螺旋伞齿轮毛坯锻造成形数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋伞齿轮是一类齿形复杂的齿轮,具有传动效率高、传动比稳定、承载能力高等特点,被广泛应用于汽车、航空航天、工程机械等行业领域。作为机械装备业的核心零部件,螺旋伞齿轮的制造水平一定程度上代表了一个国家机械装备业的发展水平。目前,我国螺旋伞齿轮的生产大部分还是依靠传统的“热锻造+机加工”的方式。如何在现有生产设备的基础上提高生产效率和齿轮的制造质量是企业非常关心的问题。本文的研究内容正是基于了企业的这种需求。
     本文提出了齿轮毛坯锻造过程数值模拟的多步分析方法,运用有限元软件DEFORM-3D分别对主动螺旋伞齿轮毛坯的拔长过程、模锻过程和对从动螺旋伞齿轮毛坯的镦粗过程、模锻过程进行了多步分析。得到了主、从动螺旋伞齿轮毛坯锻造成形过程中的金属流动规律,得到了锻造过程中应力、应变和温度随时间的变化曲线,得到了毛坯终锻时的应力、应变和温度分布,得到了锻造过程的行程-载荷曲线和迭代步-能耗曲线等数据。结果表明,锻造成形过程中金属材料在阶梯处流动较困难,导致毛坯锻造过程中和终锻时阶梯处出现大的应力、应变和高的温度。
     本文研究了模具结构、始锻温度和摩擦系数对锻造成形效果的影响。对模具结构进行了改进,数值模拟了模具结构改进后的锻造过程,对比了模具结构改进前后毛坯终锻时的应力、应变和温度分布。结果表明,对模具结构进行合理地改进能有效改善材料的成形效果,数值模拟结果可为模具结构设计与改进提供指导。数值模拟了始锻温度分别为1000℃、1050℃和1100℃,摩擦系数分别为0.3和0.7时的锻造过程,对比了不同始锻温度和摩擦系数下毛坯终锻时的应力应变、行程-载荷曲线和迭代步-能耗曲线。结果表明,在1000℃-1100℃范围内,当始锻温度越高,摩擦系数越小时,毛坯终锻时的应力应变也越小,温度越低,成形载荷越小,锻造能耗越少,成形效果越好。
     针对主动螺旋伞齿轮毛坯拔长工步中由于自由锻拔长工艺而引起的锻件弯曲的问题,提出了采用挤压成形方法来拔长棒料。运用DEFORM-3D对挤压成形过程进行了数值模拟,得到了挤压成形后坯料的形状、应力应变和温度分布等数据,并结合模锻过程进行了多步分析。挤压成形方法解决了锻件弯曲问题,但挤压成形方法存在生产效率低和能耗大的问题,本文又提出了旋压成形方法。设计了一个旋压装置以用于旋压成形,运用SOLIDWORKS软件对旋压装置进行了几何建模,并运用有限元软件ABAQUS对旋压成形过程进行了数值模拟,得到了旋压成形后坯料的形状、应力云图和应变云图等数据,验证了使用旋压成形方法代替自由锻拔长的可行性。将旋压成形的能耗与挤压成形的进行了对比,旋压成形比挤压成形节省能量。
Spiral bevel gear is a kind of gear with complex tooth shape,high transmission efficiency.stable transmission ratio and high bearing capacity.lt is widely used in automotive,aerospace.engineering machinery and other industries.As the core of the mechanical equipment industry parts,the manufacturing level of spiral bevel gears, to a certain extent, represents a national mechanical equipment industry development level.At present, the production of spiral bevel gears still rely on the traditional way-"hot forging+machining" in our country.How to improve production efficiency and manufacturing quality on the basis of the existing equipment is the question that the enterprise concern about.The research content of this paper is based on that demand of the enterprise.
     Many-steps analysis method is put forward to simulate the forging process of spiral bevel gear blank.The finite element software DEFORM-3D is used to simulate the pull long process and die forging process of driving spiral bevel gear blank and the upsetting process and die forging process of driven spiral bevel gear blank. The metal flow law of forging process, the curves of stress,strain and temperature changing with time throughout the forging process, the stress,strain and temperature distributions when the forging process is completed, and the stroke-load curves and the step-energy curves of forging process are got. The results show that the stress and strain are great and the temperature is high in the ladder place,because the metal flow difficultly in the ladder places.
     The effect that die structure, initial forging temperature and friction coefficient on forging are researched.The die structures are improved.The forging processes when the die structures have been improved are simulated.And the stress,strain and temperature distributions are compared before and after the die structures are improved. The results show that the forming quality of forgings are improved due to the die structures are improved. The results of numerical simulation can provide guidance for the die structure design and improvement. The forging processes are simulated when the initial forging temperature is1000℃,1050℃,1100℃and the friction coefficient is0.3,0.7.The numerical simulation results are compared. The results show that when the initial forging temperature is higher and the friction coefficient is less.the stress.strain.temperature.load and energy are lower.
     Squeezing forming method is proposed to solve the problem of forgings bent because of the problem happening in free forging of driving spiral bevel gear blank. DEFORM-3D software is used to simulate the squeezing forming process. The blank shape, stress,strain and temperature distributions after squeezing forming are got.and the squeezing forming process is simulated together with the die forging process. The problem of forgings bent is solved.But the production efficiency of squeezing forming method is low and the energy consumption is high,so spinning forming method is proposed.A spinning device is designed for spinning forming.3d modeling software SOLIDWORKS is used to establish the geometric model of spinning device.and the finite element software ABAQUS is used to simulate the spinning forming process.The blank shape, stress rainbow and strain rainbow after spinning forming are got.The free forging can be replaced by spinning forming.The energy consumption of squeezing forming and spinning forming are compared.the spinning forming is less.
引文
[1]北京齿轮厂.螺旋锥齿轮[M].北京:科学出版社,1974.
    [2]曾韬.螺旋锥齿轮设计与加工[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [3]张彦敏,张学宾,龚红英等.有限元在金属塑性成形中的应用[M].北京:化学工业出版社,2010.
    [4]中国锻压协会.模锻工艺及其设备使用特性[M].北京:国防工业出版社,2011.
    [5]Tuncer C&Dean T.A.Die design alternatives for precision forging hollow parts.Int.J.Mach.Tools Manufact,1987,27(1):65-76.
    [6]K.Kondo.Development of new precision gold die forging processes.Advanced Technology of Plasticity-Proc.Of 1st ICTP Tokyo,1984:701-709.
    [7]K.Kondo.Investigation into forming processes of various spur gear-proc.Of 2nd ICTP,Stuttgart,1987:1089.
    [8]E.Doege,R.Bohnsack.Closed die technologies for hot forging.Journal of Material Processing Technology,2000(98):165-170.
    [9]Cai J,Dean T.A,Hu Z.M.Alternative die designs in net-shape forging of gears[J]. Journal of Materials Processing Technology,2004,150:48-55.
    [10]寇淑清,杨慎华等.高精度直齿圆柱齿轮冷锻成形加工方法的研究[J].锻压技术,2000,(5):10-13.
    [11]程羽,陈德礼,李刚等.模具结构对齿轮成形性能的影响[J].塑性工程学报,2003,10(6):59-61.
    [12]程羽,杨程,臧顺来等.齿轮精密成形技术的研究[J].塑性工程学报,2004,1(6):62-64.
    [13]郑建设,付蔚萍、霍继武等.直齿锥齿轮热后加工工艺装备设计研究[J].机械传动,2008,32(3):89-91.
    [14]郑建设,李金海.螺旋锥齿轮精密模锻近净成形技术及制造工艺[J].机械传动,2009,33(4):111-112.
    [15]田福祥,王者静,尹德良等.螺旋伞齿轮精锻新工艺与新型模具结构[J].锻 造,2005,(1):63-65.
    [16]胡成亮,刘全坤,刘永熙等.齿轮锻造金属流动规律分析及工艺改进[J].机械工程学报,2008,44(5):186-190.
    [17]陈学文,王进,陈军等.齿轮毛坯锻造成形内部质量控制与工艺优化设计[J].机械设计,2004.21:117-118.
    [18]娄路亮,李付国.锻造模具的随机疲劳损伤分析[J].机械强度,2002,24(1):104-108.
    [19]王华君,夏巨谌,钱应平等.主动螺旋伞齿轮闭塞模锻物理模拟[J].华中科技大学学报(自然科学版),2005,33(8):78-80.
    [20]聂爱琴,王岗超,石文超等.圆柱直齿轮冷精锻模具工装设计[J].塑性工程学报,2011,18(1):58-61,66.
    [21]王岗超,薛克敏,许锋等.齿腔分流法冷精锻大模数圆柱直齿轮[J].塑性工程学报,2010,17(3):18-21.
    [22]王岗超,石文超,薛克敏等.基于分流法的圆柱直齿轮冷精锻成形工艺研究[J].模具技术,2011,1:10-13.22.
    [23]谭险峰,刘霞,胡德锋等.约束分流精锻成形直齿圆柱齿轮[J].锻压技术,2010,35(2):26-30.
    [24]Hung-Hsiou Hsu.A study on precision forging of spur gear forms and spline by the upper bound method[J].International Journal of Mechanical Sciences.2002,44: 1543-1558.
    [25]Jongung Choi,Hae-Yong Cho,Chang-Yong Jo.An-upper bound analysis for the forging of spur gears[J].Journal of Materials Processing Technology,2000, 104:67-73.
    [26]Jongung Choi,Hae-Y ong Cho.Chang-Yong Jo.Forging of spur with internalserrations and design of the dies.Journal of Materials Processing Technology,2000,104:1-7.
    [27]J.H.Song,Y.T.Im.Development of a computer-aided-design system of cold forward extrusion of a spur gear [J]. Journal of Materials Processing Technology.2004, 153-154:821-828.
    [28]Herlan T.Warm forging of straight tooth bevels for the utility vehicle's production-advanced technology of plasticity [J]. Precision Froging,1999,6:767-778.
    [29]M.H.Sadeghi.Tehran.Gear forging:Mathematical modeling and experimental validation[J].Journal of Manufacturing Science and Engineering,2003,125:753-762.
    [30]Doege E.Nagele H.Simulation of the precision forging process of bevel gears[J].Aannals of the CIRP,1994,43(1):241-244.
    [31]Yoon J H,Yang Y.A three dimensional rigid-plastic finite element analysis of bevel gear forging by using a remeshing technique[J].International Journal of Mechanical Sciences,1990,32(4):277-291.
    [32]刘全坤,胡成亮,王强等.齿轮闭式锻造新工艺方案的数值模拟研究[J].合肥工业大学学报(自然科学版),2005,28(9):1035-1038.
    [33]张清萍,赵国群,栾贻国等.直齿圆柱齿轮精锻成形工艺及三维有限元模拟[J].塑性工程学报,2003,10(1):13-15,19.
    [34]詹先义,刘占芳,刘道伦等.齿轮精密锻造三维有限元分析[J].计算力学学报,,2002,19(2):236-239.
    [35]王华君,夏巨谌,程培元等.从动螺旋伞齿轮精密锻造数值仿真[J].华中科技大学学报(自然科学版).2005,33(9):94-96.
    [36]杨慎华,寇淑清等.轿车差速器行星与半轴齿轮冷闭塞锻造成形研究[J].锻压技术,2004,29(1):9-12.
    [37]寇淑清,杨慎华,邓春萍.轿车伞齿轮冷精锻成形数值模拟及实验研究[J].吉林大学学报(工学版),2003,33(4):59-62.
    [38]方媛,罗善明,王伟等.结构参数对弧齿锥齿轮精锻成形的影响分析[J].锻压技术,2009,34(6):154-158.
    [39]何旺枝,罗善明,王建等.弧齿锥齿轮温锻成形工艺参数分析[J].机械传动,2010,34(6):82-85.
    [40]赵军,罗善明,何旺枝.弧齿锥齿轮温锻成形模具温度分析[J].热加工工艺,2011,40(11):204-206.
    [41]罗善明,何旺枝,薛冰等.弧齿锥齿轮精锻成形模具磨损特性分析[J].机械传动,2011,35(1):52-54,,65.
    [42]蒋文斌,龚冬梅.工艺参数对径向分流冷锻成形圆柱直齿轮的影响[J].热加工工艺,2010,39(15):114-115,118.
    [43]龚冬梅.基于径向分流和浮动凹模耦合法圆柱直齿轮冷锻成形数值模拟研究[J]. 机械传动,2010,34(4):52-53.
    [44]张莉,李升军DEFORM在金属塑性成形中的应用[M].北京:机械工业出版社,2009.
    [45]胡建军,李小平DEFORM-3D塑性成形CAE应用教程[M].北京:北京大学出版社,2010.
    [46]李传民,王向丽,闫华军DEFORM5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [47]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [48]庄茁,由小川,廖剑晖等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2008.
    [49]中国锻压协会.锻造工艺模拟[M].北京:国防工业出版社,2009.
    [50]张水忠.挤压工艺及模具设计[M].北京:化学工业出版社,2009.
    [51]胡正寰,夏巨谌.金属塑性成形手册(下)[M].北京:化学工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700