工大学学报,2006,22(4):49~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700