基于高光谱成像技术的作物叶绿素信息诊断机理及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何利用光谱技术快速、无损、准确地诊断作物的养分状况,一直是农业定量遥感关注的焦点。受遥感仪器性能及价格的限制,目前的研究大多利用非成像高光谱进行作物长势监测与机理探测研究。近年来,随着材料科学、传感技术及精密仪器的飞速发展和对田块尺度作物精细管理的需求,低成本、高性能的地面成像光谱仪的开发与应用已成为农业定量遥感的一个重要方向。
     论文以地面成像光谱仪为观测工具,采集了不同作物(小麦、玉米、大豆)在不同生育期、不同尺度(叶片与冠层)、多角度下的高光谱影像数据,系统地分析从影像中提取的高光谱数据及其与作物叶绿素信息的关系,尝试在下述三个方面进行研究:1)验证自主研发的地面成像光谱仪(PIS)获取的光谱数据的可靠性;2)挖掘成像高光谱“图谱合一”数据在作物叶绿素信息遥感诊断机理及反演中的优势;3)探讨多角度观测及影像分割在作物BRDF特性定量解析及叶绿素密度反演中的作用。主要工作及进展如下:
     1)提出一种基于不同参照布的反射率场地标定方法。它是通过建立可见-近红外成像光谱仪(VNIS)与地物光谱仪(ASD)同时获取的DN值之间的转换关系,将ASD获取的标准白板的DN值转换为VNIS的DN值,再通过定标公式实现影像反射率提取。研究发现,该方法计算得出的相对反射率与当场的A SD反射率曲线有较高的一致性,由此证明这种方法能满足成像传感器反射率场地标定的要求。
     2)在作物的单叶尺度,开展PIS光谱数据的可靠性验证、作物叶绿素信息反演方法探索,得出:a)通过分析成像与非成像高光谱数据提取的红边特征曲线及红边位置,发现两仪器获取数据有很好的一致性,由此验证自主研发PIS光谱数据是可靠的。b)利用窄波段成像光谱曲线的峰谷特征构建新型特征参数,即“三边”的光谱变化速率、“三边”夹角及衍生变量在叶绿素含量反演中进行应用。结果表明:相比传统的“三边”光谱参数,峰谷特征参数能有效提高叶绿素含量的反演能力。c)利用PIS对活体玉米植株进行成像立方体采集,在影像中选取玉米倒1叶至倒4叶的叶片光谱,构建了叶片叶绿素含量反演模型;用小区玉米叶片样本进行验证,得出预测模型的决定系数R2=0.897;验证模型的决定系数R2=0.887,均方根误差RMSE=1.8;在不同植被覆盖度下(盆栽-小区)的玉米植株叶片都有很好效果,说明采用这种方法构建的模型具有较高的精度。d)利用PIS获取“图谱合一”的小麦叶片影像数据,采用偏最小二乘法研究同一叶片不同位点组合所建叶绿素含量预测模型的精度;研究不同层位叶片叶绿素含量估测模型的精度。研究发现,同一叶片2、4、6位点组合的模型精度高于1、3、5位点组合的精度;不同层位叶片模型精度为中层>上层>下层;所有叶片建立的综合模型精度最高。
     3)把VNIS在田间小尺度范围内进行应用,基于其“图谱合一”的优势,a)在高光影像中寻找植被、裸土、光照叶片和阴影叶片的光谱差异,构建归一化光谱分类指数,实现了不同类型地物的分割与光谱提纯。b)在不同地物光谱提纯的基础上发现,当植被与土壤混合存在时,对叶绿素密度敏感的波段基本上都在红与近红外波段区间;当植被光谱提纯后(剔除土壤光谱),对叶绿素密度敏感的波段范围增大,尤其是蓝、绿波段。由此说明,背景土壤对光学遥感反演植被叶绿素密度有较大影响。此外,阴影叶片会影响植被叶绿素密度敏感波段的选择,当构建新型植被指数时,要根据植被冠层叶片结构,尝试把阴影比例作为一个影响因子,在公式中加以体现,以便提高叶绿素密度定量反演的精度。
     4)对不同密度大豆冠层的多角度数据进行分析,研究同一视场内植被与土壤混合光谱信息提纯前后的冠层BRDF变化特征,发现:a)在主平面观测时,土壤光谱去除后,纯植被冠层反射率在前向观测时,随着天顶角的减小而增大,这和视场内同时存在植被和土壤时的研究结果不同;后向观测时,随着天顶角的增加而增大;后向反射率高于前向,这和混合植被的BRDF特征一致。b)在垂直主平面方向上,土壤光谱去除前后的不同密度大豆冠层反射率在垂直主平面都有一致的对称性,去除后的前后向反射率对称性更强。
     5)利用多角度成像数据对大豆冠层叶绿素密度的反演进行解析与评价,发现:a)(0°,20°,40°,60°)的天顶角组合有最高的R2=0.834(预测模型)和最小的RMSE=6.13;(20°,40°,60°)天顶角组合的决定系数值高于(0°,20°,40°)的组合。在混合植被、纯植被、光照植被三类数据中有一致的结果。b)在不同天顶角下,40°天顶角是反演叶绿素密度的最优角度。c)在不同方位角下,0°方位角(太阳主平面的后向观测)是反演叶绿素密度的最优角度。d)天顶角变化是影响大豆冠层叶绿素密度反演精度的主要因素,这归根结底是由观测视场中的背景土壤及阴影叶片面积比例发生变化而导致的。
How to fast, nondestructively and precisely detect crop nutrition status using spectral technology is always a key problem for agricultural quantitative remote sensing. Currently, owing to restriction of ability and price for remote sensors, a larger number of researches were most focused on monitoring crop growth and probing remote sensing mechanism using non-imaging hyperspectra from ASD FieldSpec(?)3 field spectrometers. In recent years, various kinds of hyperspectral imaging spectrometers with low price and high ability were developed and applied in the field by domestic and overseas researchers, which has been an important development trend for quantitative remote sensing.
     In this work, field hyperspectral imaging spectrometer was used to collect imagery data of crops at both single leaf and multi-angle canopy scales. Those crops specifically included wheat, corn and soybean at different growth stages, and they were then systematically analyzed in the aspects of spectral reflectance data from imageries and correlations between the data and crop chlorophyll information. Three aspects were mainly researched:1) the reliability of spectral data from Pushbroom Imaging Spectrometer (PIS) was validated; 2) remote sensing detection mechanism and retrieval of crop chlorophyll information were explored using the advantage of hyperspectral data combing image with spectrum; 3) through analyzing the influences of multi-angle observation and image classification, the aim was to explain bidirectional reflectance distribution function (BRDF) varied features of crop canopy and estimate its chlorophyll density. Some important conclusions can be drawn as follows:
     A new method of field calibration was proposed. The processing was to build a transform relationship between two types of digital number (DN) values simultaneously acquired by visible and near-infrared imaging hyperspectral spectrometer (VNIS) and ASD, and then collected DN values of standard white panel by ASD was transformed to results of VNIS, and consequently the reflectance of whole image was calculated by corresponding calibration formulae. The result presented that reflectance curve calculated by the new method was similar with that from ASD, which proved that the proposed method in this study could satisfy the requirement of field calibration for hyperspectral imaging sensors.
     Through analyzing spectral characteristic curves of red edge and variation of red position extracted from imaging and non-imaging hyperspectral data, the result showed that they had high consistency between two types of data from PIS and ASD, so it could be proved that the performance of self-developed PIS was reliable. On that basis, new characteristic parameters were further extracted from peak-valley features of narrow-band imaging spectral curves, such as spectral change ratio, spectral angles and derivative variables of three edges, and then they were used to assess chlorophyll content of maize leaf. The results showed that new peak-valley characteristic parameters could more effectively improve the accuracy of prediction model of chlorophyll content in comparison with traditional feature parameters from three edges.
     VNIS was used to collect data combining image with spectrum in the field. After analyzing the spectral differences among vegetation, bare soil, illuminated leaves and shadowed leaves from crop images, normalized spectral classification index was built and used to classify different targets in the image. The results indicated that background soil affected the inversion accuracy of chlorophyll density using spectral remote sensing. In addition, shadowed leaves also influenced the assessment accuracy of chlorophyll density. When the new vegetation index was presented, the shadow percentage as influence factor should be considered and be reflected in the calculation formulae, so the aim of this study was to improve the retrieval accuracy of chlorophyll density.
     VNIS was also used to collect multi-angle data of soybean canopy in different densities. It could be found that BRDF features of soybean canopy existed in vegetation and soil and pure vegetation (masked bare soil) were specifically researched. Some results can be concluded that 1) For forward observation of principal plane, canopy reflectance of pure soybean vegetation gradually increased when zenith angle changed from 60 degree to 0 degree, which was different from the result of existed vegetation and soil; while for backward observation, canopy reflectance of pure soybean vegetation gradually increased when zenith angle changed from 0 degree to 60 degree, which was same as the result of existed vegetation and soil.2) For forward observation angle of perpendicular principle plane, there were consistent symmetry of BRDF features of soybean canopy in different densities between mixed targets (vegetation and soil) and pure vegetation (masked bare soil), and the symmetry of latter BRDF features was higher than the former.
     The paper analyzed the correlation between multi-angle spectral data of soybean canopy and chlorophyll density, some results could be concluded that the changes in zenith angles were the most key factor to affect assessment accuracy of chlorophyll density of soybean canopy, and the reason was that the percentage of background soil and shadowed leaves gradually changed in the field of view.
引文
1. Abderrazak Bannari, K. Shahid Khurshid, Karl Staenz, et al. A Comparison of Hyperspectral Chlorophyll Indices for Wheat Crop Chlorophyll Content Estimation Using Laboratory Reflectance Measurements [J]. Transactions on geosciences and remote sensing,2007,45(10):3063-3073.
    2. Adams M L, Philpot W D, Norvell W A. Yellowness index:an application of spectral derivatives to estimate chlorosis of leaves in stressed vegetation [J]. International Journal of Remote Sensing,1999,20: 3663-3675.
    3. Ahmad I S, Reid J F, Paulsen M R, et al. Color classifier for symptomatic soybean seeds using image processing [J]. Plant Disease,1999,83(4):320-327.
    4. Bannari, Morin. D, Bonn. F, et al. A review of vegetation indices [J]. Remote Sensing Reviews,1995, 2(13):95-120.
    5. Blackburn. G A. Spectral indices for estimating photosynthetic pigment concentration:a test senescent tree leaves [J]. International Journal of Remote Sensing,1998,19(4):657-675.
    6. Boggs. G. S. Assessment of SPOT 5 and QuickBird remotely sensed imagery for mapping tree cover in savannas [J]. International Journal of Applied Earth Observation and Geoinformation,2010,12:217-224.
    7. Borak, J. S, Strahler A. H. Feature selection and land-cover classification of a MODIS-like data set for a semiarid environment [J]. International Journal of Remote Sensing,1999,20(5):919-938.
    8. Broge, N. H, Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density [J]. Remote Sensing of Environment,2000,76,156-172.
    9. Burgos-Artizzu X. P, Ribeiro, A, Guijarro, M, Pajares, G. Real-time image processing for crop/weed discrimination in maize fields [J]. Computers and Electronics in Agriculture.2011,75,337-346.
    10. Buschmann. C, Nagel. E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation [J]. International Journal of Remote Sensing.1993,14 (4):711-717.
    11. Cai Jianrong, Wang Jianhei, Chen Quansheng, et al. Detection of rust in citrus by hyperspectral imaging technology and band ratio algorithm [J] Transactions of the Chinese Society of Agricultural Engineering, 2009,25(1):127-131.
    12. Chai Ali, Liao Ningfang, Tian Lixun. Identification of Cucumber Disease Using Hyperspectral Imaging and Discriminate Analysis [J]. Spectroscopy and Spectral Analysis,2010,30(5):1357-1361.
    13. Chen. Pengfei, Haboudane Driss, Nicolas Tremblay, et al. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and whea [J]. Remote Sensing of Environment,2010,114,1987-1997.
    14. Cho M. A. and Skidmore A. K. A new technique for extracting the red edge position from hyperspectral data:the linear extrapolation method [J]. Remote Sensing of Environment.2006,10(1),181-193.
    15. Christian Nansen, Tulio Macedo, Rand Swanson et al. Use of spatial structure analysis of hyperspectral data cubes for detection of insect induced stress in wheat plants [J]. International Journal of Remote Sensing.2009,30(10):2447-2464.
    16. d'Entremont, R. P, Schaaf, C. B, Lucht, W, et al. Retrieval of red spectral albedo and bidirectional reflectance from 1km2 satellite observations for the New England region [J]. Journal of Geophysical Research,1999,104:6229-6339.
    17. Darvishzadeh Roshanak, Skidmore Andrew, Atzberger Clement, et al. Estimation of vegetation LAI from hyperspectral reflectance data:Effects of soil type and plant architecture [J]. International Journal of Applied Earth Observation and Geoinformation,2008,10:358-373.
    18. Daughtry C. S. T, Walthall C. L, Kim M. S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance [J]. Remote sensing of Environment,2000,74(2):229-239.
    19. Dawson T P, Curran P J. A new technique for interpreting the reflectance red-edge position [J]. International Journal of Remote Sensing,1998,19:2133-2139.
    20. Eitel J. U. H, Long D. S, Gessler P. E, et al. Using in-situ measurements to evaluate the new RapidEyeTM satellite series for prediction of wheat nitrogen status [J]. International Journal of Remote Sensing,2007,28:4183-4190
    21. Elvidge C. D, Chen Z. Comparison of broad-band and narrow-band red and near-infrared vegetation indices [J]. Remote Sensing of Environment,1995,54,38-48.
    22. Filella D, Pen-uelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status [J]. Internal Journal of Remote Sensing,1994,15(7):1459-1470.
    23. Fernandaz et al.1994
    24. Gao F, Schaaf C. B, Strahler A. H, et al. Detecting vegetation structure using a Kernel-Based BRDF model [J]. Remote Sensing of Environment,2003,86:198-205.
    25. George N. Agrios. Plant pathology [M]. Beijing:China Agriculture Press.2009.
    26. Gitelson A. A, Kaufman Y, Merzlyak M. Use of a green channel in remote sensing of global vegetation from EOS-MODIS [J]. Remote Sensing of Environment,1996,58 (3):289-298
    27. Gong P, Pu R, Heald, R. C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia [J]. International Journal of Remote Sensing,2002,23(9),1827-1850.
    28. Gong Peng, Pu Ruiliang, Greg S, et al. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(6):1355-1362.
    29. Green R O, Eastwood M L, Sarture T G, et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [J]. Remote Sensing of Environment,1998,65(3):227-248.
    30. Guo, J. H, Liu, X. J, Zhang, Y, et al. Significant Acidification in Major Chinese Croplands [J]. Science, 2010,327(5968):1008-1010.
    31. Haboudane D, Miller J, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture [J]. Remote Sens. Environ.2002, 81:416-426
    32. Haboudane D, Miller J R, Pattey E. Hyperspectral vegetation in dices and novel algorithms for predicting green LAI of crop canopies:Modeling and validation in the context of precision agriculture [J]. Remote Sensing of Environment,2004,90:337-352.
    33. Haboudane. D, Tremblay. N, Miller, J. R, et al. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspecral data [J]. IEEE Transaction on Geoscience and Remote sensing, 2008,46,423-427.
    34. Hansen P. M, and Schjoerring J. K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression [J]. Remote Sensing of Environment,2003,86:542-553
    35. Hapke, B, Bidirectional Reflectance Spectroscopy.1. Theory [J]. Journal of Geophysical Research,1981. 86(B4):3039-3054.
    36. Huang Hui, Wang Wei, Peng Yankun, et al. Measurement of Chlorophyll Content in Wheat Leaves Using Hyperspectral Scanning [J]. Spectroscopy and Spectral Analysis,2010,30(7):1811-1814
    37. Huang J H, Wang Y, Wang F M, et al. Red edge characteristics and leaf area index estimation model using hyperspectral data for rape [J]. Transactions of the CSAE,2006,22(8):22-26.
    38. Huang Wenjiang, Wang Jihua, Wang Zhijie, et al. Inversion of foliar biochemical parameters at various physiological stages and grain quality indicators of winter wheat with canopy reflectance [J]. International Journal of Remote Sensing,2004,25(12),2409-2419.
    39. Huang Wenjiang. Remote sensing monitoring of Crops diseases mechanism and application [M]. Beijing: China's agricultural science and technology press.2009:18-24.
    40. Huang Wenjiang, Wang Zhijie, Huang Linsheng, et al. Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat [J]. Precision agriculture,2010, 12 (2):165-178.
    41. Houborg R, Soegaard H, Boegh E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data [J]. Remote Sensing of Environment,2007,106(1):39-58.
    42. Inoue, Y, Penuelas, J. An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications [J]. International Journal of Remote Sensing,2001,22(18),3883-3888.
    43. Jacquemoud S, Bacour C, Poilve H, et al. Comparison of four radiative transfer models to simulate plant canopies reflectance:Direct and inverse mode [J]. Remote Sensing and Environment,2000,74:471-481
    44. Jia Liangliang, Chen X, Zhang F, et al. To detect nitrogen status of winter wheat by using color digital camera [J]. J. Plant Nutrion,2004,27 (3):441-450.
    45. Jordan C F. Derivation of leaf area index from quality of light in the forest floor [J]. Ecology,1969, 50:663-666.
    46. Kimes D. S. Dynamics of directional reflectance factor distributions for vegetation canopies [J]. Application Optics,1993,22(9):1364-1372.
    47. Kimes D. S, Newcomb W. W, Tucker C. J, et al. Directional reflectance factor distribution for cover types of Northern Afirica [J]. Remote Sensing of Enviroment,1985b,18:1-19.
    48. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression [J]. Remote Sensing of Environment,1999, 76:267-287.
    49. Kumara A. Senthil, Keerthi V, Manjunath A. S, et al. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm [J]. International Journal of Applied Earth Observation and Geoinformation,2010,12:261-269.
    50. Kuusk A. The angular distribution of reflectance and vegetation indices in barley and clover canopies [J]. Remote Sensing of Enviroment.1991,37:143-151.
    51. Lamb D. W, Steyn-Ross M, Schaare P, et al. Estimating leaf nitrogen concentration in ryegrass pasture using the chlorophyll red edge:Theoretical modeling and experimental observations [J]. International Journal of Remote Sensing,2002,23:3619-3648.
    52. LI Bingzhi, LI Minxia, Zhou Xuan, et al. Hyperspectral estimation models for nitrogen contents of apple leaves[J], Journal of Remote Sensing,2010,14(4):767-780.
    53. Liu Jiangui, Wu Changshan, Zhang Bing, et al. Spectral reflectance retrival of image data by imaging spectrometer PHI [J]. Journal of Remote Sensing.1999,3(4):290-294.
    54. Lukina E. V, Stone M. L, Raun W. R. Estimating vegetation coverage in wheat using digital images [J]. Journal of Plant Nutrition,1999,22(2),341-350.
    55. Martin D P, Rybicki E P. Microcomputer-based quantification of maize streak virus symptoms in zea mays [J]. Phytopathology,1998,88(5):422-427.
    56. Mei Anxin, Peng Wanglu, Qin Qiming, et al. remote sensing theory [M]. Beijing:advanced education press.2011,300-302.
    57. Monteiro S T, Minekawa Y, Kosugi Y, et al. Prediction of Sweetness and amino acid content in soybean crops from hyperspectral imagery [J]. ISPRS Journal of Photogrammetry & Remote Sensing,2007,62(1): 2-12.
    58. Nguyen H T, Lee B W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression [J]. European Journal of Agronomy,2006,24:349-356.
    59. Nicidemus F. E, Richmond J. C, Hsia J. J, et al. Geometric considerations and nomenclature for reflectance. Monograph 160, National Bureau of Standards (US). October.1977.
    60. Oppelt. N, Mauser. W. Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data [J]. International Journal of Remote Sensing,2004,25(1):145-159.
    61. Pacheco. A, Bannari. A, Staenz. K, et al. Application of hyperspectral remote sensing for LAI estimation in precision farming.23th Canada Symposium of Remote Sensing,2001,1:281-287.
    62. Pearson R. L. and Miller L. D. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie, Pawnee National Grasslands, Colorado.1972.1357-1381.
    63. Penuelas J, Gamon J. A, Fredeen A. L, et al. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves [J]. Remote Sensing and Environment,1994,48,135-146
    64. Pu R, Gong P, Biging G S, et al. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index [J]. IEEE Transactions on Geoscience and Remote Sensing,2003, 41:916-921.
    65. Pu Ruiliang. Broadleaf species recognition with in situ hyperspectral data [J]. International Journal of Remote Sensing.2009,30:2759-2779.
    66. Qin wenhan, Xiang yueqin. An analytical model for bidirectional reflectance factor of multi-component vegetation canopies [J]. Science China (Series C),1996,26:542-551.
    67. Raffaele Casa, Hamlyn G. Jones. LAI retrieval from multiangular image classification and inversion of a ray tracing model [J]. Remote Sensing of Environment.2005,98(4):414-428.
    68. Raffaele Casa. Multiangular remote sensing of crop canopy structure for plant stress monitoring. Unversity of Dundee. Italy,2003
    69. Ribeiro Angela, Ranz Juan, Burgos-Artizzu. Xavier P, et al. An Image Segmentation Based on a Genetic Algorithm for Determining Soil Coverage by Crop Residues [J]. Sensors 2011,11,6480-6492.
    70. Roshanak Darvishzadeh, Andrew Skidmore, Artin Chlerf, et al. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in heterogeneous grassland [J]. Remote Sensing of Environment,2008,112:2592-2604.
    71. Rogan John, Miller Jennifer, Stow Doug, et al. Land-Cover Change Monitoring with Classification Trees Using Landsat TM and Ancillary Data [J]. Photogrammetric Engineering & Remote Sensing.2003,69 (7):793-804.
    72. Pu Ruiliang. Broadleaf species recognition with in situ hyperspectral data [J]. International Journal of Remote Sensing,2009,30(11):2759-2779.
    73. Sandmeier, St. and Deering, D. W. Structure analysis and classification of Boreal forests using airborne hyperspectral BRDF data from ASAS [J]. Remote Sensing of Environment,1999,69:281-295.
    74. Sandmeier St, Muller Ch, Hosgood B, et al. Physical mechanisms in hyperspectral BRDF data of grass and watercress [J]. Remote Sensing of Environment,1998,66:222-233.
    75. Scharf P C, Lory J A. Calibrating corn color from aerial photographs to predict sidedress N need [J]. A gronomy Journal,2002,94:397-404.
    76. Schneider Th, Manakos I. BRDF Approximation of maize and canopy parameter retrieval by ProSail inversion. The 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching,13-16 May 2003.
    77. Schott, J. R. Remote Sensing:The Image Chain Approach [M], London:Oxford University Press, 1997:45-48.
    78. Schut. Imaging spectroscopy for characterization of grass swards. Wageningen University, Netherlands, 2003.
    79. Seto K. C, Woodcock C. E, Song C, et al. Monitoring land-use change in the Pearl River Delta using Landsat TM [J]. International Journal of Remote Sensing,2002,23(10):1985-2004.
    80. Shaw D T. High-spectral resolution data for mornitoring Scots pine regeneration [J]. International Journal of Remote Sensing,1998,19(13):2601-2608.
    81. Shi Yuanyuan, Deng Jinsong, Chen Lisu, et al. Leaf Characteristics Extraction of Rice under Potassium Stress Based on Static Scan and Spectral Segmentation Technique [J]. Spectroscopy and Spectral Analysis,2010,30(1):214-219.
    82. Sims,D.A., Gamon, J.A,. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages [J]. Remote Sensing of Environment, 2002,81:337-354.
    83. Smith K L, Steven M D, Colls J J. Use of hyperspectral derivative ratios in the red edge region to identify plant stress responses to gas leak [J]. Remote Sensing of Environment,2004,92:207-217.
    84. Song Xiaoyu, Wang Jihua, Huang Wenjiang, et al. The delineation of agricultural management zones with high resolution remotely sensed data [J]. Precision agriculture.2009,10(6):471-487.
    85. Tan Haizhen, Li Shaokun, Wang Keru, et al. Monitoring canopy chlorophyll density in seedlings of winter wheat using imaging spectrometer [J]. Acta Agronomica Sinica,2008,34(10):1812-1817.
    86. Tian Youwen, Li Tianlai, Zhang Lin, et al. Diagnosis method of cucumber disease with hyperspectral imaging in greenhouse[J]. Transactions of the CSAE,2010,26(5):202-206.
    87. Tong Qingxi, Xue Yongqi, Wang Jinnian, et al. Development and application of the field imaging spectrometer system [J]. Journal of Remote Sensing.2010.14(3):409-422.
    88. Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation [J]. Remote Sensing of Environment.1979,8:127-150.
    89. Verstraete M. M, Pinty B, Curran P. J. International Journal of Remote Sensing 1999,20(9): 1747-1756.
    90. Vianney H, Martine G, Bruno M. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations [J]. European Journal Agronomy,2007,27(1):1-11.
    91. Wan Yuqing, Tan Kelong, Zhou Riping. Applications of hyperspectral remote sensing [M]. Beijing: Science Press,2006:150-152.
    92. Wang J H, Huang W J, Lao C L, et al. Inversion of winter wheat foliage vertical distribution based on canopy reflected spectrum by partial least squares regression method [J]. Spectroscopy and Spectral Analysis,2007,27(7):1319-1322.
    93. Wang Jihua, Zhao Chunjiang, Huang Wenjiang. Basis and application of quantitative remote sensing in agriculture [M]. Beijing:Science Press,2008:141-184.
    94. Wang Ping, Liu Xiangnan, Huang Fang. Retrieval Model for Subtle Variation of Contamination Stressed Maize Chlorophyll Using Hyperspectral Data [J]. Spectroscopy and spectral analysis,2010,30 (1): 197-201.
    95. Wang Qiang, Shu Jiong, Yin Qiu. DSGF method on detecting and removing spectral noise of hyperspectral image [J]. Journal of Infrared Millimeter Waves.2006,25(1):29-32.
    96. Wang wei, Peng Yankun, Ma wei. Prediction of chlorophyll content of winter wheat using leaf-level hyperspectral data [J]. Transactions of the Chinese Society for Agricultural Machinery,2010, 5(41):172-177.
    97. Wang X Z, Wang R C, Li Y M, et al. Study on red edge characteristics of rice spectral caused by nitrogen level [J]. Journal of Zhejiang University,2001,27 (3):301-306.
    98.Wang Y Y, Chen Y H, Li J, et al. Two new red edge indices as indicators for stripe rust disease severity of winter wheat [J]. Journal of Remote Sensing,2007,11(6):875-881.
    99.Wang Y, Huang G F, Wang F M, et al. Predicting nitrogen concentrations from hyperspectral reflectance at leaf and canopy for rape [J]. Spectroscopy and Spectral Analysis,2008,28(2):273-277.
    100Wang Yuanyuan, Li Guicai, Zhang Lijun. Retrieval of Leaf Water Content of Winter Wheat from Canopy Hyperspectral Data Using Partial Least Square Regression [J]. Spectroscopy and Spectral Analysis.2010, 30 (4):1070-1074.
    101.Wang Z J, Wang J H, Liu L Y. Prediction of grain protein content in winter wheat (Triticum aestivuml) using plant pigment ratio (PPR) [J]. Field Crops Research,2004,90(2/3):311-321.
    102.Wiles L. J. Software to quantify and map vegetative cover in fallow fields for weed management decisions [J]. Computers and Electronics in Agriculture.2011,78:106-115.
    103.Wu Chaoyang, Niu Zheng, Tang Quan, et al. Estimating chlorophyll content from hyperspectral vegetation indices:Modeling and validation [J]. Agricultural and forest meteorology,2008,148: 1230-1241.
    104.Wu Chaoyang, Niu Zheng, Wang Jindi, et al. Predicting leaf area index in wheat using angular vegetation indices derived from in situ canopy measurements [J]. Canadian Journal of Remote Sensing,2010, 36(4):301-312.
    105.Xiao Chunhua, Li Shaokun, Wang,Keru et al. A leaf layer spectral model for estimating protein content of wheat grains. International Federation for Information Processing (IFIP),2011, part IV,347, PP, 16-29.
    106.Xu Xingang, Zhao Chunjiang, Wang Jihua, et al. Study on Relationship between New Characteristic Parameters of Spectral Curve and Chlorophyll Content for Rice [J]. Spectroscopy and spectral analysis, 2010,31 (1):188-191.
    107.Xue L H, Yang L Z. Comparative study on estimation of chlorophyll content in spinach leaves using various red edge position extraction techniques [J]. Transactions of the CSA,2008,24(9):165-169.
    108.Ye Xujun, Kenshi Sakai, Hiroshi Okamoto. A ground-based hyperspectral imaging system for characterizing vegetation spectral features [J]. Computers and Electronics in Agriculture,2008,63(1): 13-21.
    109.Yang Minhua, Zhao Chunjiang, Zhao Yongchao, et al. Research on a method to derive wheat canopy information from airborne imaging spectrometer data [J]. Scientia Agricultura Sinica,2002, 35(6):626-631.
    110.Yao F Q, Zhang Z H, Yang R Y, et al. Hyperspectral models for estimating vegetation chlorophyll content based on red edge parameter [J]. Transactions of the CSAE,2009,25(Supp.2):123-129.
    111.Yao X, Tian Y C, Liu X J, et al. Comparative Study on Monitoring Canopy Leaf Nitrogen Status Red Edge Position with Different Algorithms in Wheat [J]. Scientia Agricultura Sinica.2010,43(13): 2661-2667.
    112.Ye X J, Kenshi Sakai, Hiroshi Okamoto. A ground-based hyperspectral imaging system for characterizing vegetation spectral features [J]. Computers and Electronics in Agriculture,2008.63(1):13-21.
    113.Yu B, Michael Ostland. I, Gong Peng, et al. Penalized discriminant analysis of In situ hyperspectral data for conifer species recognition [J]. IEEE Transations on geosciences and remote sensing,1999, 5(37):2569-2576.
    114.Zarco-Tejada P. J, Pushnik J. C, Dobrowski S, et al. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects [J]. Remote Sensing of Environment,2003, (84):283-294.
    115.Zhang D Y, Song X Y, Ma Z H, et al. Assessment of the Developed Pushbroom Imaging Spectrometer in Single Leaf Scale [J]. Scientia Agriculture Sinica,2010,43(11):2239-2245.
    116.Zhang Dongyan, Huang Wenjiang, Wang Jihua, et al. In-situ crop hyperspectral acquiring and spectral features analysis based on pushbroom imaging spectrometer [J]. Transactions of the CSAE,2010,26(12): 188-192.
    117.Zhang Dongyan, Liu Rongyuan, Song Xiaoyu. A field-based pushbroom imaging spectrometer for estimating chlorophyll content of maize [J]. Spectroscopy and Spectral Analysis.2010,31(3):771-775.
    118.Zhang D Y, Song X Y, Ma Z H, et al. Assessment of the developed pushbroom imaging spectrometer in single leaf scale [J]. Scientia Agricultura Sinica,2010,43(11):2239-2245.
    119.Zhang Dongyan, Zhang Jingcheng, Zhu Dazhou. Investigation of the hyperspectral image characteristics for wheat leaves under different stress [J], Spectroscopy and Spectral Analysis.2011,31(4):1101-1105.
    120.ZHANG Jingheng, WANG Ke, Bailey J S, et al. Predicting Nitrogen Status of Rice Using Multispectral Data at Canopy Scale [J]. Pedosphere,2006,16(1):108-117.
    121.Zhang lifu, Huang changping, Wu taixia, et al. Laboratory Calibration of a Field Imaging Spectrometer System [J]. Sensors.2011,11,2408-2425.
    122.Zhang Xiuying, Feng Xuezhi, Jiang Hong. Object-oriented method for urban vegetation mapping using IKONOS imagery [J], International Journal of Remote Sensing,2010,31(1):177-196.
    123.Zhang Dongyan, Liu Rongyuan, Song Xiaoyu, et al. A field-based pushbroom imaging spectrometer for estimating chlorophyll content of maize [J]. Spectroscopy and spectral analysis,2010,31 (3):771-775.
    124.Zhao C J, Huang W J, Wang J H, et al. The red edge parameters of different wheat varieties under different fertilization and irrigation treatments [J]. Scientia Agriculture Sinica,2002,1(7):745-751.
    125.Zhao C J, Huang W J, Wang J H, et al. Extracting winter wheat chlorophyll concentration vertical distribution based on bidirectional canopy reflected spectrum [J]. Transactions of the Chinese Society of Agricultural Engineering,2006,22(6):104-109.
    126.Zhu Y, Li Y, Feng W, et al. Monitoring leaf nitrogen in wheat with canopy reflectance spectra [J]. Canadian Journal of Plant Science,2006,86(4):1037-1046.
    127.陈鹏飞,孙九林,王纪华等.基于遥感技术的作物氮素诊断现状与趋势[J].中国科学:信息科学.2010.40(增刊):21-27.
    128.陈鹏飞.诊断作物冠层氮素浓度及生物量的光谱指数的研究[博士学位论文].北京:中国农业大学.2009.
    129.程街亮.土壤高光谱遥感信息提取与二向反射模型研究[硕士学位论文].杭州:浙江大学,2008.
    130.范闻捷,闫彬彦,徐希孺.尺度转换规律与同步反演作物播种面积和叶面积指数[J].中国科学D辑:地球科学.2010,40(12):1735-1732.
    131.冯晓明,赵英时.半干旱草场的多角度多波段反射率遥感模型[J].遥感学报,2005,9(4):337-342.
    132.黄文江,王纪华,刘良云等.基于多时相和多角度光谱信息的作物株型遥感识别初探[J].农业工程学报,2005,21(6):1-5.
    133.黄文江.作物株型的遥感识别与生化参数垂直分布的反演[博士学位论文].北京:北京师范大学,2005.
    134.李小文,A. Strahler,朱启疆等.地物二向性反射集合光学模型和观测的进展[J].国土资源遥感,1991,7(1):9-19.
    135.李小文.地物的二向性反射和方向谱特征[J].环境遥感,1989.4(1):67-72.
    136.李云梅,王人潮,王秀珍等.水稻冠层二向反射率的模拟及其反演[J].中国水稻科学.2002.4
    137.李云梅,王人潮,王秀珍等.水稻冠层二向反射率的动态变化[J].浙江大学学报(农业与生命科学版).2001.1
    138.李云梅,王人潮,王秀珍等.水稻冠层结构变化对二向反射率的影响[J].应用生态学报,2001,3
    139.李云梅.水稻BRDF模型集成与应用研究[博士学位论文].杭州:浙江大学,2001.
    140.李云梅.植被辐射传输理论与应用[M].南京:南京师范大学出版社2005.11
    141.柳钦火,辛晓洲,唐娉等.定量遥感模型、应用及不确定性研究[M].北京,科学出版社.2010.1
    142.牛铮.植被二向反射特性研究新进展.遥感技术与应用[J],1997,12(3):49-57.
    143.申广荣,王人潮.水稻多组分双向反射模型的研究[J].应用生态学报2003,14(3):394-398.
    144.谭昌伟.夏玉米光谱响应特性及其理化信息的遥感提取研究[硕士学位论文].合肥:安徽农业大学,2005
    145.童庆禧,张兵,郑兰芬.高光谱遥感-原理、技术与应用[M].北京:高等教育出版社,2006
    146.王方永,王克如,李少昆等.应用两种近地可见光成像传感器估测棉花冠层叶片氮素状况[J].作物学报.2011,37(6):1039-1048.
    147.杨贵军,赵春江,刑著荣等.基于PROBA/CHRIS遥感数据和PROSAIL模型反演春小麦LAI方法研究[J],农业工程学报.2011,27(10):88-94.
    148.姚霞,朱艳,冯伟等.监测小麦叶片氮积累量的新高光谱特征波段及比值植被指数[J].光谱学与光谱分析.2009,29(8):2191-2195.
    149.张正翼.不同密度和田间配置对套作大豆产量和品质的影响[硕士学位论文].成都:四川农业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700