黄瓜(Cucumis sativus L.)性别分化相关的遗传标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以多代自交的全雌性黄瓜栽多星(EC1)和多代自交的弱雌性黄瓜北京截头(CC3)为亲本,进行杂交和自交获得F_2分离群体,采用同工酶标记、RAPD分子标记和AFLP分子标记等方法对黄瓜性别分化相关遗传标记进行研究。主要结果如下:
     在与黄瓜性别分化有关的同工酶标记研究中,对全雌性黄瓜EC1和弱雌性黄瓜CC3及其自交后在F_2代分离出的全雌株、强雌株和弱雌株进行了MDH、AAT与POD三种同工酶分析。结果表明,MDH在EC1和CC3之间可找到2个多态性的同工酶位点,但不能在F_2群体间不同性别单株区分开;AAT在EC1和CC3之间和F_2群体间均无明显差异;POD在EC1和CC3之间和F_2群体间均能找到有1~2个差异的同工酶位点。
     与黄瓜性别分化有关的RAPD分子标记研究包括DNA提取方法的筛选、优化RAPD反应体系、黄瓜亲本RAPD分子标记多态性随机引物的筛选和黄瓜性别相关的RAPD分子标记筛选四个方面。在DNA提取方法筛选的研究中,2%浓度的CTAB法提取的黄瓜叶片DNA具有典型的天然DNA分子的标准紫外吸收光谱特点,其A_(260/280)值在1.6-1.8之间,DNA的产量为870.63μg/g。此方法在黄瓜上相对优于其他DNA提取方法,提出的DNA适合进一步RAPD分析。
     在进行优化RAPD反应体系研究中,以黄瓜基因组总DNA为模板,通过对聚合酶链式反应(PCR)体系中Mg~(2+)浓度、dNTP浓度、Mg~(2+)浓度与dNTP浓度互作、模板DNA的浓度、随机引物的浓度和Taq酶浓度梯度进行试验,结果表明,反应体系为:超纯水12.2μl,Buffer(10x)2μ1,MgCl_2(25mM)_2μl,dNTP(2mM)1.5μl,Primer(8pmol/rec)1μl,Taq酶(1.5U/rec)0.3μl,TemplateDNA(50ng/μl)1μl时筛选出的PCR反应体系谱带清晰、条带丰富、可重复性好。
     在黄瓜亲本RAPD分子标记多态性随机引物的筛选研究中,通过全雌性与弱雌性黄瓜亲本基因组DNA的RAPD-PCR扩增对620条随机引物进行筛选,共有61条随机引物有明显差异。筛选出的引物可进一步用于黄瓜性别相关的分子标记研究。在对黄瓜性别分化相关的RAPD分子标记筛选的研究中,通过对黄瓜亲本显示多态性的61条随机引物对F_2分离群体进行扩增,随机引物AK04在1000bp、AK10在200bp、AK20在400bp处产生与性别相关的特异性条带。
    
    黄瓜(cucumis sativoL)性别分化相关的遗传标记研究
     在与黄瓜性别分化有关的AFLP分子标记研究中,对全雌性黄瓜Ecl和弱雌
    性黄瓜CC3及其自交后在F:代分离出的全雌株、强雌株和弱雌株进行了AFLP分
    析.结果表明,全雌性黄瓜ECI和弱雌性黄瓜CC3的人FLP图谱每个泳道有55-
    64条带,在ECI与Cc3之间至少有6个明显的多态性位点;在FZ代中全雌群体、
    强雌群体和弱雌群体之间显示出7个多态性条带;在黄瓜不同性型的单株之间每
    个AFLP引物至少可以发现5个多态性条带。
This paper, using a gynoecious cucumber Deltastar (EC1) and monoecious cucumber Beijing Jietou (CC3) as parents to make F1 to get the F2 segregation population, studied the genetic markers related to the sex differentiation of cucumber with isozyme, RAPD and AFLP methods. The main results of this paper are as follows:
    In the study on the isozyme markers related to sex differentiation of cucumber, the research is about the analysis in three isozyme systems (MDH, AAT, POD) of gynoecious cucumber EC1, monoecious cucumber CC3 and their F2 segregation population. The results showed that 2 polymorphic loci were observed in MDH between EC1 and CC3, but no variation among F2 segregation population was observed. No variation was observed in AAT both between EC1 and CC3 and among F2 segregation population. 1 -2 polymorphic loci were observed in POD both between EC 1 and CC3 and among F2 segregation population.
    Studies on the RAPD molecular markers related to sex differentiation of cucumber included the DNA extraction methods screening, the optimization of RAPD reaction system, the random primers screening of polymorphism for the RAPD molecular markers of parents of cucumber and sex-related RAPD molecular markers screening of cucumber. In the study on the DNA extraction methods screening, the method of CTAB with 2% concentration possessed the standard ultraviolet absorbance spectrum of the pure natural DNA and the A260/280 was between 1.6-1.8, the yield of DNA was 870.63ug/g young leaves. This method adapted to the further analysis of RAPD.
    In the study on the optimization of RAPD reaction system for cucumber, the research, using genomic DNA of cucumber as the template, tested the concentrations of Mg2+, dNTP, DNA, random primers and Taq enzyme. The results indicated that the optimized reaction system including DDH2O 12.2 ul, Buffer (10x) 2 ul, MgCl2(25mM) 2 ul, dNTP (2mM) 1.5 ul, Primer (8pmol/rec) 1 ul, Taq enzyme (1.5U/rec) 0.3 ul and Template DNA (50ng/ ul) 1 ul, had the traits of clear, good polymorphic and well repeated electrophoresis patterns.
    In the study on the random primers screening of polymorphism for the RAPD molecular markers of parents of cucumber, this research is about the analysis in screening 620 random primers by RAPD-PCR amplification of the gynoecious and monoecious genomic DNA of parents
    
    
    
    of cucumber. The results indicated that 61 random primers showed the apparent difference. The primers screened can be used for further study of molecular markers linked to sex of cucumber. In the study on the sex-related RAPD molecular markers screening of cucumber, This study is about the analysis in amplifying p2 segregation population with 61 random primers that showed the polymorphism among the parents of cucumber. The results indicated that random primers AK04, AK10, and AK.20 showed sex-specific bands at 1000, 200 and 400bp respectively.
    In the study on the AFLP molecular markers related to sex differentiation of cucumber, the research is about the analysis of gynoecious cucumber EC1, monoecious cucumber CC3 and their Fj segregation population using AFLP molecular markers. The results showed that the difference of AFLP markers related to the sex differentiation of cucumber is abundant. There are 55-64 bands per lane and 6 polymorphic loci between EC1 and CC3. There are 7 polymorphic loci among the gynoecious, subgynoecious and monoecious population in F2 segregation population There are at least 5 polymorphic loci among individuals of different sex types of cucumber per primer.
引文
1.艾辛,何光存.黄瓜植株性别表现与3种氧化酶同工酶的关系,武汉植物学研究,2000,18(3):184-188
    2.安彩泰.植物的性别决定和遗传,遗传,1983,5(3):44-46
    3.曹毅,任吉君,李春梅,王艳.乙烯利和赤霉素对黄瓜性别表现的影响.西南农业大学学报,2002,24(1):42-44
    4.车永和.几种代表性分子标记技术.江苏农业科学,2003,2:3-5
    5.陈辉,范源洪,蔡青.RAPD分子标记技术及其在甘蔗育种上的应用中国糖料,2004,1:46-48
    6.陈劲枫,娄群峰,余纪柱,庄飞云.黄瓜性别基因连锁的分子标记筛选.上海农业学报,2003,19(4):11-14
    7.陈日远,关佩聪.华南农业大学学报,1993,14(2):96-101
    8.陈学好,曾广文.黄瓜花性别分化与内源多胺的关系.植物生理与分子生物学学报,2002.28(1):17-22
    9.陈学好,曾广文,曹碚生.黄瓜花性别分化和内源激素的关系.植物生理学通讯,2002,38(4):317-320
    10.陈学好,曾广文,陈绝萍,曹碚生.植物激素和多胺与黄瓜性别逆转的关系.浙江大学学报:农业与生命科学版,2001,27(6):639-642
    11.邓义才,王得元,李乃坚,蒲汉丽.利用RAPD技术鉴定早青3号黄瓜种子纯度的研究 广东农业科学,1999,(3):17-18
    12.范双喜,谷建田,宋学锋,欧阳新星.蔬菜植物性别调控与应用,北京农学院学报,1996,11(1):135-139
    13.龚月桦,王俊儒,荆家海.高等植物对多胺的吸收和转运,植物生理学讯,1998,34(1):64-68
    14.顾红雅,明小天,陈章良,等.植物核基因组,植物基因与分子操作,北京大学出版社.1995.4:24-25
    15.何长征.艾辛,匡逢春.不同性型黄瓜植株保护酶类活性的差异.湖南农业大学学报(自然科学版),2001,27(4):289-291
    16.何风华.DNA分子标记及其在植物遗传育种上的应用.生物学教学,2004,29(1):8-9
    17.纪颍彪,朱其杰.同工酶分析在黄瓜杂种一代纯度检测上的应用研究.园艺学报,1995,22(3):251-255
    18.李曙轩,傅炳通.黄瓜及瓠瓜的性别表现与激素控制,植物生理学报,1979,15(1):83-92
    19.李曙轩.蔬菜栽培学各论,农业出版社,1987,242-244
    
    
    20.李兴国,李全梓,张宪省.黄瓜性别决定的细胞学研究.山东农业大学学报 2001,32(4):411-417
    21.刘殿林,杨瑞环,哈玉洁.黄瓜基因组DNA提取与RAPD分析,华北农学报,2002,17(4):9-12
    22.刘明,王继华,王同昌.DNA分子标记技术,东北林业大学学报,2003,31(6):65-67
    23.娄群峰,余纪柱,陈劲枫.植物性别分化的遗传基础与标记物研究,植物学通报,2002,19(6):684-691
    24.陆朝福,朱立煌.植物育种中的分子标记辅助选择.生物工程进展,1995,15(4):11-17
    25.罗宗洛.植物生理知识,科学出版社,1973,101-102
    26.钱忠英,蔡润,潘俊松,等.黄瓜RAPD体系的优化与应用,上海交通大学学报,2003,21(3):208-213
    27.曲士松,刘宪华,黄宝勇,等.CTAB法提取大蒜、白菜基因组DNA,山东农业大学学报,2000,31(4):427-429
    28.仁吉君,王艳.黄瓜性别决定解剖学研究,北方园艺,1994,46-47
    29.王斌,翁曼丽.AFLP的原理及其应用,杂交水稻,1996,5:27-30
    30.王玢,袁方翟.RAPD分子标记在果蔬研究中的应用.中国果菜,2003,6:13
    31.王伟,曹宗撰.高等植物的性别分化.植物学报.1986,2:8-11
    32.王中仁编着.植物等位酶分析.科学出版社,1996,26.
    33.夏仁学.园艺植物性别分化的研究进展,植物学通报,1996,13(增刊):12-19
    34.许云华,陈洁.DNA分子标记技术及其原理,连云港师范高等专科学校学报,2003,9(6):78-82
    35.薛淮,刘敏,张纯花,等.RAPD分子标记在园艺植物遗传学研究中的应用,生物技术,2003,13(2):42-43
    36.叶波平,吉成君,杨玲玲,等.不同性别表型黄瓜基因组中雌性系的ACC合酶基因,植物学报,2000,42(2):164-168
    37.应振土,李曙轩.瓠瓜与黄瓜的性别表现和内源乙烯与氧化酶活性的关系.园艺学报.1990,(1):51-57
    38.于凤鸣,刘玉艳,杨越冬.乙烯利诱导黄瓜雌花分画机理初探(简报),河北农业技术示范学院学报,1997,11(2):68-70
    39.于锡宏,夏妍,张庆华.同工酶技术在瓜类育种中的应用.北方园艺2003(2):58-59
    40.张海英,王永健,许勇,等.黄瓜种质资源遗传亲缘关系的RAPD分析.园艺学报,1998,25(4):345-349.
    41.郑晓鹰,李丽,李秀清.大白菜品种同工酶及水溶蛋白的遗传多样性分析,园艺学报,1997,24(3):244-248
    
    
    42.庄飞云,陈劲枫.黄瓜栽培种、近缘野生种、种间杂种及其回交后代的APD分析,园艺学报,2003,30(1):47-50
    43.庄振士,李曙轩.瓜类性别表现的研究进展,生物科学动态,1989,5(2):6-9
    44.邹喻平.RAPD分子标记简介,生物多样性,1995,3(2):104-108
    45. Aicher L D, Saunders J W. Inheritance studies and colonial fingerprinting with isozymes in sugarbeet. Crop Sic., 1990,30:1072
    46. Anat K, Silberstein L,Kessler N,Ronalds G,Rafael PT. Expression of ACC oxidase genes fifers among sex gynotypes and phases in cucumber. Plant. Molecular Biology, 1999, 41(4): 517-528
    47. Andersen SE, Bastola DR, Minocha SC. Metabolism of polyamines in transgenic cells of carrot expressing a mouse ornithine decarboxylase cDNA. Plant Physiol, 1998, 116: 299-307
    48. Ando S, Sato Y, Kamachi S. Isolation of a MADS-box gene(EARF17)and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plans(Cucumis sativus L.).Planta, 2001, 213(6): 943-952
    49. Atsmon D, Galun E. A morphogenetic study of staminate, pistillate and hermaphrodite flowers in Cucumis Sativus (L.) [J] Phytomorphology,1960, 10: 110-115
    50. Bose T K and M S. Ghosh. Indian J. Agri,Sci. 1977, 45(10): 487-489
    51. Bradeen JM, Staub JE, Wye C, et al., Towards an expanded and integrated linkage map of cucumber (Cucumis Sativus L.). Genome, 2001, 44: 111-119
    52. Chauhan RS, Farman ML, Zhang HB, Leong SA. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol. Gen. Genet., 2002, 267: 603-612
    53. Cho YG, McCouch SR, Kuiperet M, et al., Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor. Appl. Genet., 1998, 97: 370-380
    54. Cho Yong Gu. Cloning and mapping of variety-specific rice genomic DNA sequences: amplified fragment length polymorphisms (AFLP) from silver-stained polyacrylamide gels. Genome, 1996, 39(2): 373-378
    55. Dane F. Cucurbits in Tanksley S D. In: Ortentj (eds) Isozymes in plant genetics and breeding. Pan B. Elsevier, Amsterdam, 1983. 369~390
    56. Danin-poleg Y, Reis N, Tzuri G, and Katzir N. Development and characterization of microsatellite markers in Cucumis. Theor. Appl. Genet., 2001, 102: 61-72
    57. Doganlar S, Frary A, Daunay MC, et al., A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics,
    
    2002, 161:1697-1711
    58. Esquinas Alcazar J T. Alloenzyme variation and relationships in Genus Cucumis. Ph. D Diss. Davis: University of California, 1977. 170-176
    59. Fanourakis, NF and Simon, PW. Analysis of genetic linkage in the cucumber. J. Hered. 1987, 78:238-242
    60. Friedlander M, Sexual differentiation in cucumber. Abscisic acid and giberellic acid contents of various sex genotypes. Plant & Cell Physiol. 1977, 18: 681-691
    61. Galston AW, Kaur Sawhney R. Polyamines in plant physiology. Plant Physiol, 1990, 94: 406-410
    62. Galun E, Jung Y, Lang. A culture and sex modification of male cucumberbuds in vitro. Nature, 1962,194:596
    63. Garcia G M, Stalker H T, Shroeder E, et al. Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome, 1996, 39(5): 836-845
    64. Gupta PK, Balyan HS, Edwards K J, et al., Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat, Theor. Appl. Genet., 2002, 105: 413-422
    65. Horejsi T. Box JM, and Staub JE. Efficiency of randomly amplified polymorphic DNA to sequence characterized amplified region marker conversion and their comparative polymerase chain reaction sensitivity, in cucumber. J. Amer. Soc. Hort.Sci., 1999,124:128-135
    66. Horejsi T. & Staub J. E. Genetic variation in cucumber as assessed by random amplified polymorphic DNAs. Genet. Res. Crop. Evol., 1999, 46(4): 337-350
    67. Horejsi T; Box JM; Staub JE. Efficiency of randomly amplified polymorphic DNA to sequence characterized amplified region marker conversion and their comparative polymerase chain reaction sensitivity in cucumber. Journal of the American Society for Horticultural Science. 1999, 124(2): 128-135.
    68. Kamachi S, Sekimoto H, Kondo N, Sakai S. Cloning of a cDNA for a l-amino-cyclopropane-l-carboxylate synthase that is expressed during development of flowers at the apices of Cucumis sativus L. Plant Cell Physiology, 1997, 38(11): 1197-1206
    69. Kema GHJ, Goodwin SB, Hamza S, et al., A combined amplified fragment length polymorphism and randomly amplified polymorphism DNA genetic linkage map of Mycosphaerella graminicola, the Septoria tritici leaf blotch pathogen of wheat. Genetics, 2002, 161: 1497-1505
    70. Kennard, WC, Foetter, K, Dijkhuizen A, et al., Linkages among RFLP, RAPD, Isozyme, disease-resistance, and morphological markers in narrow and wide crosses of cucumber,
    
    Theor. Appl. Genet. 1994, 89: 42-48
    71. Knerr LD, Staub JE, Holder DJ, et al., Genetic diversity in Cucumis sativus L. assessed by variation at 18 allozyme Loci. Theor. Appl. Genet., 1989, 78: 119-128
    72. Knerr LD, Staub JE, Holder DJ, and May BP. Genetic diversity in C.sativus L. assessed by variation at 18 allozyme coding loci. Theor. Appl. Genet., 1989,78:119-128
    73. Knerr, LD and Staub, JE. Inheritance and linkage relationships of isozyme loci in cucumber (Cucumis sativus L.). Theor. Appl. Genet., 1992, 84: 217-224.
    74. Kong LR, Tzeng DD, Yang CH. Generation of PCR-based DNA fragments for specific detection of Streptomyces saraceticus N45. Proc Natl Sci Counc Repub China, 2001, 25(2): 119-127
    75. Kunzel G, Korzun L, and Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics, 2000, 154: 397-412
    76. Lwahari, S, Lyons JM, Smith OE. Sex expression in cucumber plants as affected by (Z-chloroethyl) phosphonic acid. Ethylene and growth regulators Pl. physial 1970, 46: 412-415
    77. Malepszy S. Niemirowicz-Szczytt K. Sex determination in Cucumber (Cucumis sativus) as a model system for molecular biology, Plant Science, 1991, 80: 39-47.
    78. Meglic, V. and Staub, JE. Inheritance and linkage relationships of allozyme and morphological loci in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 1996, 92: 865-872.
    79. Menz MA, Klein RR, Mullet JE, et al., A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP(R), RFLP and SSR markers. Plant Molecular Biology, 2002, 48: 483-499
    80. Michelmore RW. Identification of marker linked to disease-resistance gene by bulked segregant analysis: A rapid method detect marker in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
    81. Mueller UG, Wolfenbarger LL. AFLP genotyping and fingerprinting. Trends Ecol. Evol., 1999, 14(10): 389-394
    82. Murayama S, Yamagishi H, Yerachi T. Identification of RAPD and SCAR markers linked to a restorer gene for Ogura cytoplasmic male sterility in radish (Raphanus sativus L) by bulked segregant anlysis. Breeding Science, 1999, (49): 115-121
    83. Murayama S, Yamagishi H, Terachi T. Identification of RAPD and SCAR markers linked to a restorer gene for Ogura cytoplasmic male sterility in radish by bulked segregant analysis.
    
    Breeding Science. 1999(49): 115-121
    84. Murray HG, and Thompson WF. Rapid isolation of higher weights DNA. Nucleic Acids Res., 1980, 8: 4321
    85. Neuhausen S L. Evaluation of restriction fragment length polymorphism in Cucumis melo L. Theor. App. Genet., 1992, 83: 397-384
    86. Nguyen VT, Nguyen BD, Sarkanmg S, et al., Mapping of genes controlling aluminum tolerance in rice comparison of different genetic backgrounds. Molecular Genetics and Genomics, 2002, 267: 772-780.
    87. Oliver M, Garcia-Mas J, Cardus M, et al., Construction of a reference linkage map for melon. Genome, 2001, 44: 836-845.
    88. Pal BH, Say SG, Aswathanarayan RG. Putrescine and silver nitrate influences shoot multiplication in vitro flowering and endogenous titers of polyamines in Cichorium intybus L. (cv. Lucknow local). Plant Growth Regu1 2000, 19(20): 238-248
    89. Paran I, Michelmore R W. Development of reliable PCR-based markerslinked to downy mildew resistance genes in lettuce, Theor Appl Genet, 1993(85): 985-993
    90. Park Young Hoon, Sensory S, Wye C, et al., A genetic map of cucumber composed of RAPDs, RFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome, 2000, 43: 1003-1010.
    91 Peng JY (彭建营), Shu HR (束怀瑞), Peng TQ(彭土琪). To address the problem of infraspecific classification of Ziziphus jujuba Mill using RAPD data. Acta Phytotaxonomica Sinica(植物分类学报) 2002. 40: 89-94.
    92. Perez T, Albornoz J, Dominguez A. An evaluation of RAPD fragment reproducibility and nature. Mol. Ecol., 1998, 7(10): 1347-1357
    93. Perl Treves R, Kahana A, Rosenmarn N, Xiang Y, Silberstein L Expression of multiple AGAMOUS-like genes in male and female flowers of cucumber (Cucumis sativus L.), Plant-and-Cell-Physiology, 1998, 39(7): 701-710
    94. Sakata K, Antonio BA, Mukai Y, et al., INE: a rice genome database with an integrated map view. Nucleic Acids Research, 2000, 28: 97-101
    95. Scholten HJ. Effect of polyamines on the growth and development of some horticultural crops in micro propagation. Sci Hort, 1998, 77: 83-88
    96. Serquen FC, Bacher J, and Staub JE. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis Sativus L.) using random-amplified polymorphic DNA markers. Molecular Breeding, 1997,3:257-268.
    97. Sharopova N, McMullen MD, Schultz L, et al., Development and mapping of SSR markers
    
    for maize. Plant Molecular Biology, 2002, 48: 463-481
    98. Staub J E, Kupper R S, Schuman D, et al., Electrophoreic variation and enzyme storage stability in cucumber. J Am. Soc. Hortic. Sci., 1985, 110: 426-431
    99. Staub JE, Box JM, Meglic V, Horejsi TF and McCreigh JD. Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genet. Res. Crop. Evol., 1997, 44: 257-269
    100. Staub JE, Serquen FC, Katzir N, Paris HS. Towards an integrated linkage map of cucumber: map merging. Acta-Horticulturae, 2000, 510: 357-366.
    101. Tai T H, Tanksley D D. Rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep, 1990,8(4): 229-303
    102. Tassoni A, Van Buren M, Franceschetti M, Fornale S, BagniN. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermideine on plant development. Plant Physiol Biochem, 2000, 38(5): 383-393
    103. Trebitsh J, Staub JE, O'Nell SD. Identification of a l-aminocyctopropane-l-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol. 1997, 113; 987-995
    104. Vos P, AFLP: a new technique for DNA fingerprinting. Nucleic Acid Research 1995.23(21): 4407-4414
    105. Walden R, Cordeiro A, Tiburcio AF. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol, 1997. 113: 1009-1013
    106. Wang J X, Yang GS, Fu TD. et al., Development of PCR-based markers linked to the fertility restorer gene for the polima cytoplasmic malesterility in rapeseed (Brassica napus L.). Journal of Genetics, 2000, 27(11): 1012-1016
    107. Welsh J, and McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res., 1990,18:6531-1173.
    108. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acid Res, 1990. 18: 7213-7218
    109. Williams JG, Kubelik AR, Livak KJ, et al., DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res, 1990. 18: 6531-6534
    110. Yamasaki S, Fujii N, Takahashi H.The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement of sex expression in flowers. Plant Cell Physiol, 2000, 41(5): 608-616
    111. Yin T, Quinn JATests of a mechanistic model of one hormone regulating both sexes in cucumis sativus(Cucurbitaceae).American-journal-of Bontany, 1995, 82:(12): 1537-1546
    
    
    112.Zhou YH(周永红),Zheng YL(郑有良),Yang JL(杨俊良),Yah J(颜济),Jia JZ(贾继增).Phylogenetic relationships among ten Elymus species based on random amplified polymorphic DNA. Acta Phytotaxonomica Sinica(植物分类学报)1999,37:425-432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700