基于复杂系统理论的梯级水电开发生态环境影响评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域梯级水电开发能够高效利用水能资源,自“六五”开始,中国一直将大力推进流域梯级水电开发作为重要的能源战略。然而近二十年来,水电站引发的负面生态环境影响日益受到关注,与单个水电站相比,一条河流上的多个梯级水电站所引发的生态环境影响,其成因更复杂、范围更广泛。如何全面、整体、系统地分析和评价这些生态环境影响,进而强化其中的正面因素,缓解、控制甚至避免负面因素,对于提升中国流域水电梯级开发的可持续性至关重要。
     梯级水电站群体通常包含一个或多个具有较强调节能力的大型水电站,将一条河流分割成为数个河段,并且可以进行联合调度。与单个水电工程相比,在一条河流上的各梯级水电站作为一个整体,其生态环境影响既根源于单个水电站的生态环境影响,又因为电站之间的系统性和关联性而可能增强或削弱单个水电站的生态环境影响,甚至在流域内产生新的累积影响——各级水电站与所在流域的各类生态环境要素相互作用进而构成了一个复杂系统,即“梯级复合生态环境系统”。
     分析和评价梯级水电开发的生态环境影响,不仅需要在各生态环境要素所属的专业学科领域内分门别类地开展研究,更需要基于系统科学,尤其是复杂系统科学,多学科交叉地构建更为全面的生态环境影响评价理论与方法框架。这样的理论与方法框架能够增强各专业领域研究成果的内在联系,并有助于获取针对梯级水电开发生态环境影响的整体认识。然而,我国目前有关梯级水电开发生态环境影响评价的研究主要集中于专业学科领域,十分缺乏基于系统视角的整体评价模型和评价方法。因此,探讨如何基于(复杂)系统科学,多学科交叉地构建梯级水电开发生态环境影响的整体分析与评价模型,对于理论研究和实际应用都有重要意义,既能够体现梯级水电开发生态环境影响评价的研究趋势,也能够迎合我国流域水电可持续发展的实际需求。
     本文就是在系统科学的指导下,构建梯级水电开发生态环境影响分析与评价的整体模型,并探讨各类适于该模型的生态环境影响系统分析和评价方法。论文不仅注重增强研究内容的学科交叉性、综合性、普适性与全面性,使研究成果能够对更多的(梯级)水电工程生态环境影响评价工作起到参考作用;而且注重提升系统分析与评价方法的结构化,使评价过程便于维护、易于计算机化。论文的主要研究结果如下:
     (1)归纳综合国内外梯级水电开发实例,类比分析梯级水电开发与单项水电开发在各类生态环境影响方面的相同点与不同点,进而提取出梯级水电开发生态环境影响的基本特征。研究表明:梯级水电开发的基本模式可以分为3大类:Ⅰ型(龙头-径流复合式)、Ⅱ型(连续调节式)、Ⅲ型(连续径流式);梯级水电开发对生态环境造成的负面影响,在河流破碎化、河流生境改变、水体自净能力变化以及流域景观格局等方面比单项水电工程要显著的多,但与此同时,梯级水电开发具备更多可以调控这些生态环境影响的环节;梯级水电开发生态环境影响的基本特征为整体性、累积性、可控性;给出梯级水电开发的主要生态环境影响因素清单,在其中选取“突出生态环境效益”以及“敏感生态环境问题”作为后续的重点研究内容。
     (2)定义梯级复合生态环境系统,并基于系统动力学(System Dynamics,SD,一种复杂系统分析方法)的因果反馈分析理论,对梯级水电开发生态环境影响的产生过程进行机理分析。研究表明:梯级复合生态环境系统是复杂系统,也是梯级水电开发生态环境影响分析与评价的研究对象;该系统在5个典型场景下的机理分析结果一方面描述了各种累积影响的影响路径,另一方面证明了梯级水电开发生态环境影响的“可控性”与“生态调度”策略之间的密切关系。
     (3)基于复杂系统静态结构建模方法,构建梯级水电开发生态环境影响回顾评价模型。研究成果包括:回顾评价的概念模型和评价流程,回顾评价指标体系,回顾评价方法,以及基于UML的“水体富营养化”回顾评价的逻辑模型。结果表明:以模糊数学为基础的影响程度评判过程对于目前的数据积累水平而言,是可行而有效的;基于UML构建面向对象的逻辑模型,该模型与面向过程的逻辑模型相比,在可重用性、可维护性等方面具有明显优势,能够提升回顾评价过程计算机化的可行性。
     (4)在机理分析的研究成果的基础上,选择复杂系统动态行为建模方法,构建梯级水电开发生态环境影响预测评价模型。研究成果包括:将SD方法与基于Agent的建模(Agent-based Modelling,ABM)方法相结合构建预测评价的整体框架模型,以及基于SD方法的“水电工程移民相关影响”预测评价实例。结果表明:复杂系统的动态行为难以用数学模型或统计分析模型来表述,而系统仿真方法是复杂系统动态行为建模的有效方法;SD仿真方法与ABM仿真方法各有优势,都拥有较为成熟的仿真平台,适用于通用领域的复杂系统行为预测,因此应该利用它们的优势互补,将二者结合起来构建预测评价的整体模型;基于SD与ABM的预测评价整体框架模型不仅具有面向对象的灵活结构,而且保留了耦合其他专业领域模块、以及根据知识的增长不宽扩展和修正的空间;Vensim是较为成熟的SD仿真软件,能够处理一定范围的梯级水电开发生态环境影响预测评价问题。
     总之,基于(复杂)系统科学理论开展梯级水电工程的生态环境影响分析与评价研究,构建分析与评价的整体框架模型,并提出适于该模型的结构化分析与评价方法,有助于改善我国目前缺乏梯级水电开发生态环境影响整体评价模型的现状,兼具理论研究价值与实际应用价值。本文的研究结果表明,复杂系统分析与建模方法能够提升梯级水电开发生态环境影响分析与评价过程的全面性、普适性、整体性和结构化,促进各评价环节的集成和计算机化,从而为相关研究提供具有参照意义的过程与模式。
Cascade Hydropower Development (CHD) in a river basin is an effective pattern to explore and make use of the water energy resources, and promoting CHD continuously has been an important energy strategy in China since 1981. However, over the past two decades, increasing concern have been attracted on the negative eco-environmental impacts (EIs) caused by hydropower projects. Compared with the EIs caused by a single station, the EIs caused by the cascade stations of a same river are more complex and broader. How to analyze and assess these EIs comprehensively, holistically and systematically, so that to strengthen the positive factors, control and even avoid the negative factors, will be the key to promote the sustainability of CHD in China.
     CHD in a river basin is a series of stations from the upstream to the downstream of the river, which could enjoy a joint operating regime as a group. Among these stations, one or more large-scale reservoirs will be settled down in order to deeply increase the regulating ability of the whole cascade. Hence, large reservoirs with high dams divide the continuous river into several discontinuous sections, so that compared with the single hydropower projects (SHP), the EIs caused by CHD are going to be more cumulative in temporal and spatial scale. In other words, the relevance among cascade stations of a same river may strengthen or weaken the EIs of a single cascade station, even a new "cumulative impact" would arise because of the interactions among these stations: cascade stations of the river, eco-environmental elements of the river basin, and the interactions among them have compounded into a complex system named "Cascade-compound Eco-environmental System".
     Compared with the respective researches with specific discipline, the EIs Analysis and assessment of CHD can be accomplished more effectively by establishing a more comprehensive and multi-disciplinary assessing theory and methodology framework on the basis of system science, especially the complex systems science. This theory and methodology framework can enhance the inner links among different research fields help to acquire the overall awareness on the EIs of CHD. However, the outcome of current study about the assessment of EIs for CHD in China mostly focused on specific disciplines, lacking of the overall analyzing and assessing model from system perspective. Therefore, there are both theoretical and practical values on the exploring of constructing overall analyzing and assessing model for EIs of CHD, it can not only reflect the trends of EIs assessment for the CHD, but also meet the need of sustainable development of CHD in China.
     This dissertation proposes an overall analysis and assessment model for EIs of CHD under the guidance of system science, and to explore the various types of system analysis and assessment methodologies suitable for this model. For one hand, more interdisciplinary, comprehensive and universal content could be included into the researching scope, so that the results of the dissertation can play a reference role in EIs evaluation of CHD. For the other hand, the EIs analyzing and assessing procedures of CHD are tend to be repeatable, easily maintained and easily computerized. The major jobs of this dissertation are as follows:
     (1) Large amount of national and abroad CHD cases have been summarized, the CHD has been compared with SHP in various types of eco-environmental elements to reveal the similarities and differences between them, hereafter, basic features of EIs of CHD have been extracted. Results show: 3 modes could be generalized to represent common strategy of CHD, they are mode of type I (leader - runoff compound), mode of type II (continuous reservoirs) and mode of type III (Low Dam-runoff). The negative EIs of CHD are more significant in several aspects, such as the fragmentation in the rivers, the river habitat alteration, the changes in self-purification capacity of water and the changes of watershed landscape pattern; but at the same time, the EIs of CHD can be more controllable. 3 basic features of the EIs of CHD are extracted, they are systematic, cumulative and controllability. A set of eco-environmental elements which could be influenced by CHD are presented, with the highlight of eco-environmental benefits and sensitive ecological problems.
     (2) A Cascade-compound Eco-environmental System (CCES) has been defined as the research object to implement the structured analysis and assessment of EIs of CHD, several typical scenarios which in accordance with the 3 basic modes of CHD have been designed, and for each scenario, a mechanism analysis has been accomplished to reveal the generating pathways of EIs of CHD. Results show: the CCES is a complex system; 5 typical scenarios are designed to represent the 3 basic modes of CHD, and for each scenario, its relevant mechanism analysis can depict the cumulative pathways of EIs of CHD; furthermore, it is necessary to promote the study of environment-restoration regime based on the controllability of EIs of CHD.
     (3) On the basis of mechanism analysis of typical scenarios, a structured retrospective assessment model for EIs of CHD has been established. First of all, a conceptual model and a evaluation process were proposed, secondly, an index system was developed, thirdly, a series of specific evaluation methods were proposed, and finally, "eutrophication" was chosen to be the evaluation target to construct the logical model of the structured retrospective assessment. Results show: choosing fuzzy mathematics to be the basic theory to decide the influence extent of the CCES is feasible and effective considering the current level of relevance data accumulation; the logic model based on UML is object-oriented, which having the obvious advantages of reusability and maintainability, so that it can be converted into a computer software conveniently.
     (4) On the basis of mechanism analysis of typical scenarios, a structured predicting assessment model for EIs of CHD has been established. An overall framework of this predicting assessment model was developed based on the combining of two system simulation methodologies, they are: the System Dynamics (SD) and the Agent-based Modeling (ABM). Finally, a predicting assessing case was displayed to solve the influence forecasting of immigration that originating from dams construction. Results show: mathematical models or statistical models can not describe the structure of a complex system effectively, whereas system simulation methodology can be an appropriate way to modeling the complex system; the structured predicting assessment model should be constructed through taking advantages of both SD and ABM, for both of them are general prediction and system simulation tools with mature simulation software; the overall framework model based on SD and ABM is an object-oriented model, which is flexible, and easy to be expanded and maintained; and finally, being a mature simulation software for SD, Vensim can solve a range of prediction requirements on EIs of CHD.
     In all, researching the analysis and assessment of EIs for CHD based on the (complex) system science, constructing the overall framework model for the EIs assessment and proposing the suitable and structured analyzing and assessing methodologies for this model, will help to improve the current lack of overall assessment model for CHD in China, and be valuable both in theoretical research and practical application. The results of this dissertation show: the theories and methodologies of complex system analysis and assessment can enhance the interdisciplinary, synthesis, comprehension and structuring of analysis and assessment of EIs for CHD, promote the integration and computerization of various aspects of the assessment, so as to provide reference for relevant research.
引文
[1]“中国水力发电年鉴”编辑部.中国水力发电年鉴[M].北京:中国电力出版社,1949-2003.
    [2]刘兰芬.河流水电开发的环境效益及主要环境问题研究[J].水利学报,2002, 8:121-128.
    [3]Gerard K., Bertil V.O., Philippe N., et al.Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube[J].Environmental Pollution, 2007, 148: 718-728.
    [4]郭涛.国外河流梯级开.发的基本原则探讨[J].中国三峡建设,2003, 1:7-8,39.
    [5]赵纯厚,周振宏,朱端庄等.世界江河大坝[M].北京:中国水利水电出版社,1992.
    [6]Hailun H.and Yan Zh.Present situation and future prospect of hydropower in China[J].Renewable and Sustainable Energy Reviews, 2009, 13: 1652-1656.
    [7]Anna Brismar.Attention to impact pathways in EISs of large dam projects[J].Environmental Impact Assessment Review, 2004, 24: 59-87.
    [8]Luc Gagnon, Jean Etienne Klimpt, Karin Seelos.Comparing recommendations from the World Commission on Dams and the IEA initiative on hydropower[J].Energy Policy, 2002, 30: 1299-1304.
    [9]Seiji H., Shogo M., Kai-qin X., et al.Effect of the Three Gorges Dam Project on flood control in the Dongting Lake area, China, in a 1998-type flood[J].Journal of Hydro-environment Research, 2008, 2: 148-163.
    [10]陈凯麒,王东胜,刘兰芬等.流域梯级规划环境影响评价的特征及研究方向[J].中国水利水电科学研究院学报,2005, 3(2): 79-84.
    [11]麻泽龙,程根伟.河流梯级开发对生态环境影响的研究进展[J].水科学进展,2006, 17(5): 748-753.
    [12]林森.流域梯级滚动开发的主要问题及对策研究(Ⅰ)[J].湖北水力发电,2004,2: 8-11.
    [13]林森.流域梯级滚动开发的主要问题及对策研究(Ⅱ) [J].湖北水力发电,2004,3: 5-9.
    [14]夏忠,黄强,赵雪花.黄河上游梯级水电站滚动开发顺序决策分析[J].水力发电学报,2005, 24(6): 1-5
    [15]罗志辉,陈惠源,冯尚友.梯级水电站开发顺序多目标优化方法的研究——复合排序模型与非劣序生成技术[J].水利学报,1998, 1: 29-32.
    [16]Rashad S.M.and Ismail M.A.Environmental-impact assessment of hydro-power in Egypt [J].Applied Energy, 2000, 65: 285-302.
    [17]Zhong Yiguang and Geoff Power.Environmental impacts of hydroelectric projects on fish resources in China [J].Regulated Rivers: Research&Management, 1996,12: 81-98.
    [18]Alexander J.P.Raat.Ecological rehabilitation of the Dutch part of he River Rhine with special attention to the fish[J].Regulated Rivers: Research&management,2001,17:131-144.
    [19]Gehrke P.C.and Harris J.H.Regional-scale effects of flow regulation on lowland riverine fish communities in New South Wales, Australia [J].Regulated Rivers:Research&Management, 2001, 17: 369-391.
    [20]Norberto O.Oldani.and Claudio R.M.Baigun.Performance of a fishway system in a major South American dam on the Prana River (Argentina-Paraguay)[J].River Research and Applications, 2002, 18: 171-183.
    [21]Nicholas M.Hill, Paul A.Keddy, Irene C.et.al.hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs[J].Environmental Management, 1998, 22(5): 723-736.
    [22]Leonard B.Lerer and Thayer Scudder.Health impacts of large dams[J].Environmental Impact Assessment Review, 1999, 19: 113-123.
    [23]Syupak S., Mukhallalati L., Yemisen D., et al.Evaluation of eutrophication control strategies for the Keban Dam reservoir[J].Ecological Modelling, 1997,97:99-110.
    [24]Holger R.Maier, Michael D.Burch, Myriam Bormans.Flow management strategies to control blooms of the cyanobacterium, Anabaena circinalis, in the River Murray at Morgan, South Australia [J].Regulated Rivers: Research& Management, 2001,17: 637-650.
    [25]郭乔羽,杨志峰.三门峡水利枢纽工程生态影响后评价[J].环境科学学报, 2005, 25(5): 580-585.
    [26]蒋红,谢嗣光,赵文谦等.二滩水电站水库形成后鱼类种类组成的演变[J].水生生物学报,2007, 31(4): 532-539.
    [27]张荣.澜沧江漫湾水电站生态环境影响回顾评价[J].水电站设计,2001, 17(4):27-32.
    [28]戴松晨.宝珠寺水库蓄水前后水温、水质变化回顾分析[J].水电站设计,2001,17(4): 58-60, 76.
    [29]付雅琴,张秋文.梯级与单项水电工程生态环境影响的类比分析[J].水力发电, 2007, 33(12): 5-9.
    [30]Robert L., Alain P., Daniel L.P., Terry D.P.Effects of flow regulation on hydrologic patterns of a large, inland delta[J].Regulated Rivers: Research& Management, 2001, 17:51-65.
    [31]V.Ratna Reddy, Bhagirath Behera.Impact of water pollution on rural communities: an economic analysis[J].Ecological Economics, 2006, 58: 520-537.
    [32]Vladimir Timchenko, Olga Oksiyuk, James Gore.A model for ecosystem state and water quality management in the Dnieper River delta[J].Ecological Engineering, 2000, 16:119-125.
    [33]Booker D.J.and Dunbar M.J.Application of physical habitat simulation (PHABSIM) modeling to modified urban river channels[J].River Research and Applications, 2004, 20: 167-183.
    [34]Ramona L., Michaela K., Kazuhiko Ito, et.al.Estimation of historical annual PM2.5 exposures for health effects assessment[J].Atmospheric Environment, 2004, 38: 5217-5226.
    [35]Robert C., Ralph A., Rudolf G., et al.The value of the world's ecosystem services and natural capital[J].Nature, 1997, 387: 253-260.
    [36]Mike C., Nick H., John W., et.al.Valuing the diversity of biodiversity [J].Ecological Economics, 2006, 58: 304-317.
    [37]Sarah C.K.And Ronald P.Incorporating cumulative effects into environmental assessments of mariculture: Limitations and failures of current siting methods[J].Environmental Impact Assessement Review, 2008, 28: 572-586.
    [38]Peter Glavic and Rebeka Lukman.Review of sustainability terms and their definitions [J].Journal of Cleaner Production, 2007, 15: 1875-1885.
    [39]国家环境保护总局自然生态保护司.非污染生态影响评价技术导则:培训教材[M].北京:中国环境科学出版社,1999.
    [40]李锦绣,廖文根,黄真理.三峡工程对库区水流水质影响预测[J].水利水电技术,2002, 33(10): 22-25.
    [41]国家环保总局办公厅.水电水利建设项目河道生态用水、低温水和过鱼设施环境影响评价技术指南(试行)[S].2006.
    [42]曹华.东江水库诱发地震探讨[J].大坝与安全,2006, 1: 21-22.
    [43]Yusuf C.and Muhammet K.A continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systems[J].Soil Dynamics and Earthquake Engineering, 2005, 25(11): 857-869.
    [44]Julio A.C., Alvaro A., Marcos de la P.Eutrophication downstream from small reservoirs in mountain rivers of Central Spain[J].Water Research, 2005, 39: 3376-3384.
    [45]Beat M., Michael B., Pingyao Zh., et al.How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam[J].Science of the Total Environment, 2008, 402: 23 2-247.
    [46]Kehui X.and John D.M.Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam[J].Geomorphology, 2009, 104: 276-283.
    [47]袁超义.基于可持续发展的流域梯级水电基本开发模式研究[M].武汉:华中科 技大学,2007.
    [48]中国水利合作与科技网:世界江河数据库[DB/OL].http://www.cws.net.cn/riverdata/, 2009-03-20
    [49]吕彤,郭乔羽,王丁.为长江上游的珍稀和特有鱼类保持生态流[J].世界环境,2009, 1:78-79
    [50]Weiwei H., Genxu W., Wei D., et al.The influence of dams on ecohydrological conditions in the Huaihe River basin, China[J].Ecological Engineering, 2008, 33(3-4): 233-241.
    [51]范继辉.梯级水库群调度模拟及其对河流生态环境的影响——以长江上游为例 [D].成都:中国科学院·水利部成都山地灾害与环境研究所,2007.
    [52]Christer N., Catherine A.R., Mats D., et al.Fragmentation and flow regulation of the world's large river systems[J].Science, 2005, 308: 405-408.
    [53]Baisheng Ye, Daqing Yang, Douglas L.K.Changes in Lena River streamflow hydrology: Human impacts versus natural variations [J].Water Resources Research, 2003, 39(7): SWC8-1-SWC8-14.
    [54]Daqing Yang, Baisheng Ye, Douglas L.K.Streamflow changes over Siberian Yenisei River Basin [J].Journal of Hydrology, 2004, 296: 59-80.
    [55]Carles I., Narcis P., Antoni C.Changes in the hydrology and sediment transport produced by large dams on the lower Ebro river and its estuary [J].Regulated Rivers: Research&Management, 1996, 12: 51-62.
    [56]Seigy D.and Vladimir T.Ecological roleof hydrodynamic processes in the Dnieper reservoirs[J].Ecological Engineering, 2000, 16: 181-188.
    [57]Elisabet A., Christer N., Mats E.J.Effects of river fragmentation on plant dispersal and riparian flora[J].Regulated Rivers: Research&Management, 2000, 16: 83-89.
    [58]Bram G.W., Fred W.B., Piet H.Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe.the transversal floodplain gradient[J].River Research and Applications, 2004, 20: 3-23.
    [59]Viki A.and Richard J.Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: Impacts and possible management response[J].Austral Ecology, 2002, 27: 546-564.
    [60]Michael J.and Christopher J.Incorporating flow variability into environmental flow regimes using the flow events method[J].River Research and Applications, 2003, 19: 459-472.
    [61]Jowett I.G.Instream flow methods: a comparison of approaches [J].Regulated Rivers: Research&Management, 1997, 13: 115-127.
    [62]Thomas B.Hardy.The future of habitat modeling and instream flow assessment techniques[J].Regulated Rivers: Research&Management, 1998, 14: 405-420.
    [63]Jack A.S.and J.V.Ward.Rivising the serial discontinuity concept[J].Regulated Rivers: Research&Management, 2001, 17: 3 03-3 10.
    [64]M.Atilla O.and Ozcan S.A systems approach to policy analysis and development planning: Construction sector in the Turkish 5-year development plans[J].Technological Forecasting&Social Change, 2005, 72: 886-911.
    [65]Brian D.F.and W.E.Grant.Ecosystems as evolutionary complex systems: Network analysis of fitness models[J].Environmental Modlling&Software, 2007, 22: 693-700.
    [66]Zoe N., Myrto K., Christou M.Statistical analysis of major accidents in petrochemical industry notified to the major accident reporting system (MARS) [J].Journal of Hazardous Materials, 2006, A137: 1-7.
    [67]Serena H.C., Anthony J.J., John P.N.Artificial Intelligence techniques: An introduction to their use for modelling environmental systems [J].Mathematics and Computers in Simulation.2008, 78: 379-400.
    [68]Paulo C.and Fi-John Ch.Intelligent reservoir operation system based on evolving artificial neural networks[J].Advances in Water Resources, 2008, 31:926-936.
    [69] Shanmuganathan S., Sallis P., Buckeridge J. Self-organising map methods in integrated modelling of environmental and economic systems [J]. Environmental Modelling & Software, 2006, 21: 1247-1256.
    [70] Wei G., Feiguo Ch., Jian G., et al. Analytical multi-scale method for multi-phase complex systems in process engineering-Bridging reductionism and holism [J]. Chemical Engineering Science, 2007, 62: 3346-3377.
    [71] Alexandras G., Mohamed E., Malcolm H. A critical review of reductionist approaches for assessing the progress towards sustainability [J]. Environmental Impact Assessment Review, 2008,28: 286-311.
    [72] Ji Han and Yoshitsugu Hayashi. A system dynamics model of CO_2 mitigation in China's inter-city passenger transport [J]. Transportation Research Part D, 2008,13:298-305.
    [73] Albert J., Abhijit D, Soundar K., et al. Engineering complex, information-based, networked industrial systems: A research roadmap [J]. Journal of Computing and Information Science in Engineering, 2008, 8: 011005-1 - 011005-13.
    [74] Ian P. M., Christos T., Peter A., et al. New product development as a complex adaptive system of decisions [J]. the Journal of Product Innovation Management, 2006,23:437-456.
    [75] Moutaz K, Mirsad H., Hari K. R., et al. Application of complex adaptive systems to pricing of reproducible information goods [J]. Decision Support Systems, 2008, 44: 725-739.
    [76] Arnaud D., Rene M., Sylvain P., et al. A behavioral multi-agent model for road traffic simulation [J]. Engineering Applications of Artificial Intelligence, 2008, 21: 1443-1454.
    [77] Weidong Zh., Feng Ch., Wenli X., et al. Hierarchical group process representation in multi-agent activity recognition [J]. Signal Processing: Image Communication, 2008,23: 739-753.
    [78] Catherine L., Nicolas P., Didier F., et al. A multi-agent simulation to assess the risk of malaria re-emergence in southern France [J]. Ecological Modelling, 2009, 220: 160-174.
    [79] Harry C. W., Albert F., Annemarth M. I. Investigating new technologies in a scenario context: description and application of an input-output method [J]. Journal of Cleaner Production, 2008, 16S1: S102-S112.
    [80] George W., George C, Paul G. Teaching scenario planning: Lessons from practice in academe and business[J].European Journal of Operational Research, 2009, 194:323-335.
    [81]Julide K., Scott D.B., David A.M., et al.Application of a scenario-based modeling system to evaluate the air quality impacts of future growth [J].Atmospheric Environment, 2009, 43: 1021-1028.
    [82]Maria R.P., William R.S., Olivia B., et al.Sustainability assessment for agriculture scenarios in Europe's mountain areas: Lessons from six study areas[J].Environmental Management, 2009, 43: 144-165.
    [83]Mohammed M., Yuqiong L., Holly H., et al.A formal framework for scenario development in support of environmental decision-making[J].Environmental Modelling&Software, 2009, 24: 798-808.
    [84]Lourdes M.C.and William R.S.Cumulative effects assessment: A review of UK environmental impact statements[J].Environmental Impact Assessment Review, 2002,22:415-439.
    [85]Sandra J.W.and David J.G.A GIS-based approach to mapping probabilities of river bank erosion.regulated River Tummel, Scotland[J].Regulated Rivers: Research&Management, 2000, 16: 127-140.
    [86]Michael F.and Julie G.Urban sustainability in the presence of flood and geological hazards: The development of GIS-based vulnerability and risk assessment methodology[J].Landscape and Urban Planning, 2007, 83: 50-61.
    [87]John M.N.and Katherine S.L.Development of hydrological indices to aid cumulative impact analysis of riverine wetlands[J].Regulated Rivers: Research& Management, 1997, 13: 3 17-334.
    [88]王其藩.系统动力学(修订版)[M].北京:清华大学出版社,1994.
    [89]Christer N.and John E.B.Remedial strategies in regulated rivers[J].Regulated Rivers: Research&Management, 1996, 12: 347-351.
    [90]董哲仁,孙东亚,赵进勇.水库多目标生态调度[J].水利水电技术,2007, 38(1): 28-32.
    [91]Christopher J.G.and Michael J.S.Use of wetted perimeter in defining minimum environmental flows[J].Regulated Rivers: Research&Management, 1998, 14:53-67.
    [92]Robert T.Milhous.Modelling of instream flow needs.the link between sediment and aquatic habitat [J].Regulated Rivers: Research&Management, 1998, 14:79-94.
    [93]Smakhtin V.Y.Generation of natural daily flow time-series in regulated rivers using a non-linear spatial interpolation technique[J].Regulated Rivers: Research& Management, 1999, 15: 311-323.
    [94]Pettit N.E., Froend R.H., Davies P.M.Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers [J].Regulated Rivers: Research&Management, 2001, 17: 201-215.
    [95]Jorge A., Antoni P., Cristina V.A neural net model for environmental flow estimation at the Ebro River Basin, Spain[J].Journal of Hydrology, 2008, 349(1-2): 44-45.
    [96]Benetti A.D., Lanna A.E., Cobalchini M.S.Current practices for establishing environmental flows in Brazil[J].River research and applications, 2004, 20: 427-444.
    [97]Chrisine B., Bernhard T., Klaus J., et al.Green hydropower-a new assessment for river[J].River research and applications, 2004, 20: 865-882.
    [98]宋东明,朱耀琴,吴慧中.综合集成研讨厅问题求解过程中的问题分解研究[J].系统仿真学报,2008, 20(18): 4927-4931.
    [99]生物多样性与环境评价工具箱[J/OL].世界银行,www.worldbank.org/biodiversity, 2009-03-20.
    [100]甘淑,何大明,党承林.澜沧江流域上、中、下游典型案例区景观格局对比分析[J].山地学报,2002, 20(5): 564-569.
    [101]王印传,许嗥,孙丹峰,张凤荣.黄塔小流域农业生态系统景观特征探析[J].中国生态农业学报,2006, 14(1): 209-211.
    [102]任志远,张艳芳.土地利用变化与生态安全评价[M].北京:科学出版社,2003.
    [103]魏庆平.基于UML的流域水电梯级开发生态环境评价指标体系构建方法研究[M].武汉:华中科技大学,2007.
    [104]Kostas D.K.and Stamoulis K.Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece [J].2007, 15:1310-1319.
    [105]Tiago A.E., Germano C.V., Paulo J.L.A new intelligent system methodology for Time Series Forecasting with Artificial Neural Networks [J].Neural Process Lett,2008,28:113-129.
    [106]Ivayla V.Hidde D.J., Olivier B.et al.Experiment selection for the discrimination of semi-quantitative models of dynamical systems [J].Artificial Intelligence, 2006, 170:472-506.
    [107]Bin H., Debin Zh., Caixue M.et al.Modeling and simulation of corporate lifecycle using system dynamics[J].Simulation Modelling Practice and Theory, 2007, 15: 1259-1267.
    [108]Mustafa O., Theopisti C.P., Melek A.Systems dynamics modelling of a manufacturing supply chain system[J].Simulation Modelling Practice and Theory, 2007, 15: 1338-1355.
    [109]Anthony I.A.and David Z.Zh.Dynamic reconfiguration and simulation of manufacturing systems using agents[J].Journal of Manufacturing Technology Management, 2006,17(4):435-447.
    [110]Liu Xiaoping, Li xia, .Anthony G.Y.Multi-agent systems for simulating spatial decision behaviors and land-use dynamics[J].Science in China Series D: Earth Sciences, 2006, 49(11): 1184-1194.
    [111]廖守忆.复杂系统基于Agent的建模与仿真方法研究及应用[D].长沙:国防科学技术大学,2005.
    [112]左其亭.人水系统演变模拟的嵌入式系统动力学模型[J].自然资源学报,2007,22(2): 268-274.
    [113]朱高洪,毛志峰.我国水土流失的经济影响评估[J].中国水土保持科学,2008,6(1): 63-66.
    [114]贾仁安,丁荣华.系统动力学:反馈动态性复杂分析[M].北京:高等教育出版社,2002
    [115]张文安,徐大地,刘友云等.黔中黄壤丘陵旱坡地不同耕作栽培技术对水土流失及作物产量的影响[J].贵州农业科学,2000,28(6): 18-21.
    [116]陈奇伯,王克勤,齐实.黄土丘陵区坡耕地水土流失与土地生产力的关系[J].生态学报,2003, 23(8): 1463-1469.
    [117]何丙辉,廖纯艳,张小林等.长江流域水土保持生态修复的实践与发展[M].北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700