利用模型对黑土条件下玉米生长和土壤碳氮循环的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑土是吉林省主要的土壤类型之一,种植作物以玉米为主,近年来的不合理耕作和施肥致使黑土退化加剧,环境污染风险提高。随着模型模拟技术的发展,利用模拟手段对作物生长和土壤碳氮循环的研究被认是行之有效的方法。
     农业技术转化决策系统(DSSAT)是世界上应用最广泛的模型之一,但如今仍没有在黑土上的研究报道,特别是应用作物生长模拟校验后的参数同时去模拟土壤碳氮循环在国内并未见报道。因此,本文应用DSSAT4.5模型通过单独设置的田间试验和长期定位试验,对吉林省黑土区域内主要农作物玉米的生产力和玉米田土壤碳氮循环进行模拟研究。通过对主要输出变量(作物生长、产量、作物氮吸收、土壤氮)的敏感性分析,找出影响模型输出的敏感性参数。同时探讨不同栽培技术、不同气候、不同氮肥施肥用量等对生物量,产量和土壤碳、氮变化趋势的影响。从而筛选出适合我国黑土地区玉米稳产高产、提高土壤肥力和降低环境污染风险的综合农艺措施,为今后制定农业发展战略、政府决策、土地利用和农业种植业的调整提供有力手段。DSSAT4.5 CERES-Maize模型按本文提供的校验和敏感性分析方法,还可以应用于其他作物、土壤和地区,也可以用于不同水肥管理条件下的长期预测预报,为农业技术推广部门提供模型和技术支持。同时也为DSSAT4.5的出版发行和扩大应用范围提供实验依据和数据支持。本论文几年的研究结果可以归纳如下:
     对DSSAT模型运行原理的解析是正确设置模型参数的关键,对正确设计田间实验和实验室样品分析是获得校验分析数据的关键;有效搜集过去的长期定位试验数据是进行模拟长期定位/轮作试验的前提。应用DSSAT作物系统模型模拟“田间”作物生长和土壤CN循环是开展区域模拟的关键。模型敏感性分析和校验分析是模型应用研究的常用方法。在阅读同类研究论文的基础上,系统学习这两种方法是校验和应用模型的必要手段,而了解DSSAT模型中的作物系统模型,土壤模型和水分运动模型的基本理论和数量关系是应用模型和修改模型的基础。
     在应用和引进DSSAT模型中,一个很关键的环节是确定模型的输入参数对产量和土壤养分的敏感性,因为在一个地区的敏感性并不能保证在其它地区具有同样的影响。正因为如此,本文对DSSAT模型的4个主要旱田作物(玉米、大豆、小麦、马铃薯)的农业管理参数进行了系统的敏感性分析,得到了一致的结果:即作物生长和土壤无机氮都受到播种期、密度、施氮肥量和时间的影响,这和实验研究结果基本一致。
     应用DSSAT CERES-Maize模型,对2008年的田间试验玉米生长进行了系统的模拟分析(叶面积指数,地上干物质,籽粒重量),应用当地平均产量和生长期对玉米品种参数进行校验。模拟结果的综合分析表明:玉米提前播种8-10d比正常播种减产大约10%。玉米产量随播种密度呈现抛物线趋势;即在低密度下,产量曲线递增,但是当密度大于5 plant m-2时,产量增加平缓。产量和氮肥施用量呈典型的效应递减曲线,最佳施氮量勾200-240 kg N hm-2。最佳追肥时间为6月15日至6月28日。本研究证明DSSAT模型能够用于中国其它地区的玉米生长模拟,并且,本研究建立的敏感性分析方法能够用于其它作物,如水稻和小麦。
     基于2009年的田间试验,本文用DSSAT CERES-Maize作物模型和DSSAT-CENTURY土壤模型对玉米田的土壤C、N循环进行了系统的模拟分析;即选择作物栽培措施、N肥用量、土壤供氮和秸杆还田对玉米生长、氮吸收、土壤供氮能力以及对有机碳氮的生态平衡进行了综合模拟和敏感性分析,从而筛选维持玉米高产和保持黑土碳氮平衡的管理措施。2008和2009年两年敏感性分析模拟结果的综合分析表明:在玉米目标产量12000-15000 kg hm-2条件下,化肥最佳施N量为200-240 kg N hm-2。在该N肥用量下,玉米地上氮吸收为250-290 kg N hm-2;其中120-140 kg N hm-2来自土壤N(播前土壤提供约50 kg N hm-2,生长期内土壤提供的矿化氮约70-90 kg N hm-2),130-150 kg N hm"2来自肥料N。提高氮肥用量(250-420 kg N hm-2)导致土壤残留氮明显增加(63-183 kg N hm-2)。延迟追肥时间(晚于6月28日)同样导致土壤残留氮增加。当玉米秸杆还田量超过6000 kg hm-2时,土壤活性有机碳、氮可以维持当年的供需平衡。建议在吉林省中部地区黑土玉米带,控制化肥施氮量为200-240 kg N hm-2,适时追肥,秸杆还田量在6000 kg hm-2以上是确保高产和维持土壤生态和养分平衡的关键措施之一。
     应用DSSAT轮作模型(Sequence model),本文对1990-2007年的公主岭长期定位试验进行17年的玉米连作模拟分析;即每年5-9月种植玉米,9月-第二年年4月为休闲。设计了不施肥(N0),单施化肥165kg N hm-2(N165)和有机(112kg N hm-2)+无机肥料(165kg N hm-2)配施(M112+N165)三个处理,来研究不同施肥对连作玉米的产量和土壤有机C,N和无机氮,氮淋溶的影响。模拟和测量结果都表明:玉米连作情况下的籽粒产量,耕层土壤有机碳氮含量反映了随气候变化的趋势(既干旱年产量明显降低),充分说明了水分,温度和光照是影响作物生长的关键因素。模型的模拟产量和测量结果呈显著正相关(R2=0.69)。模拟的土壤有机CN结果表明:单施氮肥N165kg N hm-2,土壤氮淋溶增加,最高可达150kg N hm-2。但是同时发现在单施N165条件下,100%秸杆还田能够保持17年土壤中活性有机碳,氮平衡。有机肥和化肥配施(M112+N165能显著提高土壤活性有机碳、氮贮量,并且降低土壤硝态氮淋溶。
Black soil(Mollisols) is a typical soil and maize (Zea mays L.) is the main crop in Jilin province. In recent year, soil degradation increased with over application of fertilizers and improper tillage and this consequently increase the risk of environmental pollution. It is regarded a feasible method to study crop growth and soil C and N cycling using modeling approach.
     Decision Support Systems for Agro-technology Transfer (DSSAT) is one of the most widely applied models globally, but there was no report that the DSSAT model has been applied in the Black soil region in China, especially there was no report on using the calibrated crop model and cultivar parameters to simulate soil C N cycling in China. Therefore, this thesis arm at simulating maize growth and soil C and N cycling in the Black soil field in Jilin province using the DSSAT 4.5 model with specially designed field and long term experiments. Through the sensitivity analysis of main output variables (crop growth, yield, crop N uptake, and soil mineral N), sensitive parameters was found effectively. At the same time, the effects of crop managements, climate and different fertilizer N application levels on yield and soil C N dynamics were studied. The best management practices were selected to maintain high yield and soil fertility, and to reduce environmental pollution risk. The research results will provided useful methods for agricultural development, decision making, land use policy and cropping adjustment in the future. The evaluation and sensitivity methods for the DSSAT 4.5 CERES-Maize model can be applied to other crop, soil and region. The methods can also be used to forecast long term yield potential by agricultural extension sectors. Meanwhile, our researches provide useful dataset to support DSSAT 4.5 application. The main research fruits can be summarized as below.
     Understanding the DSSAT model and its working principle is the key step for parameter calibration. Designing a good field experiment and using a correct lab analysis method are the key step for obtaining model evaluation dataset; effectively collecting long term field experimental data is a pre-condition for applying DSSAT model in sequence/rotation analysis of the long term field experiment. Applying the DSSAT crop system model to simulate field crop growth and soil C N cycling is the key step for regional simulation. Sensitivity analysis and evaluation methods are mostly used method for model application and evaluation. After literature review, systematically learn the two methods are necessary to successfully evaluate a model. Learning quantitative theory of crop growth, soil C N dynamics and soil water balance lay the foundation of model evaluation and modification.
     When applying the DSSAT model to a new system, a key step is to determine model output sensitivity to input parameters because some sensitive parameter in some region may not be sensitive in other region. For this reason, this study carried out a systematically sensitivity analysis to the main crop management parameters of 4 main dry land crops (Maize, soybean, spring wheat and potato). The results showed agreements for all crops; crop growths and soil mineral N were sensitive to sowing date, density, fertilizer N application rates and times. These results were in agreement with field experimental results.
     DSSAT CERES-Maize model was applied to our 2008 field experiment with Maize in Black soil to simulate crop growth (LAI, aboveground dry weight and grain yield). Maize cultivar parameters were calibrated using average field data, and the simulation results follow. Planting 8 to 10 days earlier resulted in maize yield reductions of 10%. Yields increased curveilinearly with the increases in plant density in the low to mid range (<5 plants m-2), and levelled off when the density reached 5 plants m-2. Yield and fertilizer N rate followed a diminishing yield pattern with the maximum yield being obtained at a fertilizer N rate of 200-250 kg N hm-2. The optimum fertilizer dress date was June 15-28. The research results also showed that DSSAT model can be used to simulate maize growth in other region of China and the sensitivity method that was established in this research can be applied to other crops, such as rice and wheat.
     Using 2009 field experiment, DSSAT CERES-Maize model and DSSAT CENTURY soil model were used to simulate crop N uptake and soil C and N dynamics to crop management parameters (sowing date, density and fertilizer N application rates and dates). The results showed that maize targeted yield of 12000-15000 kg hm-2 can be achieved by applying 200 to 240 N kg hm-2. Under this fertilization., the simulated N uptake (aboveground) ranged 250 to 290 N kg hm-2, including 120 to 140 N kg hm-2 from soil N and 130 to 150 N kg hm-2 from fertilizer N. Higher fertilizer N rates of 250 to 420 N kg hm-2 resulted in the increased residual soil N of 63 to 183 N kg hm-2 at harvest. Delaying dress date of N fertilizer (after June 28) also resulted in the increases of residual soil mineral N. When applying up to 6000 kg hm-2 crop residue to the field, simulated soil active organic C and N maintained supply/demand balance during growing season. The study recommended that 200 to 240 kg N hm-2 fertilizer N and up to 6000 kg hm-2 crop residue should be applied to maize field to achieve the targeted maize yield and maintain soil organic C and N balance in black soil zone of Jilin province, China.
     DSSAT Sequence model was used to simulate 17 years long term maize continuous field experiments (1990-2007) in Gongzhuling, Jilin China. Three N levels (treatments) were used in the simulation; no fertilizer N (NO),165 kg fertilizer N hm-2 (N165) and Organic N(112 kg N hm-2) plus fertilizer N 165 kg N hm-2) (M112+N165). Both measured and simulated results showed that maize yields, soil C and N changed with time, and the trends reflect climate changes (i.e., yields was lower in drought years). This proved that vater, temperature and solar radiation are key factors for crop growth. There was a significant correlation between the simulated and the measured maize yield (R2=0.69). Simulated soil organic C and N showed that under single fertilizer N165 kg N hm-2, soil N leaching increased up to 150 kg N hm-2 at harvest. It was also found that under N165 treatment,100% crop residual return can maintain soil active organic C and N balance during 17 year period. Under M112+N165 treatment,100% crop residual return can increase soil active organic C and N significantly and reduce soil mineral N leaching.
引文
Almasri M N and Kaluarachchi J J.Modeling nitrate contamination of groundwater in agricultural watersheds [J].Hydrology,2007,343:211-229
    Asadi M E,Clement R S.Evaluation of CERES-maize of DSSAT model to simulate nitrate leaching,yield and soil moisture content under tropical condititions[J].FoodAgric Environ,2003,1:270-276
    Azhar A H考虑随机降雨时水稻灌溉制度模型[J],灌溉排水,1993,12(2):54-57
    Bartholomew W V and Kirham D.Mathematical descriptions and interpretations of culture-induced soil nitrogen changes [J].Transactions of the 7th international congress of soil science,1960,2:471-477
    Bergstrom L F,Kirchmann H.Leaching of total nitrogen from nitrogen-15-labeled poultry manure and inorganic nitrogen fertilizer [J].Environ Qual,1999,28:1283-1290
    Blackman V H.The Compound interest law and Plant growth [J]Ann Bot,1919,33:353-60
    Boote K J.Concepts for calibrating crop growth models [J].DSSAT V3 (4),1999:179-200
    Bouman B A M,Kropff M J,Woppereis M C S,et al.ORYZA2000; modeling lowland rice[A].Los Banos (Philippines):International Rice Research Institute[C].Wageningen University and Research Centre,2001,235
    Bowen W T,Jones J W,Carsky R J,et al.Evaluation of the Nitrogen Submodel of CERES-Maize Following Legume Green Manure Incorporation [J].Agron.1993,85:153-159
    Bradbury N J,Whitmore A P,Hart P B S,et al.Modelling the fate of nitrogen in crop and soil in the years following application of 15N-labelled fertilizer to winter wheat [J].Journal of Agricultural Science,Cambridge,1993,121:363-379
    Brisson N,Mary B,Ripoche D,et al.STICS a generic model for the simulation of crops and their water and nitrogen balances I.Theory and parameterisation applied to wheat and maize,Agronomie,1998,18:311-346
    Brisson N,Ruget F,Gate P,et al.STICS:a generic model for the simulation of crops and their water and nitrogen balance Ⅱ.Model validation for wheat and maize.Agronomiee,2002,22:69-93
    Brown D,Rothery P,Models in Biology:Mathematics,Statistics and Computing[J].John Wiley & Sons, Chichester,1993
    Buckingham,E.Studies on the movement of Soil moisture.D.U.S,Department of Agrieulture.1907
    Cavero J,Farre Ⅰ,Debaeke P,et al.Simulation of Maize Yield under Water Stress with the EPIC phase and CROPWAT Models(J).Agron.J.,2000,92:679-690
    Chen L H,Huang G K,Splinter W E.Developing a Physical-chemical model for a plant growth system[J].ASAE Trans,1969,(12):698-702
    Childs S W,Gilley J R,Splinter W E.A simplified model of corn growth under moisture stress [J].Trans Am Soc Agric Eng,1977,20:858-865
    Christian K,Arina A M,Eva M P,et al.Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils [J].Soil Biology and Biochemistry, In Press, Corrected Proof,2010,1-11
    Coleman K,Jenkinson D S.RothC-26.3:a Model for the Turnove of Carbon in Soil, Model Description and User's Guide [J].Lawes Agri-Cultural Trust,Harpenden, UK,1995:32
    Curry R B.Dynamic simulation of plant growth, I. Development of a model [J]-ASAET rans,1971,14(5):946-959
    Daniel P R,Joe T R,Wallace W W,et al.Simulating Inbred-Maize Yields with CERES-IM [J]Agron J,2000,92:672-678
    Darrah P R,White R E and Nye P H.Simultaneous nitrification and diffusion in soil.IV.Simplification and sensitivity analysis of the simulation model for ammonium chloride[J].Journal of Soil Science,1986,37:469-478
    De wit C T.Dynamic concepts in biology.In:Prediction and M anagement of Photosynthetic Productivity.Proceedings International Biological Program Plant Production Technical Meeting [J]. Wageningen,Netherlands:PUDOC,1970,17-23
    De wit C T. Photosynthesis of leaf canopies[J];Agric Res Report.1965,42:663-671
    Deybe D and Flichman GA regional agricultural model using a plant growth simulation program as activities generator-An application to a region in Argentina[J].Agricultural Systems,1991,37:369-385
    Duncan W G,Hesketh J D.Net photosynthetic rates,relative leaf growth rates,and leaf numbers of 22 races of maize grown at eight temperatures[J].Crop Sci,1968,(8):670-674
    Duncan W G.A model for simulation photosynt hesis in plant communities[J].Hilgardia,1968,38(4):1-32
    Edwards D,Hamson M.Guide to Mathematical Modeling [J].Boca Raton,Florida,U S:CRC Press,Inc.1990,2
    France J and Thornley J H M.Mathematical Model in Agriculture [J].Butterworth And Co Ltd.Kent,1984
    France J,Mathematical modelling in agricultural sciences[J].Weed Research,1988:28,419-423
    Franko U,Oelschlagel B and Schenk S.Simulation of gemperature,water,and nitrogen dynamics using the Model CANDY[J].Ecol Model,1995,81:213-222
    Gijsman A J,Hoogenboom G,Parton W J,et al.Modifying DSSAT crop models for low-input agricultural systems using a soil organic matter-residue module from CENTURY [J]Agron.J,2002,94:462-474
    Godwin D C,and U Singh.Nitrogen balance and crop responses to nitrogen in upland and lowland cropping systems [J].1998,55-77.In Tsuji G Y,Hoogenboom G and Thornton P K (edts).Understanding options for agricultural production.System approaches for sustainable agricultural development.Kluwer Acdmic Publishers,Dordrecht,Netherlands
    Greenwood D J, Ckeaver T J and Turner M K.Fertilizer requirements of vegetable crops.Fert.Soc.1974,(146):5-31
    Gree(?)wood D J,Rahn C R,Draycott A,et al.Modelling and measurement of the effects of fertiliser-N and crop residue incorporation on N-dynamics in vegetable cropping.Soil Use and Management,1996,12:13-24
    Gregory F G,Third ann,Rep.Experi mental Reasearth station [J].Cheshnut,1917,19-23
    Harsen S,Jensen H E,Nielsen N E,et al.Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY[J].Feres,1991,(27):245-259
    Hasegawa H,Bryant D C,Denison R F.Testing CERES model predictions of crop growth and N dynamics,in cropping systems with leguminous green manures in a Mediterranean climate.Field Crops Res,2000,67:239-255
    Hearr A B and constable G A.Irrigation for crops in a subhumid environment V stress day analysis for s oybeans and an economic analysis [J].Irrig,1981,3:1-15
    Henin S and Dupuis M.Essai debilan delamatiere organique dusol [J].Annales Agronomiques,1945,15:17-29
    Heinemann A B,Hoogenboom G,de Faria R T.Determination of spatial water requirements at county and regional levels using crop models and GIS:an example for the State of Parana Brazil. Agricultural Water Management 52.2002,177-196
    Hoogenboom G,Jones J W,Porter C H,et al.Decision Support System for Agrotechnology Transfer Version 4.0.Volume l:Overview.University of Hawaii, Honolulu, HI,2003
    Hoogenboom G,Jones J W,Wilkens P W,et al.DSSAT V4.5 β version [CD-ROM] [D].University of Hawaii,Honolulu,HI.2008
    Hoogenboom G,Jones J W,Wilkens P W,et al.DSSAV V4.0 [CD-ROM],University of Hawaii,Honolulu,HI.2004
    Hoogenboom G, Wilkens P W and Tsuji G Y (eds).DSSAT v3,volume 4 U Hawaii,Honolulu,Hawaii.1999
    Hoogenboom GWilkens P W,Tsuji GY.Chapter three:Laboratory method,DSSAT v3,Volume 4[D].University of Hawaii,Honolulu,Hawaii,1999,257-270
    Huth N I,Carberry P S,Poulton P L,et al.A framework for simulating agroforestry options for the low rainfall areas of Australia using APSIM. European Journal ofAgronomy,2002,18:171-185
    Hutson J L,Wagenet R J.Leaching estimation and chemistry model:A process-based model of water and solute movement,transformations,plant uptake and chemical reactions in the unsaturated zone.Version 3.0 [J].LEACHM.1992
    Jansson,Per-Erik.Simulation model for nitrogen conditions in soil [J].SOILN.1992:421-446
    Jenkinson D S,Harkness D D,vance E D.Calculating net primary production and annual input of organic matter to soil from the anount and radiocarbon content of soil organic matter [J].Soil Biochem,1992,24:295-308
    Jenny H,Factors of Soil Formation.New York.McGraw-Hill,1941
    Johnson K B,Johnson S B and Teng P S.Development of simple potato growth model for use in crop-pest management[J].Agricultural Systems,1986,19:189-209
    Jones C A, Kiniry J R.CERES2M aize:A simulation model of maize grow th and development.College Station, U S:Texas A&M U niv.Press,1986
    Jones C A,Kiniry J R.CERES-Maize:A simulation model of maize growth and development [J].College Station, U S:Texas A&M Univ. Press,1986
    Jones J W,Hoogenboom QPorter C H,et al.The DSSAT cropping system model [J].Eur J Agron,2003,18:235-265
    Keating B A,Carberry P S,Hammer G L,et al.An overview of APSIM, a model designed for farming systems simulation[J].Eur J Agron,2003,18:267-288
    Kersebaum K C,Wurbs A,Campbell C A,et al.Long-term simulation of soil-crop interactions in semiarid southwestern Saskatchewan,Canada[J].Eur J Agron,2008,29:1-12
    Kiniry J R,Blanchet R, William s J W,et al.Sunflower simulation using the EPIC and ALMANAC models [J].Field Crops Res,1992,30:403-423Kiniry J R,Sanderson M A,Williams J R,et al.Simulating Alamo Switch grass with the ALMANAC model [J]Agron J,1996,88:602-606
    Knepell P L,Arangno D C,Simulation Validation:A Confidence Assessment Methodology [J].IEEE Computer Society Press,Los Alamitos,California,1993,123-131
    Koo J,Bostick W M,Naab J B,et al.Estimating soil carbon in agricultural systems using ensemble Kalman filter and DSSAT-CENTURY[J].Trans ASAE,2007,50:1851-1865
    Leigh R.A,Johnston A E.Long-term experiments in agricultural and ecological sciences.Oxford University Press. 1994
    Li C,Frolking,S and Harriss R.Modeling carbon biogeochemistry in agricultural soils [J].Global Biogeochemical Cycles,1994,8:237-254
    Liang B C,Mackenzie A F.Changes of soil nitrate-nitrogen and denitrification as affected by nitrogen fertilizer on two Quebec soils [J].Envi.Quality,1994,23(3):521-525
    Lizaso J I,Batchelor W D,Boote K J.Development of a Leaf-Level Canopy Assimilation Model for CERES-Maize [J].American Society of Agronomy.2005,97:722-733
    Loomis R S,Williams SW A.Maximum crop productivity:Anestimate[J].Crop Science,1963,3:67-72
    Lopez-Tirado Q,Jones J G W.A simulation model to assess primary production and use of Bouteloua gracilis grasslands.Part-I Model structure and validation[J].Agricultural Systems,1991,35:189-208
    Luo Q,Williams M A J,Bellotti W,et al.Quantitative and visual assessments of climate change impacts on South Australian wheat production [J].Agri Syst.2003,77:173-186
    Ma L,Malone R W,Heilman P,et al.RZWQM simulation of long-term crop production,water and nitrogen balances in Northeast Iowa [J].Geodema,2007,140:247-259
    McGill W B. Review and classification of ten soil organic matter (SOM) models. In:Powlson D S,Smith P,Smith J U,eds. Evaluation of Soil Organic Matter Models [J].Berlin,Heidelberg:Springer-Verlag,1996,111-132
    McLaren A D.Temporal and vectorial reactions of nitrogen in soil.A review. Canadian Journal of Soil Science 1970,50:97-109
    Milly P C D.Climate soil wate storage and the average annual average water balance [J].Water Resour Res,1994,30(7):2143-2156
    Milnee,Adamat R A,Batjes N H,et al.National and sub-national assessments of soil organic carbon stocks and changes:The GEFSOC modeling system[J].Agriculture, Ecosystems and Environment,2007,(122):3-12
    Mitchell C C,Delaney D P, Balkcom K S.A historical summary of Alabama's old rotation (circa 1896):The world's oldest, continuous cotton experiment.Agron[J].2008,100:1493-1498
    Monsi M,Saeki T U,ber den L.Ichtfaktor in den Pflan-zengesell schaften und seine Bedeutung fur die stoffp roduktion [J].J pn J B ot,1953,14:22-52
    Montieth J L.The quest for balance in modeling[J].Agronomy Journal,1996,88:695-697
    Moore A D,Holzworth D P,Herrmann N I,et al.The Common Modelling Protocol:A hierarchical framework for simulation of agricultural and environmental systems.Agri Syst,2007,95:37-48
    Naser H M,Nagata O,Tamura S,et al.Methane emissions from five paddy fields with different amounts of rice straw application in central H okkaido,Japan[J].Soil Science and Plant Nutrition,2007,53:95-101
    Nye P H and Greenland D J.The soil under shifting cultivation [J].Technical Communication,1960,51
    O'Neal M R,Frankenberger J R,Ess D R.Use of CERES-Maize to study effect of spatial precipitation variability on yieldAgri Syst,2002,73:205-225
    Olson J S.Energy storage and the balance of producers and decomposers in ecological system [J].Ecology,1963,44:322-331
    Pan G X,Li L Q, Wu L S,et al.Storage and sequestration potential of top soil organic carbon in China's paddy soils [J].Global Change Biology,2003,10:79-92
    Pang X P,Gupta S C,Moncrief J F,Rosen C J,et al.Water quality:Evaluation of nitrate leaching potential in Minnesota glacial outwash soils using the CERES-Maize model [J].Environ Qual,1998,27:75-85
    Pang X P,Letey J,Wu L.Yield and nitrogen uptake prediction by CERES-maize model under semiarid conditions [J].Soil Sci Soc Am,1997,61:254-256
    Parton W J,and Rasmussen P E.Long-term effects of crop management in wheat-fallow:Ⅱ CENTURY model simulations[J].Soil,1994a,58:530-536
    Parton W J,Ojima D S,Cole C V,et al.A general model for soil organic matter dynamics.1994b,147-167.In Bryant R B and Arnold R W (eds).Quantitative modeling of soil forming processes.Special Publication 39.SSSA,Madison.WI
    Parton W J,Schimel D S,Cole C V,et al.Analysis of factors controlling soil organic matter levels in great plains grasslands [J].Soil Sci Soc Am,1987,51:1173-1179
    Parton W J,Stewart J W B and Cole C V.Dynamics of C、N、P and S in grassland soils:A model[J].Biogeochemistry,1988,5:109-131
    Paydar Z,Huth N,and Snow V.Modelling irrigated Eucalyptus for salinity control on shallow water tables.Australian Journal of Soil Research,2005,43:587-597
    Payne R W.New and traditional methods for the analysis of unreplicated experiments. Crop,2006,46:2476-2481
    Penning de Vries F W T,Jansen D M,ten Berge H F M,et al.Simulation of ecophysiological processes of growth in several annual crops.Simulation Monographs [J].Wageningen, Netherlands:PUDOC,1989,271
    Penning de Vries F W T,Van Laar H H.Simulation of plant growth and crop production.In:Penning devries F W T,van Laar H H eds.Simulation Monographs[J].Wageningen,Netherlands:PUDOC,1982,114-136
    Pickering N B,Hansen J W,Jones J W,et al. Weather Man:A utility for managing and generating daily weather data [J].Agron,1994,86:332-337
    Poulton P R.The importance of long-term trials in understanding sustainable farming systems:the Rothamsted experienceAust J Exp Agric,1995,35:825-834
    Porter C H,Jones J W,Adiku S,et al.Modeling organic carbon and carbon-mediated soil processes in DSSAT v4.5[J].Oper Res,2009,1-32
    Porter J R,Jamieson P D, Wilson D R.Comparison of the wheat simulation models AFRCWHEAT2, CERES-Wheat,for non-limiting conditions of crop growth.Field Crops Research,1993,33:131-157
    Rabinowitch E I.Photosynthesis and related process [J].Interscience,1951,2(1):831-1191
    Reaumur R A F,Observations du thermometer,Men Acad Roy Sc,Paris,1998,545-76 Ritchie J T,Otter S.Description and performance of CERES-Wheat:a user-oriented wheat yield model. Willis
    W O.ARS wheat yield project.US:USDA-ARS,RS 238,1985,159-175
    Ritchie J T.A User Oriented Model of the Soil water Balance in Wheat.In Wheat Growth and Modeling.Eds W Day and R K Atykin.Plenum Press,1985
    Ritchie J T.Cereal growth,development and yield.in:Tsuj G Y,Hoogenboom G and Thornton P K (Eds),Understanding Options for Agricultural Production,Kluwer Academic Publishers.The Netherlands,1998,79-98
    Sabey B R,Frederik L R,Barthdomew W V.The formation of nitrate from NH4+-Hin soilsIV.Use of the delay and maximum rate phase for making quantitative predictions [J].Soil Sci Soc Am,1969,33:276-278
    Sinclair T R,Horie T.Leaf N photosynthesis and crop radiation use efficiency:Arevies [J].Crop Science,1989,29:90-98
    Sinclair T R,Seligman N G.Crop modeling:from infancy to maturity[J]Agronomy Journal,1996,88:698-704
    Smith P,Smith J U,Powlson D S,et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments.Geoderma,1997,81:153-225
    Snow V O,Houlbrooke D J,and Huth N I.Predicting soil water,tile drainage,and runoff in a mole-tile rained soil.New Zealand Journal of Agricultural Research,2007,50:13-24
    SolerC M T,Sentelhas P C,Hoogenboom G.Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment[J].Eur J Agron,2007,27:165-177
    Splinter W E.Modeling of plant growth for yield prediction [J] Agricultural Meteorology,1974,14:243-253
    Stapleton H N,R P Meyers.Modeling subsystems for cotton plant simulation [J].Transactions of the ASAE,1971,14(5):950-953
    Stockle C O,Dyke P T,Williams J R,et al.A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops:part Ⅱ-sensitivity analysis at three sites in the rnidwestern USA[J]Agricultural Systems,1992,38:239-256
    Tsuji G Y,Uehara G and Balas S.(eds).DSSAT v3. University of Hawaii, Honolulu, Hawaii,1994
    Van Kenlen H.Crop production under semi-arid conditions,as determined by nitrogen and moisture availability.In:Penning de V ries FW T,van Laar H H eds.Simulation Monographs[J].Wageningen,Netherlands:PUDOC,1982,234-251
    Van Keulen H.Simulation of Water Use and Herbage Growth in Arid Region[J]. Wageningen,Nerherlands:PUDOC,1982,176
    Venterea R T,Burger M,Spokas K A.Nitrogen oxide and methane emissions under varying tillage and fertilizer management[J].Journal of Environmental Quality,2005,34:1467-1477
    Waldir Cintra de Jesus,et al.Comparison of Two Methods for Estimating Leaf Area Index on Common Bean[J].Agronomy Journal,2001,93:989-991
    Watson D J.Leaf growth in relation to crop Yield "The Growth of leave".Proeeedings of the third Easter School in Agricultural Science,University of Notting Gram.Ed by Milthorpe F L,London,1956
    Watson D J.The physiological basis of variation in Yield .Advanceg in Agronomy,New York,1952
    Wilkerson G G,Jones J W,Boote K J,et al.Modeling soybean growth for crop management [J].Trans ASAE,1983,26:63-73
    Williama J R,Nearing M,Nick A,et al.Using soil erosion models for global change studies[J].Journal of Soil and Water Conservation,1996,381-385
    Williams J R,Dyke P T,Fuchs W W,et al.EPI|C Erosion Productivity Impact Calculator:2.User Manual.Sharpley, (?) N and Williams,J R,Eds.U S Department of Agriculture Technical Bulletin No.1768,127 p.1990
    Willmott C J,Ackleson S G,Davis R E,et al.Statistics for the evaluation and comparison of models [J] Geophys,Res,1985,90:8995-9005
    Willmott C J.Some comments on the evaluation of model performance[J].Bulletin-American Meteorological Society,1982,63:1309-1313
    Yang J Y,Drury C F,Johnston R et al 2010 EasyGrapher v4.5:Software for Graphical and Statistical Evaluation of DSSAT v4.5 Outputs.Poster presentation In:ASA, CSSA and SSSA 2010 international annual meeting,Oct 31-Nov 3,Long Beach,CA
    Yang J Y,Huffman E C.EasyGrapher v1.0 Help Manual.In Chapter 3 (Editors) Jones J W, Hoogenboom G,Wilkens P W,Porter C.H,and Tsuji G Y.Decision Support System for Agrotechnology Transfer Version 4.0.Volume 3.DSSAT v4:ICASA Tools. University of Hawaii, Honolulu, HI.2003
    Yang J Y,Huffman E C.EasyGrapher:software for graphical and statistical validation of DSSAT outputs[J].Computers and Electronics in Agriculture,2004,45:125-132
    Yang J,Greenwood D J,Rowell D L,et al.Statistical methods for evaluating a crop nitrogen simulation model,NABLE[J].Agr:Syst,2000,64(1),37-53
    Zhang K,Greenwood D J, White P J,et al.A dynamic model for the combined effects of N、P and K fertilizers on yield and mineral composition; description and experimental test.Plant and Soil,2007,298:81-98
    蔡延江,王连峰,温丽燕,等.培养实验研究长期不同施肥制度下中层黑土氧化亚氮的排放特征[J].农业环境科学学报,2008,(2):617-621
    蔡祖聪,钦绳武.作物N、P、K含量对于平衡施肥的诊断意义[J].植物营养与肥料学报,2006,12(4):473-478
    曹宏鑫,任德昌,王旭清,等.作物生长发育过程的计算机模拟决策研究概述[J].山东农业科学,2001(3):51-54
    曹卫星,潘洁,朱艳,等.基于生长模型与Web应用的小麦管理决策支持系统[J].农业工程学报,2007,(1):133-138
    曹卫星.国外小麦生长模拟研究的进展[J].南京农业大学学报,1995,18(1):10-14
    曹永华.美国CERES作物模拟模型及其应用[J].世界农业,1991(9):52-55
    常敬礼,杨德光,谭巍巍,等.水分胁迫对玉米叶片光合作用的影响[J].东北农业大学学报,2008,39(11):1-5
    陈桂芬,王越,王国伟.玉米精准施肥专家系统的研究与应用[J].吉林农业大学学报,2006,28(5):586-590
    陈桂芬,庄铁成,付生山.多媒体玉米生产专家系统的研制与应用[J].农业与技术,1998,(1):11-17
    陈凌静,王子芳,魏朝富,等.土壤有机碳、氮动态模型研究进展[J].土壤通报,2009,40(2):432-438
    陈明昌,张强,杨晋玲,等.田间土壤氮素形态转化模拟模型的研究[J].植物营养与肥料学报,1996,2(3):261-269
    陈云坪,赵春江,王秀,等.基于知识模型与WebGIS的精准农业处方智能生成系统研究[J].中国农业科学,2007,(6):1190-1197
    陈陈子明,袁锋明,姚造华,等.氮肥施用对土体中氮素移动利用及其对产量的影响[J].土壤肥料,1995,4:36-42
    池宝亮,黄学芳,张冬梅,等.点源地下滴灌土壤水分运动数值模拟及验证[J].农业工程学报,2005,21(3):56-59
    戴明宏,陶洪斌,廖树华,等.基于CERES-Maize模型的华北平原玉米生产潜力的估算与分析[J].农业工程学报,2008,24(4):30-36
    戴明宏,赵久然,Wilhelm Claupein,等.基于CERES-Maize模型春玉米水分优化管理决策[J].水土保持学报,2009,(01):187-192
    邓天宏,方文松,付祥军,等.冬小麦夏玉米土壤水分预报及优化灌溉模型[J].气象科技,2005,33(1):68-72
    杜克明,孙忠富,王迎春.基于Web的温室作物模拟系统的实现[J].农业工程学报,2006,(8):256-259
    范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,4(1):16-21
    冯绍元,张瑜芳,沈荣开,等.淹水土壤中氮素运移与转化试验及其数值模拟.农业工程学报,1994,10(4):50-56
    高崇升,杨国亭,王建国,等.利用Century模型模拟不同农业经营模式下黑土农田土壤有机碳的演变[J].生态学杂志,2008,27(6):911-915
    高峰,胡继超,卞斌贝.国内外土壤水分研究进展[J].安徽农业科学,2007,35(34):11146-11148
    高洪军,彭畅,李强,等.长期施肥对黑土养分供应能力和土壤生产力的影响[J].玉米科学,2010,18(6):107-110
    高亮之,金之庆,黄耀,等.水稻计算机模拟模型及其应用之一:水稻钟模型-水稻发育的计算机模型[J].中国农业气象,1989,10(2):3-10
    高亮之,金之庆,郑国清,等.小麦栽培模拟优化决策系统(WCSODS)[J]江苏农业学报,2000,16(2):65-72
    高亮之,金之庆.中国不同类型水稻生育期的农业气象生态模式及其应用[J].农业气象,1982,8(2):1-8
    高亮之.农业模型研究与21世纪的农业科学[J].山东农业科学,2001,(1):43-46
    高亮之.农业模型学基础[M].2004
    高鲁鹏,梁文举,姜勇,等.利用CENTURY模型研究东北黑土有机碳的动态变化-Ⅰ自然状态下土壤有机碳的积累[J].应用生态学报,2004,15(5):772-776
    高鲁鹏,梁文举,赵军,等.气候变化对黑土有机碳库影响模拟研究[J].辽宁工程技术大学学报,2005,24(2):288-291
    高如泰,陈焕伟,李保国,等.夏玉米生长期黄淮海平原土壤水氮利用效率模拟分析[J].农业工程学报,2006,22(6):33-38
    高阳,段爱旺,邱新强,等.玉米/大豆间作条件下作物生物量积累模型[J].中国生态农业学报,2010,(5):965-968
    龚子同,张甘霖.竺可桢与中国土壤科学的发展[J].十壤,2010,42(2):323-327
    贡复俊.积温的度量[J].扬州大学学报:农业与生命科学版,1984,(1):3-28
    郭新宇,赵春江,刘洋,等.基于生长模型的玉米三三维可视化研究[J].农业工程学报,2007,23(3):121-125
    郭银巧,郭新宇,赵春江,等.玉米适宜品种选择和播期确定动态知识模型的设计与实现[J].中国农业科学,2006,39(2):274-280
    郭银巧,郭新宇,赵春江,等.玉米栽培管理知识模型系统的设计与实现[J].玉米科学,2005,13(2):112-115
    郭银巧,赵传德,孙红春,等.玉米肥料运筹动态知识模型研究[J].河北农业大学学报,2008,31(1):118-126
    韩秉进,张旭东,隋跃宇,等.东北黑十农田养分时空演变分析[J].十壤通报,2007,38(2):238-241
    韩晓盈,下宏燕,于洪艳,等.黑十生态系统氮循环研究进展[J].东北农业大学学报,2009,40,(2):140-144
    候宁宁.松辽平原玉米带黑土铵的固定和吸附特性研究[D].吉林农业大学硕士学位论文,2006
    胡萌.密度对春玉米光合与衰老生理及产量的影响[D].东北农业大学硕士学位论文,2009,6:15-17
    黄金龙,小麦生产系统研究[M].北京农业大学出版礼.1994:18-19
    黄铁牛,牛栋.中国生态系统研究网络(CERN):概况、成就和展望[J].地球科学进展,2005,20(8):895-903
    黄耀,高亮之.水稻群体茎蘖动态的计算机模型[J].生态学杂志,1994,13(4):27-32
    黄耀,刘世梁,沈其荣,等.农田土壤有机碳动态模拟模型的建立[J].中国农业科学,2001,34(5):465-468
    黄耀,孙文娟.近20年来中国大陆农田表十有机碳含量的变化趋势[J].科学通报,2006,51(71):749-763
    姜志伟,武雪萍,华珞,等.洛阳旱地夏玉米生产潜力长周期定量模拟与评价[J].生态学报,2009,(1):315-324
    金龙,衰成松.农田土壤湿度的人工神经网络预测诊断系统[J].气象,1997,23(3):25-39
    孔德胤,智海,张富强,等.河套地区覆膜与裸地玉米随地积温变化的生长动态模型[J].中国农业气象,2008,29(1):67-70
    孔令聪,曹承富,等.长期定位施肥对砂姜黑土肥力及土地生产力的影响研究[J].中国生态农业学报,2004,12(2):102-103
    雷宏军,李保国,自由路,等.集约农作条件下土壤有机碳动态模拟及其在黄淮海平原区的应用[J].中国农业科学,2005,38(5):956-964
    雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318
    李保国,龚元石,左强,等.农田土壤水的动态模型及应用[M].科学出版社,2000
    李耕,高辉远,赵斌,等.灌浆期干旱胁迫对玉米叶片光系统活性的影响[J].作物学报,2009,35(10):1916-1922
    李军.作物生长模拟模型的开发应用进展[J].西北农业大学学报,1997,(8):102-107
    李立娜,吉林玉米带典型区域地下水硝态氮污染状况调查分析[D].吉林农业大学,2006
    李明刚,阎日红,梅冬林,等.吉林省农作物产量预测的初步研究[J].吉林农业科学,1989,(1):89--95
    李文娟,何萍,金继运.氯化钾对玉米茎腐病抗性反应中酚类物质代谢的影响[J].植物营养与肥料学报,2008,(3):508-514
    李小明,孙红敏.作物生长模拟模型的研究与应用[J].东北农业大学学报,2005,36(6):812-815
    李自珍,王万雄.多种环境外力作用下作物生长系统的动力学模型及过程数值模拟[J].应用数学和力学,200324(6):644-652
    廖桂平作物生长模拟模型研究概述[J].作物研究,1998(3):45-47
    林昌善,郑臻夏.有效温度法则在我国粘虫发生地理学上的检验[J].昆虫学报,1958,8(1):41-58
    刘宏斌,李志宏,张云贵,等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报,2006,43(3):405-413
    刘洪斌,武伟等.基于神经网络的土壤水分预测建模研究[J].水土保持报,2003,17(5):59-62
    刘培斌,丁跃元,张瑜芳.田间一·维饱和非饱和土壤中氮素运移与转化的动力学模式研究[J].土壤学报,2000,37(4):490-498
    刘世粱,黄耀,沈其荣,等.农田土壤有机碳动态模拟模型的检验与应用.中国农业科学,2001,34(6):644-648
    刘铁梅,曹卫星,罗卫红,等,小麦叶面积指数的模拟模型研究[J].麦类作物学报,2001,21(2):38-41
    刘铁梅,曹卫星,罗卫红,等.小麦物质生产与积累的模拟模型[J].麦类作物学报,2001,(3):26-30
    刘晓燕,何萍,金继运.氯化钾对玉米根系糖和酚酸分泌的影响及其与茎腐病菌生长的关系[J].植物营养与肥料学报,2008,(5):929-934
    柳云龙,吕军,郑丽波,等.土壤水分平衡与作物生长模拟模型的开发与验证[J[.农业工程学报,2007,23(12):171-175
    陆垂裕,裴源生.适应复杂上表面边界条件的一维土壤水运动数值模拟[J].水利学报,2007,38(2):136-142
    逯非,王效科,韩冰,等.稻田秸秆还田:土壤固碳与甲烷增排[J].应用生态学报,2010,21(1):99-10
    丁司正三,左伯敏郎.植物群体光的因素及其对植物生长的作用.光合作用与作物生产译丛[M].北京:中国农业出版社,1980
    盂凯,张兴义.松嫩平原黑土退化的机理及其生态复原[J].土壤通报,1998,29(3):100-102
    孟磊,丁维新,蔡祖聪,等.长期定量施肥对土壤有机碳储量和土壤呼吸影响[J].地球科学进展,2005,20(6):687-692
    潘铁夫,张德荣,李德明,等.作物正态回归模型及其在玉米、大豆产量分析上的应用[J].吉林农业科学,1995,(3):76-81
    潘学标,韩湘玲,石元春.一个可用于栽培管理的棉花生长发育模拟模型——COTGROW[J]中国农业科学,1996,(2):94
    潘学标,龙腾芳,董占山,等.棉花生长发育与产量形成模拟模型(CGSM)研究[J].棉花学报,1992,4(增刊):11-20
    裴步祥.蒸发和蒸散的测定与计算方法的现状及发展[J].气象科技,1985(2):69-74
    彭畅,朱、平,高洪军,等.长期定位监测黑土土壤肥力的研究Ⅱ黑土耕层有机质与氮素转化[J].吉林农业科学,2004,29(5):29-33
    彭畅.长期施肥条件下黑十有机碳厍和氮库变化研究[D].中国农业科学院硕士学位论文,2006
    戚昌瀚,殷新佑,刘桃菊,等.水稻生长日历模拟模型(RICAM)的调控决策系统(RICOS)研究[J].江西农业大学学报,1994 b,16(4):323-327
    戚昌瀚,殷新佑.作物生长模拟的研究进展[J].作物杂志,1994 a,(4):1-2
    钦绳武,顾益初,等.潮土肥力演变与施肥作用的长期定位试验初报[J].土壤学报,1998,35(3):367-375
    邱建军,王立刚,唐华俊,等.东北三三省耕地十壤有机碳储量变化的模拟研究[J].中国农业科学,2004,37(8):1166-1171
    邱建军,肖荧南,胡锡宁.作物生长模拟模型参数校正与有效化的理论和实践[J].应用生态学报,1999,10(6):679-682
    任理,马军花.考虑土壤中硝态氮转化作用的传递函数模型[J].水利学报,2001,(5):38-44
    尚宗波,杨继武,殷红,等.玉米生长生理生态学模拟模型[J].植物学报,2000,(2):184-194
    宋有洪,郭焱,李保国,等.基于器官生物量构建植株形态的玉米虚拟模型[J].生态学报,2003,23(12):2579-2586
    苏恒强,陈桂芬,朱春娆.基于熵值法的玉米产量组合预测模型.沈阳农业大学学报[J],20101,(1):125-127
    苏恒强,朱春娆,陈杜芬,等.玉米精准施肥专家系统的研究[J].广东农业科学,2010,(3):99-101
    苏恒强,朱春娆,陈桂芬,等.玉米栽培技术专家系统的研究[J].湖北农业科学,2010,49(10):2545-2547
    孙波,朱兆良,牛栋.农田长期生态过程的长期试验研究进展与展望[J].十壤,2007,39(6):849-854
    孙酉石,王玉芝,程铭,等.玉米主要农艺措施产量函数模型的研究[J].吉林农业大学学报,1987,9(4):11-18
    孙志梅,薛世川,彭正萍,等.影响土壤硝态氮淋失的因素及预防措施[J].河北农业大学学报,2001,24(3):95-99
    孙忠富,陈人杰.温室番茄生长发育动态模型与计算机模拟系统初探[J].中国生态农业学报,2003,11(2):84-88
    孙忠富,张希星,蒋卫杰.蔬菜精准施肥专家系统的设计和实现[J].农业网络信息,2005,(8):15-17
    汤亮,曹卫星,朱艳.基于生长模型的油菜管理决策支持系统[J].农业工程学报,2006,(11):160-164
    汤志成,王苹.作物产量预报系统[J].中国农业气象,1996,17(2):49-52
    田秀英.国内外的长期肥料试验研究[J].渝西学院学报,2002,15(1):14-18
    童成立,吴金水,郭胜利.土壤有机碳周转SCNC模型的研究与开发[J].计算机与农业,2001(12):10-12
    汪丙国,靳孟贵,方连育,等.沟播冬小麦田土壤水流动系统模拟[J].中国农村水利水电,2006(2)35-37,40
    汪懋华.精细农业发展与工程技术创新[J].农业工程学报,1999,15(1):1-8
    王金达,刘景双,刘淑霞,等.松嫩平原黑土土壤有机碳库的估算及其影响因素[J].农业环境科学学报,2004,23(4):687-690
    王康,沈荣开,覃奇志,等.不同水分、氮素条件下夏玉米生长的动态模拟[J].灌溉排水学报,2003,22(2):9-12
    王立春,赵兰坡,朱’平.不同施肥方式对黑土春玉米田硝态氮和铵态氮的影响[J].东北林业大学学报,2009,37(12):85-87
    王立刚,邱建军,马永良,等.应用DNDC模型分析施肥与翻耕方式对十壤有机碳含量的长期影响[J].中国农业大学学报,2004,9(6):15-19
    王绍强,周成虎.中国陆地十壤有机碳库的估算[J].地理研究,1999,18(4):349-356
    王圣瑞,陈新平高祥照,等.“3414”肥料试验模型拟合的探讨[J].植物营养与肥料学报,2002,8(4):409-413
    王石立,郭建、平马玉,等.从东北玉米冷害预测模型展望农业气象灾害预测技术的发展[J].气象与环境学报,2006,22(1):44-49
    王西平,姚树然.多层次十壤水分平衡动态模型及其初步应用[J].中国农业气象,1998,19(6):27-31
    王亚莉,贺立源.作物生长模拟模型研究和应用综述[J].华中农业大学学报,2005,24(5):529-535
    王育光,姜丽霞,杜春英,等.黑龙江省作物生长动态模式预测产量的方法及应用[J].黑龙江气象,2003(3):15-17
    吴元中,段项锁,李临颍.非直角双曲线光合模型的积分及参数灵敏度分析[J].应用气象学报,1993(4):504-508
    武金生,谢森传.冬小麦田间根层中氮素迁移转化规律研究[J].灌溉排水,1996,15(4):10-15
    武志杰,张海军,许广山,等.玉米秸秆还田培肥土壤的效果[J].应用生态学报,2002,(05):539-542
    谢云,James R,Kiniry国外作物生长模型发展综述[J].2002,28(2):190-195
    严定春,诸叶平,李世娟,等.小麦-玉米连作协同模型系统研究[J].农业网络信息,2007(9):21-23
    杨晓梅,潘国栋.土壤氮管理模拟模型简介[J].水土保持科技情报,2004,(3):8-10
    杨学明,张晓平,方华军,等.20年来部分黑土耕层有机质和全氮含量的变化[J].地理科学,2004,24(6):710-714
    杨学明,张晓平,方华军,等.用RothC-26.3模型模拟玉米连作下长期施肥对黑土有机碳的影响[J].中国农业科学,2003,36(11):1318-1324
    杨学云,张树兰,袁新民,等.长期施肥对塿十硝态氮分布、累积和移动的影响[J].植物营养与肥料学报,2001,7(2):134-138
    叶东靖,高强,何文天,等.施氮对春玉米氮素利用及农田氮素平衡的影响[J].植物营养与肥料学报,2010,1 6(3):552-558
    殷新佑,刘桃菊,唐建军,等.双季稻田生态系统信息管理的调控决策支持系统(DOREIDS)研究[J].江西农业大学学报,2001,(04):453-457
    殷新佑,戚昌瀚.水稻生长日历模拟模型及应用研究[J].作物学报,1994,20(3):339-346
    尹力初,蔡祖聪.长期不同施肥对玉米田间杂草种群组成的影响[J].土壤,2005,37(1):56-60
    于君宝,刘景双,王金达,等.不同开垦年限黑土有机碳变化规律[J].水土保持学报,2004,18(1):27-30
    于磊,张柏.中国黑土退化现状与防治对策[J].干旱区资源与环境,2004,18(1):99-103
    于永强,黄耀,张稳,等.华东地区农田土壤有机碳时空格局动态模拟研究[J].地理与地理信息科学,2007,23(1):97-100
    于永强,黄耀,张稳.华东地区农田土壤有机碳动态模拟研究—模型的验证与灵敏度分析[J].地理与地理信息科学,2006,22(6):86-89
    于忠义.简明统计学术史纲要[J].统计研究,2009,26(6):102-111
    袁新民,同延安,杨学云,等.施用磷肥对土壤硝态氮累积的影响[J].植物营养与肥料学报,2000,6(4):397-403
    袁新民,同延安,杨学云,等.有机肥对土壤硝态氮累积的影响[J].土壤与环境,2000,9(3):197-200
    袁新民,杨学云,同延安,等.不同施氮量对土壤硝态氮累积的影响[J].干旱地区农业研究,2001,19(1):7-13
    苑韶峰,杨丽霞.土壤有机碳库及其模型研究进展[J].2010,41(3):738-743
    战秀梅,韩晓日,杨劲峰,等.不同氮、磷、钾肥用量对玉米源、库干物质积累动态变化的影响[J].十壤通报,2007,38(3):495-499
    张怀志,朱艳,曹卫星,等.基于知识模型的棉花管理决策支持系统[J].棉花学报,2005,(4):201-206
    张晋京,窦森,朱平,等.长期施用有机肥对黑十胡敏素结构特征的影响—固态~(13)C核磁共振研究[J].中国农业科学,2009,(6):2223-2228
    张俊,徐绍辉,刘建立,等.农田生态系统中氮循环模型研究进展[J].灌溉排水工程,2006,25(3):85-88
    张庆忠,吴文良,林光辉.小麦秸秆还田对华北高产粮区碳截留的作用[J].辽宁工程技术大学学报,2006,25(5):773-776
    张圣微,雷玉平,郑力,等.基于GIS的土壤水分运动模型[J].土壤通报,2006,37(6):1066-1070
    张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87
    张旭东,蔡焕杰,付玉娟,等.黄土区夏玉米叶面积指数变化规律的研究[J]._干旱地区农业研究,2006,24(2):25-29
    张宇,陶炳炎.冬小麦生长发育的模拟研究[J].南京气象学院学报,1991,14(1):113-121
    张云贵,刘宏斌,李志宏,等.长期施肥条件下华北平原农田硝态氮淋失风险的研究[J].植物营养与肥料学报,2005,11(6):711-716
    张云生,顾思平,田世明,等.哈尔滨市主要农作物籽实、秸秆、根茬产量及其养分含量的分析[J].东北农业大学学报,2002,(02):125-128
    赵秉强,张夫道.我国长期肥料定位试验研究[J].植物营养与肥料学报,2002,8(增刊):3-8
    赵彩霞.高产农田生态系统不同秸秆还田模式和施肥水平对作物生长的影响研究[D].中国农业大学,2004
    赵传德,郭银巧,李存东,等.玉米适宜密度与播种量确定动态知识模型[J].农业现代化研究,2008,28(5):610-613
    赵春江,诸德辉,李鸿祥,等.小麦栽培管理计算机专家系统的研究与应用[J].中国农业科学,1997,(5):42-49
    赵军,商磊,葛翠萍,等.基于GIS的黑土区土壤有机质空间变化分析[J].农业系统科学与给综合研究,2006,22(4):304-307
    赵兰坡,王鸿斌,刘会青,等.松辽平原玉米带黑土肥力退化机理研究[J].土壤学报,2006,43(1):79-84
    赵莉,刘文远,戴俊英.玉米优化栽培数学模型的建立与分析[J].计算机农业应用,1990,(02):35-41+34
    郑国清,段韶芬,张瑞玲,等.基于模拟模型的玉米栽培管理信息系统[J].中国农业科学,2004,(4):619-624
    郑国清,尹红征,吕冰清,等.玉米光合生产与产量形成模拟模型[J].农业系统科学与综合研究,2004,19(3):73-76
    周怀平,杨治平,李红梅,等.秸秆还田和秋施肥对旱地玉米生长发育及水肥效应的影响[J].应用生态学报,2004,(07):1231-1235
    周永娟,侯彦林,李红英.吉林省玉米产量预测统计模型研究(英文)[J].现代农业科学,2009,(3):232-234+239
    朱海霞,纪仰慧,闫平,等.黑龙江省玉米低温冷害发生风险趋势及预报模型[J].气象科技,2010.(03):368-372
    朱平,彭畅,高洪军,等.长期培肥对土壤肥力及玉米产量的影响[J].玉米科学,2009,17(6):105-108,111
    朱艳,胡继超,曹卫星,等.基于作物模型的农田水分管理决策支持系统研究[J].水土保持学报,2005,(2):160-162+198
    朱兆良.中国土壤学报,2008,45(5):778-783
    诸叶平,曹永华,雪燕CCERES作物模拟模型输入系统的开发[J].计算机农业应用,1992(4):16-18
    诸叶平,李世娟,于向鸿,等.玉米数字模拟器研究[J].中国农业科技导报,2007,9(6):84-89
    邹薇,刘铁梅,孔德艳.大麦产量构成模型[J].应用生态学报,2009,(2):396-402
    邹应斌.作物模拟研究与模拟模型[J].农业现代化研究,1989,10(2):43-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700