模拟失重对大鼠小动脉结构和功能的重塑作用以及-Gx重力的对抗效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天观察与地面卧床研究均发现,航天员返回地面后,常表现出心血管功能失调的现象,其主要标志为立位耐力不良和运动能力下降。航天后心血管功能失调可导致航天人员工作能力下降,甚至危及航天飞行安全。大量研究工作表明,航天失重环境下血容量的减少是造成飞行后心血管功能失调的重要原因之一,此外,还涉及其他多重机制。在航天失重环境下,机体流体静压消失,从而使全身动脉血管系统的跨壁压发生改变:脑及上半身血压处于较地面1G直立体位时相对升高的“高血压”状态;下半身血管则处于较1G直立时相对较低的“低血压”状态,这些改变可进一步导致心血管系统的变化。本实验室在地面动物模拟失重实验中发现:模拟失重可引起大鼠脑动脉血管的肌源性紧张度(Myogenic Tone)增强,收缩反应性升高,血管中膜肥厚和平滑肌细胞层数增多,以及血管周围神经支配增强等适应性变化。而对于后身中、小动脉,则可引起肌源性紧张度减弱,收缩反应性降低,血管中膜萎缩,以及血管周围神经支配减弱等变化。据此我们曾提出“外周效应器机制假说”,认为失重所引起的心肌与动脉血管平滑肌结构和功能改变很可能是除血容量减少因素之外,导致飞行后心血管失调的另一个重要原因。我实验室前期工作已经发现:血管平滑肌离子通道机制与血管组织局部肾素-血管紧张素系统(local renin-angiotensin system)可能是介导失重所致血管区域特异性适应变化的重要调节环节。目前,近地轨道飞行采用的以运动为主的对抗措施,并不能完全防止长时间航天飞行导致的心血管失调,而“间断性人工重力”(intermittent artificial gravity)可能是未来航天中较为理想的一种对抗措施方案,相关研究亦日益受到关注与重视。在地面动物实验,可以采用+45°头高位倾斜(HUT)、离心机旋转及恢复动物正常站立体位来模拟IAG的对抗效果。我们前期工作已表明:每日1 h恢复站立(所受重力矢量为-Gx)具有对抗模拟失重大鼠基底动脉收缩反应性增强、股动脉和心肌收缩性降低的效果。在形态方面,1 h/d的-Gx也可防止模拟失重大鼠基底动脉肥厚和胫前动脉萎缩;在清醒大鼠则可以防止整体心血管失调反应。但我们最近的工作还表明:3天模拟失重可分别引起脑动脉和肠系膜动脉平滑肌细胞L型钙离子通道(CaL)电流密度增加和减少;1 h/d的-Gx可以防止肠系膜动脉血管平滑肌细胞CaL电流密度减少,但不能防止脑动脉血管平滑肌细胞CaL电流密度增加。由此我们推测:在脑血管,1 h/d的-Gx干预虽然可以防止模拟失重所致的脑血管肥厚性结构重塑,但并不能防止其肌源性紧张度升高和收缩反应性增强;而在肠系膜小动脉,1 h/d的-Gx则可以全面防止其功能与结构的适应性变化。
     为证实我们提出的假说,本工作由以下两部分组成:
     (1)观察短期(3天)及中期(28天)模拟失重大鼠大脑中动脉血管肌源性紧张度的变化,血管收缩反应性的变化,血管管壁超微结构的变化以及在此基础上,每日站立1小时-Gx重力影响对短期及中期模拟失重所引起的大脑中动脉功能和结构的适应变化有无防止作用。我们分离大鼠大脑中动脉,利用Pressure Myograph System观察血管管径-压力变化关系与血管管径-血管收缩剂浓度变化关系,以了解血管肌源性紧张度以及动脉收缩反应性的变化;同时通过电子显微镜技术观察血管管壁超微结构的变化。
     (2)观察短期(3天)及中期(28天)模拟失重大鼠肠系膜小动脉血管肌源性紧张度的变化,血管收缩反应性的变化,血管管壁超微结构的变化以及在此基础上,每日站立1小时-Gx重力影响对短期及中期模拟失重所引起的肠系膜小动脉功能和结构的适应变化有无防止作用。我们分离大鼠肠系膜小动脉,利用Pressure Myograph System观察血管管径-压力变化关系与血管管径-血管收缩剂浓度变化关系,以了解血管肌源性紧张度以及收缩反应性的变化;通过电子显微镜技术观察血管管壁超微结构的变化。
     本工作的主要发现如下:
     (1)模拟失重可以引起大鼠大脑中动脉血管肌源性紧张度升高,血管对收缩物质反应性增强,引起血管管壁厚度增大,引起血管管壁横截面积增加,血管平滑肌中膜厚度增加以及平滑肌细胞层数的增多。每日站立1小时-Gx重力能够防止血管管壁结构的肥厚性变化,但不能防止血管肌源性紧张度、血管对收缩物质反应性升高的变化。根据大脑中动脉管径-压力、管径-收缩剂变化关系观察到,同对照组大鼠相比,短期模拟失重(3天)大鼠大脑中动脉血管肌源性紧张度以及血管对5-HT的收缩反应分别增强了11.7%、12.3%,每日站立1小时-Gx重力不能防止此种变化;模拟失重28天大鼠大脑中动脉血管肌源性紧张度、血管对5-HT收缩反应分别增强了18.8%、13.7%,血管管壁厚度、血管中膜厚度分别增加了56.4% (P<0.01)和63.0% (P<0.01),血管平滑肌细胞层数亦较对照组显著增加,每日站立1小时-Gx重力不能防止血管肌源性紧张度、血管收缩反应性增强,但能够防止血管管壁结构的变化。
     (2)模拟失重可以引起大鼠肠系膜小动脉血管肌源性紧张度降低,血管收缩反应性减弱,引起血管管壁厚度减小,引起血管管壁横截面积减少,血管管壁中膜厚度减小以及平滑肌细胞层数的减少。每日站立1小时-Gx重力能够防止血管管壁结构的变化,亦能防止血管肌源性紧张度降低、血管收缩反应性减弱的变化。根据肠系膜小动脉管径-压力、管径-收缩剂浓度变化关系观察到,同对照组大鼠相比,短期模拟失重(3天)大鼠肠系膜小动脉血管肌源性紧张度、血管对PE反应性分别降低了11.5%、12.1%,每日站立1小时-Gx重力能够防止此种变化;模拟失重28天大鼠肠系膜小动脉血管肌源性紧张度、血管对PE反应性分别降低了22.5%、21.6%,血管管壁厚度、血管中膜厚度分别减小了20.0% (P<0.01)和28.6% (P<0.01),血管平滑肌细胞层数亦较对照组显著减少,每日站立1小时-Gx重力能防止血管肌源性紧张度降低、血管收缩反应性减弱的变化,亦能够防止血管管壁结构的变化。
     以上结果表明,短期(3天)及中期(28天)模拟失重大鼠大脑中动脉和肠系膜小动脉血管的肌源性紧张度、收缩反应性分别发生了增强和减弱的变化,其血管超微结构亦分别发生了肥厚和萎缩的改变。每天站立一小时-Gx重力作用只能防止大脑中动脉结构的适应性变化而不能完全防止其血管功能的适应性变化;但在肠系膜小动脉,每天站立一小时-Gx重力作用对血管功能和结构的适应性变化均有良好的防止作用。
Humans exposed to microgravity often exhibit signs of cardiovascular deconditioning marked by orthostatic intolerance and reduced exercise capacity on reexposure to gravity. The impaired cardiovascular response to standing after return from space might be among the highest risks to the safety, well-being, and performance of astronauts. In addition to hypovolemia, postflight cardiovascular deconditioning has also been associated with diminished cardiac and vascular function. All gravitational blood pressure gradients will disappear during microgravity exposure. Thus, a redistribution of transmural pressures and flows across and within the arterial vasculature is induced by the removal of gravity. Therefore, in humans, blood vessels in dependent body regions are chronically exposed to lower than normal upright 1-G blood pressure, whereas vessels in upper body regions are exposed to higher than normal 1-G blood pressure. Our previous ground-based animal studies have shown for the first time that simulated microgravity may induce upward and downward regulations in function, structure, and innervation state of the medium- and small-sized muscular arteries from fore (cerebral) and hind body parts of the same animal subjected to tail-suspended head-down tilt (SUS). On the basis of these findings and the relevant ground-based and spaceflight studies reported recently, we have raised the“peripheral effector mechanism hypothesis”. We suggested that, in addition to hypovolemia, the microgravity-induced adaptation changes in function and structure of cardiac muscle and vascular smooth muscle might be another important factor responsible for postflight cardiovascular dysfunction. Our previous studies have also shown that the ion channel remodeling mechanism of vascular smooth muscle cells (VSMCs) and vascular local renin-angiotensin system (L-RAS) might be involved in vascular region-specific adaptational changes to microgravity. Furthermore, currently used, exercise-based countermeasures seem insufficient to prevent the occurrence of cardiovascular dysfunction in future long-duration, exploration class mission. In the past two decades, intermittent artificial gravity (IAG) by incorporating a short-arm centrifuge into the spacecraft has been suggested as a gravity-based countermeasure for future spaceflight. Our previous studies have shown that daily short-duration exposure to -Gx (dorsoventral) gravitation by standing (STD) to restore the rat’s orthostatic posture , or -Gx with +Gz component by +45°head-up tilt, which mimics the IAG countermeasure, is surprisingly effective in preventing myocardial contractility depression and vascular changes. For example, it has been demonstrated that daily 1-h -Gx by STD is sufficient to prevent the differential changes in two kinds of medium-sized conduit arteries that might occur due to a 28-d simulated microgravity alone. Our work has further shown that simulated microgravity increases and decreases current densities and protein expression of CaL in cerebral and mesenteric arterial VSMCs,the countermeasure of 1 h/d -Gx can prevents the change of mesenteric artery but cannot prevent the change in cerebral artery. This study is on the basis of such hypothesis that in middle cerebral artery, 1h/d -Gx can prevent the thickening of structure induced by microgravity, but can not prevent the increase of myogenic tone and the enhancement of vasoconstriction. In mesenteric small artery, not only the 1h/d -Gx can prevent the attentuation of vasoconstriction and thinningz of structure induced by microgravity, but also can prevent the increase of myogenic tone.
     To confirm our hypothesis mentioned above, we use tail-suspension rat model to simulate the cardiovascular dysfunction after flight and daily 1-h standing to simulate the countermeasure effect of IAG. The changes of vessel function and structure in rats were examined. The main work was divided into two parts:
     (1) The first part of work was aim to examine the change of myogenic tone, the vasoconstriction of middle cerebral artery and mesenteric small artery after a short-term (3-day) simulated microgravity with and without 1-h/d -Gx countermeasure. After simulated microgravity, the middle cerebral artery and mesenteric small artery were isolated and cannulated, the responses to increases of pressure and concentrations of vaso-constrictor were detected.
     (2) The second part of work was aim to examine the change of myogenic tone, the vasoconstriction and the vessel structure under electron microscope of middle cerebral artery and mesenteric small artery after a medium-term (28-day) simulated microgravity with and without 1-h/d -Gx countermeasure. After simulated microgravity, the middle cerebral artery and mesenteric small artery were isolated and cannulated, the responses to increases of pressure and concentrations of vaso-constrictor were detected, then fixed the vessel at in-situ length, the structure was examined with electronmicroscope.
     The main findings of the present work are as follows:
     (1) Simulated microgravity alone induced an enhancement of the myogenic tone and vasoconstrictor responsiveness in the isolated middle cerebral artery, increases the wall thiskness, the media thickness and the number of smooth muscle cell layers. Daily STD for 1 h prevented the changes of vessel structure, but did not prevent the functional enhancement in the middle cerebral artery. Compared with the simultaneous CON group, the myogenic tone and vasoconstriction to 5-HT of middle cerebral artery in SUS group (3-day) were increased 11.7%, 12.3%, respectively. In 28-day group, the myogenic tone and vasoconstriction to 5-HT of middle cerebral artery were increased 18.8 %, 13.7%, respectively. The wall thickness, the media thickness of middle cerebral artery in SUS group were increased by 56.4%(P<0.01), 63%(P<0.01), respectively, compared with that of in CON group. With 1h/d standing, the change of vessel structure can be prevented, but the increase of myogenic tone and vasoconstriction cannot be prevented.
     (2) Simulated microgravity alone induced an attenuation of the myogenic tone and vasoconstrictor responsiveness in the isolated mesenteric small artery, decreases the wall thiskness, the media thickness and the number of smooth muscle cell layers. Daily STD for 1 h can prevent the changes of vessel structure, and can also prevent the functional decrement in the mesenteric small artery. Compared with the simultaneous CON group, the myogenic tone and vasoconstriction to PE of mesenteric small artery in SUS group (3-day) were decreased 11.5%, 12.1%, respectively. In 28-day group, the myogenic tone and vasoconstriction to PE of mesenteric small artery were decreased 22.5%, 21.6%, respectively. The wall thickness, the media thickness of mesenteric small artery in SUS group were decreased by 20.0%(P<0.01), 28.6%(P<0.01), respectively, compared with that of in CON group. With 1h/d standing, not only the change of vessel structure can be prevented, but the decrease of myogenic tone and vasoconstriction can also be prevented.
     In conclusion, our working hypothesis has been supported by these above findings. Firstly, SUS alone induced an enhancement of the myogenic tone and vasoconstrictor responsiveness in the isolated middle cerebral artery but a depression of those in the mesenteric small artery. Secondly, the structure of middle cerebral artery and mesenteric small artery were changed by different effects. Daily standing for 1 h prevented the depression of myogenic tone and vasoconstrictor responsiveness in the mesenteric small artery, but did not prevent the functional enhancement in the middle cerebral artery. These data suggest that a short-term simulated microgravity may result in differential alterations in the function and structure of the cerebral artery and the resistance vessel in the hind-body. Both of the alteration of middle cerebral artery and mesenteric small artery can be prevented by 1h/d standing. However, only the functional changes in the mesenteric small arteries, not in the cerebral arteries, can be prevented by such a countermeasure of daily 1 h standing.
引文
1. Allbritton NL, Oancea E, Kuhn MA, Meyer T. Source of nuclear calcium signals. Proc Natl Acad Sci USA. 91: 12458-12462, 1994.
    2. Arbeille P, Kerbeci P, Mattar L, Shoemaker JK, Hughson R. Insufficient flow reduction during LBNP in both splanchnic and lower limb areas is associated with orthostatic intolerance after bedrest. Am J Physiol Heart Circ Physiol 295: H1846-54, 2008.
    3. Bao JX, Zhang LF, Ma J. Angiotensinogen and AT1R expression in cerebral and femoral arteries during hindlimb unloading in rats. Aviat Space Environ Med 78: 852-858, 2007.
    4. Bayliss WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28: 220-231, 1902.
    5. Behnke BJ, Zawieja DC, Gashev AA, Ray CA, Delp MD. Diminished mesenteric vaso- and venoconstriction and elevated plasma ANP and BNP with simulated microgravity. J Appl Physiol 104:1273-80, 2008.
    6. Berne, RM. Metabolic regulation of blood flow. Circ Res I: 261-268, 1964.
    7. Blomqvist CG. Regulation of the systemic circulation at microgravity and during readaptation to 1G. Med Sci Sports Exerc 28: S9-S13, 1996.
    8. Bohlen, HG and Gore RW. Comparison of microvascular pressures and diameters in the innervated and denervated rat intestine. Microvasc Res 14: 251-264, 1977.
    9. Brayden JE and Nelson MT. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256: 532-535, 1992.
    10. Buckey JC and Homick JL. Section Introduction—standing after spaceflight: the effects of weightlessness on blood pressure. In: The Neurolab SpacelabMission: Neuroscience Research in Space. NASA SP-2003-535: 171-172, 2003.
    11. Buckey JC, Lane LD, Levine BD, Watenpaugh DE,Wright SJ, Moore WE, Gaffney FA, and Blomqvist CG. Orthostatic intolerance after spaceflight. J Appl Physiol 81: 7-18, 1996.
    12. Bund SJ and Lee RM. Arterial structural changes in hypertension: a consideration of methodology, terminology and functional consequence. J Vasc Res 40: 547-557, 2003.
    13. Burton RR and Meeker LJ. Taking gravity into space. J Gravit Physiol 4: P17-P20, 1997.
    14. Burton RR. A human-use centrifuge for space stations: proposed ground-based studies. Aviat Space Environ Med 59: 579-582, 1998.
    15. Buus NH, Kahr O, Mulvany MJ. Effect of short- and long-term heart failure on small artery morphology and endothelial function in the rat. J Cardiovasc Pharmacol 34: 34-40, 1999.
    16. Charles CJ, Espiner EA, Richards AM, Nicholls MG, Yandle TG. Comparative bioactivity of atrial, brain, and C-type natriuretic peptides in conscious sheep. Am J Physiol 270: R1324-R1331, 1996.
    17. Clement G and Pavy-Le Traon A. Centrifugation as a countermeasure during actual and simulated microgravity: a review. Eur J Appl Physiol 92: 235-248, 2004.
    18. Coats P and Hillier C. Determination of an optimal axial-length tension for the study of isolated resistance arteries on a pressure myograph. Exp Physiol 84: 1085-1094, 1999.
    19. Colleran PN, Behnke BJ, Wilkerson MK, Donato AJ, Delp MD. Simulated microgravity alters rat mesenteric artery vasoconstrictor dynamics through anintracellular Ca2+ release mechanism. Am J Physiol Regul Integr Comp Physiol 294: R1577-85, 2008.
    20. Convertino VA and Cooke WH. Evaluation of cardiovascular risks of spaceflight does not support the NASA Bioastronautics Critical Path Roadmap. Aviat Space Environ Med 76: 869-876, 2005.
    21. Convertino VA. Countermeasures against cardiovascular deconditioning. J Gravit Physiol 1: P125-P128, 1994.
    22. Convertino VA. Exercise as a countermeasure for physiological adaptation to prolonged space flight. Med Sci Sports Exerc 28: 999-1014, 1996.
    23. Convertino VA. G-factor as a tool in in basic research: mechanisms of orthostatic tolerance. J Gravit Physiol 6: P73-P76, 1999.
    24. Couckuyt K, Verheyden B, Beckers F, Liu J, Aubert AE. Circulatory control during gravity changes induced by parabolic flight (abstract). 28th Annual International Gravitational Physiology Meeting; San Antonio, TX, USA; 8-13 April, 2007.
    25. Cox RH and Rusch NJ. New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure. Microcirculation 9:243-257, 2002.
    26. D’Angelo, G. and GA. Meininger. Transduction mechanisms involved in the regulation of myogenic activity. Hypertension 23:1096-1105, 1994.
    27. D’Aunno DS, Robinson RR, Smith GS, Thomason DB, and Booth FW. Intermittent acceleration as a countermeasure to soleus muscle atrophy. J Appl Physiol 72: 428-433, 1992.
    28. D’Aunno DS, Thomason DB, and Booth FW. Centrifugal intensity and duration as countermeasures to soleus muscle atrophy. J Appl Physiol 69: 1387-1389, 1990.
    29. Davis MJ and Hill MA. Signaling Mechanisms Underlying the Vascular Myogenic Response. Physiol Rev 79: 387-423, 1999.
    30. Davis, MJ. Control of bat wing capillary pressure and blood flow during reduced perfusion pressure. Am. J. Physiol. 255 (Heart Circ. Physiol. 24): H1114-H1129, 1988.
    31. Delp MD, Colleran PN, Wilkerson MK, McCurdy MR, Muller-Delp J. Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity. Am J Physiol Heart Circ Physiol 278: H1866 - H1873, 2000.
    32. Delp MD, Holder-Binkley T, Laughlin MH, Hasser EM. Vasoconstrictor properties of rat aorta are diminished by hindlimb unweighting. J Appl Physiol 75:2620-2628, 1993.
    33. Dickhout JG and Lee RMKW. Increased medial smooth muscle cell length is responsible for vascular hypertrophy in young hypertensive rats. Am J Physiol Heart Circ Physiol 279: H2085-H2094, 2000.
    34. Dorfman TA, Levine BD, Tillery T, Peshock RM, Hastings JL, Schneider SM, Macias BR, Biolo G, Hargens AR. Cardiac atrophy in women following bed rest. J Appl Physiol 103: 8-16, 2007.
    35. VanBavel E, Wesselman JP, Spaan JA. Myogenic activation and calcium sensitivity of cannulated rat mesenteric small arteries. Circ Res 82: 210-220, 1998.
    36. Edgerton VR and Roy RR. Neuromuscular adaptation to actual and simulated spaceflight. In: Fregly MJ, CM Blatteis, eds. Handbook of physiology: Environmental physiology. New York: Oxford University Press: 721-763, 1996.
    37. Evans JM, Stenger MB, Moore FB, Hinghofer-Szalkay H, Rossler A, Patwardhan AR, Brown DR, Ziegler MG, Knapp CF. Centrifuge training increases presyncopal orthostatic tolerance in ambulatory men. Aviat Space Environ Med 75: 850-858, 2004.
    38. Gao F, Bao JX, Xue JH, Huang J, Huang WQ, Wu SX, Zhang LF. Regional specificity of adaptation change in large elastic arteries of simulated microgravity rats. Acta Physiologica Hungarica 96: 167-187, 2009.
    39. Fitts RH, Riley DR, and Widrick JJ. Invited Review: microgravity and skeletal muscle. J Appl Physiol 89: 823-839, 2000.
    40. Folkow B. Structure and function of the arteries in hypertension. Am Heart J 14: 938-948, 1987.
    41. Folkow, B. Description of the myogenic hypothesis. Circ. Res.15, Suppl. 1: 279-287, 1964.
    42. Folkow, B. Myogenic mechanisms in the control of systemic resistance: introduction and historical background. J. Hypertens. 7, Suppl. 4: S1-S4, 1989.
    43. Fridez P, Rachev A, Meister JJ, Hayashi K, Stergiopulos N. Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. Am J Physiol Heart Circ Physiol 280: H2752-H2760, 2001.
    44. Fuji K, Heistad DD, Faraci FM. Ionic mechanisms in spontaneous vasomotion of the rat basilar artery in vivo. J Physiol 430:389-98, 1990.
    45. Gao F, Huang WQ, Sun L, Zhang LF. Daily standing can prevent changes in A0 and AT1R expressions in arterial tissues of simulated microgravity in rats. J Gravit Physiol 13: P51-P52, 2006.
    46. Gazenko OG, Genin AM, Yegorov AD. Summary of medical investigations in the USSR manned space missions. Acta Astronaut 8: 907-917, 1981.
    47. Geary GG, Krause DN, Purdy RE, and Duckles SP. Simulated microgravity increases myogenic tone in rat cerebral arteries. J Appl Physiol 85: 1615-1621, 1998.
    48. Gotoh TM, Fujiki N, Tanaka K, Matsuda T, Gao S, Morita H. Acute hemodynamic responses in the head during microgravity induced by free drop in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 286: R1063-R1068, 2004.
    49. Graham SC, Roy RR, Hauschka EO, and Edgerton VR. Effects of periodic weight support on medial gastrocnemius fibers of suspended rats. J Appl Physiol 67: 945-953, 1989.
    50. Harder DR, Lange AR, Gebremedhin D, Birks EK, and Roman RJ. Cytochrone P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue. J Vasc Res 34: 237-243, 1997.
    51. Hardingham GE, Chawla S, Johnson CM, and Bading H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385: 260-265, 1997.
    52. Hargens AR, Watenpaugh DE. Cardiovascular adaptation to space-flight. Med Sci Sports Exerc 28: 977-982, 1996.
    53. Hastreiter D. Artificial gravity as a countermeasure to space flight deconditioning: the cardiovascular response to a force gradient. M.Sc. Thesis, Massachusetts Institute of Technology, Massachusetts 02139, USA, 1997.
    54. Hatton DC, Yue Q, Chapman J, Xue H, Dierickx J, Roullet C, Coste S, Roullet JB, McCarron DA. Blood pressure and mesenteric resistance arterial function after spaceflight. J Appl Physiol 92: 13-17, 2002.
    55. Hauschka EO, Roy RR, and Edgerton VR. Periodic weight support effects on rat soleus fibers after hindlimb suspension. J Appl Physiol 65: 1231-1237, 1988.
    56. Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakow V, and Arbeille P. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol 81: 384-390, 2000.
    57. Hughson RL, Shoemaker JK, Arbeille P, Dyson KS, Edgell H, Kerbeci P, Mattar L, Zuj K, Greaves DK. WISE-2005: Vascular responses to 60-day bed rest. 28th Annual International Gravitational Physiology Meeting; San Antonio, TX, USA; 8-13 April, 2007.
    58. Hill MA, Falcone JC, and Meininger GA. Evidence for protein kinase C involvement in arteriolar myogenic activity. Am J Physiol Heart Circ Physiol 259: H1586-H1591, 1990.
    59. Iwasaki K, Levine BD, Zhang R, Zuckerman JH, Pawelczyk JA, Diedrich A, Ertl AC, Cox JF, Cooke WH, Giller CA, Ray CA, Lane LD, Buckey JC Jr, Baisch FJ, Eckberg DL, Robertson D, Biaggioni I, Blomqvist CG. Human cerebral autoregulation before, during and after spaceflight. J Physiol 579: 799-810, 2007.
    60. Jain PK, Iyer EM, Banerjee PK, and Banerjee NS. Modification of bone atrophy by daily 2 hour weight support during simulated weightlessness in rats. Ind J Aerospace Med 41: 22-25, 1997.
    61. Johnson PC. Autoregulation of blood flow. Circ Res 59:483-95, 1986.
    62. Johnson PC. Principles of peripheral circulatory control. In:Peripheral Circulation, edited by PC. Johnson. New York: Wiley, 111-139, 1978.
    63. Johnson, PC. The myogenic response. In: Bethesda, MD Handbook of Physiology. The Cardiovascular System. Vascular Smooth Muscle. Am Physiol. Sot sect 2, vol. II, pt.1, chapt.15, p. 409-442, 1980.
    64. Katayama K, Sato K, Akima H, Ishida K, Takada H, Watanabe Y, Iwase M, Miyamura M, Iwase S. Acceleration with exercise during head-down bed rest preserves upright exercise responses. Aviat Space Environ Med 75:1029-1035, 2004.
    65. Katkov VE, Chestukhin VV. Blood pressure and oxygenation in different cardiovascular compartments of a normal man during postural exposures. Aviat Space Environ Med 51: 1234-1242, 1980.
    66. Koller, A. and G. Kaley. Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am. J.Physiol. 260 (Heart Circ. Physiol 29: H862-H868, 1991.
    67. Koller A.and G. Kaley. Flow velocity dependent regulation of microvascular resistance in vivo. Microcirc. Endothelium Lymphatics 5: 519-530, 1989.
    68. Kozlovskaya IB, Grigoriew AI, and Stepantzov VI. Countermeasures of negative effects of weightlessness on physical systems in long-term space flight. 17th ISGP annual meeting, Warsaw, Poland, 1996.
    69. Laher I and Bevan JA. Protein kinase C activation selectively augments a stretch-induced, calcium dependent tone in vascular smooth muscle. J Pharmacol Exp Ther 242: 666-672, 1987.
    70. Lehoux S, Tedgui A. Cellular mechanics and gene expression in blood vessels. J Biomechanics 36: 631-643, 2003.
    71. Lin LJ, Bao JX, Bai YG, Zhang LF, Ma J. Differential effect of simulated microgravity on myogenic tone of middle cerebral and mesenteric small arteries in rats. Acta Physiologica Sinica 61: 27-34, 2009.
    72. Lin LJ. Effects of 4-week hindlimb unweighting with and without 1h/day standing on myogenic-tone and vasoconstrictor responses of mesenteric arteries in rats (abstract). 29th Annual International Gravitational Physiology Meeting; Angers, France; 22-27 June, 2008.
    73. Looft-Wilson RC and Gisolfi CV. Rat small mesenteric artery function after hindlimb suspension. J Appl Physiol 88: 1199-1206, 2000.
    74. Ma J, Zhang LF, Yu ZB. Effects of 14-day tail suspension on vasoreactivity of arteries from different parts of the body in rats. J Gravit Physiol 3: 9-10. 1996.
    75. Ma J, Zhang LF, Yu ZB, Zhang LN. Time course and reversibility of arterial vasoreactivity changes in simulated microgravity rats. J Gravit Physiol. 4: P45-46, 1997.
    76. Martinez-Lemus LA, Wu X, Wilson E, Hill MA, Davis GE, Davis MJ, Meininger GA. Integrins as unique receptors for vascular control. J Vasc Res 40:211-33, 2003.
    77. Maurel D, Ixart G, Barbanel G, Mekaouche M, Assenmacher I. Effects of acute tilt from orthostatic to head-down antiorthostatic restraint and of sustained restraint on the intra-cerebroventricular pressure in rats. Brain Res 736:165-73, 1996.
    78. McDonald KS, Delp MD, Fitts RH. Effect of hindlimb unweighting on tissue blood flow in the rat. J Appl Physiol 72: 2210-2218, 1992.
    79. Meininger GA and Faber JE. Adrenergic faciliation of myogenic response in skeletal muscle arterioles. Am J Physiol Heart Circ Physiol 260: H1424-H1432, 1991.
    80. Monos E, Contney SJ, Cowley AW Jr, and Stekiel WJ. Effect of long-term tilt on mechanical and electrical properties of rat saphenous vein. Am J Physiol 256: H1185-H1191, 1989.
    81. Monos E, Raffai G, D?rnyei G, Nádasy GL, Fehér E. Structural and functional responses of extremity veins to long-term gravitational loading or unloading—lessons from animal systems. Acta Astronaut 60: 406-414, 2007.
    82. Morey-Holton ER and Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92: 1367-1377, 2002.
    83. Mulvagh SL, Charles JB, Riddle JM, Rehbein TL and Mungo MW. Echocardiographic evaluation of the cardiovascular effects of short-duration spaceflight. J Clin Pharmacol. 31:1024-1026. 1991.
    84. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev. 70:921-61, 1990.
    85. Mulvany MJ, Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41: 19-26, 1979.
    86. National Aeronautics and Space Administration. Bioastronautics Critical Path Roadmap (BCPR). An approach to risk reduction and management for human space flight: extending the boundaries. Houston, TX: NASA; JSC 62577, 2004.
    87. Norsk P, Damgaard M, Petersen L, Gybel M, Pump B, Gabrielsen A, Christensen NJ. Vasorelaxation in space. Hypertension 47: 69-73, 2006.
    88. Osol G, Laher I, and Kelley M. Myogenic tone is coupled to protein kinase C and G protein activation in small cerebral arteries. Am J Physiol Heart Circ Physiol 265: H415-H420, 1993.
    89. Overton JM, Tipton CM. Effect of hindlimb suspension on cardiovascular responses to sympathomimetics and lower body negative pressure. J Appl Physiol 68: 335-362, 1990.
    90. Paloski WH and Young LR. 1999 artificial gravity workshop, Jan. 14-15, League city, Texas; NASA/JSC & NSBRI, USA. 1999.
    91. Papadopoulos A and Delp MD. Effects of hindlimb unweighting on the mechanical and structure properties of the rat abdominal aorta. J Appl Physiol 94: 439-445, 2003.
    92. Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist CG, Zerwekh JE, Peshock RM, Weatherall PT, Levine BD. Cardiac atrophy after bedrest and spaceflight. J Appl Physiol 91: 645-653, 2001.
    93. Platoshyn O, Golovina VA, Bailey CL, Limsuwan A, Krick S, Juhaszova M, Seiden JE, Rubin LJ, Yuan JX. Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol 279: C1540-1549, 2000.
    94. Prewitt RL, Rice DC, Dobrian AD. Adaptation of resistance arteries to increases in pressure. Microcirculation 9: 295-304, 2002.
    95. Prisby RD, Wilkerson MK, Sokoya EM, Bryan RM Jr, Wilson E, Delp MD. Endothelium-dependent vasodilation of cerebral arteries is altered with simulated microgravity through nitric oxide synthase and EDHF mechanisms. J Appl Physiol 101:348-53, 2006.
    96. Purdy RE, Duckles SP, Krause DN, Rubera KM, Sara D. Effect of simulated microgravity on vascular contractility.J Appl Physiol 85: 1307-1315, 1998.
    97. Rowell LB. Human Cardiovascular Control. New York: Oxford University Press, p. 1-80, 118-161, 1993.
    98. Roy RR, Roy ME, Talmadge RJ, Mendoza R, Grindeland RE, and Vasques M. Size and myosin heavy chain profiles of rat hindlimb extensor muscle fibers after 2 week at 2 G. Aviat Space Environ Med 67: 854-858, 1996.
    99. Sandler H, Vernikos J, Wegmann HM, and Klein KE. Introduction to countermeasures: extended manned spaceflight. Acta Astronautica 35: 247-252, 1995.
    100.Schultheis L, Ruff CB, Rastogi S, Bloomfield S, Hogan HA, Fedarko N, Thierry-Palmer M, Ruiz J, Bauss F, and Shapiro JR. Disuse bone loss in hindquarter suspended rats: partial weightbearing, exercise and ibandronate treatment as countermeasures. J Gravit Physiol 7: P13-P14, 2000.
    101.Shimizu T. Development of the aortic baroreflex system under conditions of microgravity. J Gravit Physiol 6: P55-P58, 1999.
    102.Shipov AA. Artificial gravity. In: Space Biology and Medicine: Humans in spaceflight. Reston, VA, USA: American Institute of Aeronautics and Astronautics, book2: 349-363, 1996.
    103.Sides MB, Vernikos J, Convertino VA, Stepanek J, Tripp LD, Draeger J, Hargens AR, Kourtidou-Papadeli C, Pavy-LeTraon A, Russomano T, Wong JY, Buccello RR, Lee PH, Nangalia V, Saary MJ. The Bellagio report: cardiovascular risks of spaceflight: implications for the future of space travel. Aviat Space Environ Med 76: 877-895, 2005.
    104.Smiesko, V, DJ. Lang, and PC. Johnson. Dilator response of rat mesenteric arcarding arterioles to increased blood flow velocity. Am J Physiol 256: H1958-H1965, 1989.
    105.Sun B, Zhang LF, Gao F, Ma XW, Zhang ML, Liu J, Zhang LN, Ma J. Daily short-period gravitation can prevent functional and structural changes in arteries of simulated microgravity rats. J Appl Physiol 97: 1022-1031, 2004.
    106.Sun D, Messina EJ, Kaley G, Koller A. Characteristics and origin of myogenic response in isolated mesenteric arterioles. Am J Physiol Heart Circ Physiol 263: H1486-H1491, 1992.
    107.Tanaka K, Gotoh TM, Awazu C, Morita H: Regional difference of blood flow in anesthetized rats during reduced gravity induced by parabolic flight. J Appl Physiol 99: 2144-2148, 2005.
    108.Tarasova O, Kalentchuk V, Tsvirkoun D, Vinogradova O. Effect of two-week tail suspension on forelimb and hindlimb small arteries in rats. J Gravit Physiol 11: P89-P90, 2004.
    109.Vernikos J, Ludwig DA, Ertl A, Wade CE, Keil L, and O’Hara DB. Effect of standing or walking on physiological changes induced by head down bed rest: implications for space fight. Aviat Space Environ Med 67: 1069-1079, 1996.
    110.Vil-Viliams IF, Kotovskaya AR, Nikolashin GF, and Lukjanuk VJ. Modern view on the short-arm centrifuge as a potential generator of artificial gravity in piloted missions. J Gravit Physiol 8: P145-P146, 2001.
    111.Von Anrep, G. On local vascular reactions and their interpretation. J.Physiol. Lond. 45: 318-327, 1912.
    112.Watenpaugh DE, Hargens AR. The cardiovascular system in microgravity. In: Fregly MJ, CM Blatteis, eds. Handbook of Physiology: Environmental Physiology. Bethesda, MD, Am Physiol Soc, sect.4, vol.I, chap.29:631-674, 1996.
    113.West JB. Physiology in microgravity. J Appl Physiol 89: 379-384, 2000.
    114.Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, Karhanek M, Trappe SW, Trappe TA, Costill DL, and Fitts RH. Effect of a17-day spaceflight on contractile properties of human soleus muscle fibers. J Physiol (Lond) 516: 915-930, 1999.
    115.Widrick JJ, Romatowski JG, Norenberg KM, Knuth ST, Bain JL, Riley DA, Trappe SW, Trappe TA, Costill DL, and Fitts RH. Functional properties of slow and fast gastrocnemius muscle fibers after a 17-day spaceflight. J Appl Physiol 90: 2203-2211, 2001.
    116.Wilkerson MK, Colleran PN, Delp MD. Acute and chronic head-down tail suspension diminishes cerebral perfusion in rats. Am J Physiol Heart Circ Physiol 282: H328-34, 2002.
    117.Wilkerson MK, Lesniewski LA, Golding EM, Bryan RM Jr, Amin A, Wilson E, Delp MD. Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism. Am J Physiol Heart Circ Physiol 288: H1652-H1661, 2005.
    118.Wilkerson MK, Muller-Delp J, Colleran PN, and Delp MD. Effects of hindlimb unloading on rat cerebral, splenic, and mesenteric resistance artery morphology. J Appl Physiol 87: 2115-2121, 1999.
    119.Xie MJ, Zhang LF and Ma J. Functional alterations in cerebrovascular K+ and Ca2+ channels are comparable between simulated microgravity rat and SHR. Am J Physiol Heart Circ Physiol 289: H1265-H1276, 2005.
    120.Xue JH, Zhang LF, Ma J, and Xie MJ. Differential regulation of L-type Ca2+ channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing. Am J Physiol Heart Circ Physiol 293: 691-701, 2007.
    121.Yao YJ, Jiang SZ, Jiang CL, Sun XQ, Cao XS, Yang CB. Effects of Thigh Cuffes on haemodynamics changes of the middle cerebral artery and onorthostatic intolerance induced by 10 days head-down bed rest. Clin Exp Pharmacol Physiol. Jun 18. 16: 647-53, 2008
    122.Young LR. Artificial gravity considerations for a Mars exploration mission. In: B. Cohen and B.J.M. Hess, eds. Otolith Function in Spatial Orientation and Movement, Ann NY Acad Sci 871: 367-378, 1999.
    123.Yuan XJ, Rubin LJ. Altered expression and function of Kv channels in primary pulmonary hypertension. In Archer and Rusch. Potassium channels in cardiovascular biology 821-836, 2001.
    124.Zhang LF and Bao JX. Vascular adaptation to microgravity: role and implications of vascular local renin-angiotensin system In: Hargens AR, Takeda N, and Singal PK. New Delhi, Narosa. Adaptation Biology and Medicine. vol 4: current concepts, 329-339, 2005.
    125.Zhang LF, Ma J, Mao QW, Yu ZB. Plasticity of arterial vasculature during simulated weightlessness and its possible role in the genesis of postflight orthostatic intolerance. J Gravit Physiol 4: P97-100, 1997.
    126.Zhang LF, Sun B, Cao XS, Liu C, Yu ZB, Zhang LN, Cheng JH, Wu YH, and Wu XY. Effectiveness of intermittent -Gx gravitation in preventing deconditioning due to simulated microgravity. J Appl Physiol 95: 207-218, 2003.
    127.Zhang LF, Yu ZB, Ma J, Mao QW. Peripheral effector mechanism hypothesis of postflight cardiovascular dysfunction. Aviat Space Environ Med 72: 567-575, 2001.
    128.Zhang LF, Zhang LN, Meng QJ, Fu ZJ. Research in differential adaptations of vessels to microgravity. J Gravit Physiol 9: P55-P58, 2002.
    129.Zhang LF. Invited review: Vascular adaptation to microgravity: what have we learned? J Appl Physiol 91: 2415-2430, 2001.
    130.Zhang LF. Letter to the Editor: Vascular adaptation to microgravity. J Appl Physiol 97:1584-5; author reply 1584-1587, 2004.
    131.Zhang LF. Microgravity induced cardiovascular deconditioning: peripheral effecter mechanism hypothesis and gravity-based countermeasure. J Gravit Physiol 7: 135-136, 2000.
    132.Zhang LF. Reply“Letter to the editor”: Vascular adaptation to microgravity: extending the hypothesis. J Appl Physiol 93: 1181-1182, 2002.
    133.Zhang LF. System specificity in responsiveness to intermittent -Gx gravitation during simulated microgravity in rats. J Gravit Physiol 12: P1- P4, 2005.
    134.Zhang LF, Cheng JH, Liu X, Wang SY, Liu Y, Lu HB and Ma J. Cardiovascular changes of conscious rats after simulated microgravity with and without daily -Gx gravitation. J Appl Physiol 105:1134-45, 2008.
    135.Zhang LN, Gao F, Ma J, and Zhang LF. Daily head-up tilt, standing or centrifugation can prevent vasoreactivity changes in arteries of simulated weightless rats. J Gravit Physiol 7: P143-P144, 2000.
    136.Zhang LN, Zhang LF, Ma J. Simulated microgravity enhances vasoconstrictor responsiveness of rat basilar artery. J Appl Physiol 90: 2296-305, 2001.
    137.陈杰,马进,丁兆平,张立藩一种模拟长期失重影响的大鼠尾部悬吊模型空间科学学报13: 159-162, 1993.
    138.高放,张立藩,黄威权,孙岚.慢性阻断血管紧张素Ⅱ1型受体不能完全防止模拟失重大鼠血管的适应性结构变化生理学报59: 821-830, 2007
    139.孟庆军,李剑,张文红,张乐宁,张立藩抗血管紧张素原多克隆抗血清的制备及鉴定生理学报55: 110-113, 2003.
    140.张立藩,余志斌,马进航天飞行后心血管失调的外周效应器机制假说。生理科学进展32: 13-17, 2001.
    141.张立藩人工重力生物医学问题:以往工作回顾与面临的挑战航天医学与医学工程14:70-74, 2001.
    142.张立藩,孟庆军展望新世纪的重力生理学生理科学进展33:276-284,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700