两种复合垂直流人工湿地处理生活污水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前可利用的淡水资源在逐渐减少,传统生化处理工艺虽然效果较好,但处理成本高,使得生活污水的处理率低,而人工湿地处理生活污水系统具有成本低、净化效果好、景观价值高的特点,成为今后研究的趋势。本文利用筛选的植物,建立了复合垂直流人工湿地(ⅣCW)系统及改进型复合垂直流人工湿地(ⅡⅤCW)系统。通过对两种不同构型人工湿地植物生长情况、生活污水净化效果、基质酶活性空间分布的研究,探寻运行模式较好、净化效果较佳的复合垂直流人工湿地构型和植物组合方式;分析了基质酶活性与污水净化效果的相关性,初探复合垂直流人工湿地的净化机理,为应用人工湿地处理生活污水提供理论依据和实践经验。主要研究结果如下:
     (1)水生植物筛选试验结果表明大水剑、太阳草、水罗兰的生长状况都很好,株高、鲜重增长都非常明显,对TP、COD、TN的净化效果都很好。最后选择了太阳草、大水剑作为人工湿地备用植物。
     (2)人工湿地植物生长状况都很好,均无养分缺乏病症。两种构型间植物生长略有差异,除ⅣCW中美人蕉株高、分株数大于ⅡⅤCW中的美人蕉外,其余三种植物均是ⅡⅤCW构型中的生长状况比ⅣCW中的好。
     (3)相同构型条件下,不同植物组合的人工湿地处理系统对污水的净化效果不同。与不种植物的人工湿地系统相比,种植植物的人工湿地系统净化效果普遍优于不种植物的湿地系统,其中以彩叶草—太阳草组合的湿地系统净化效果优于美人蕉—大水剑组合的。
     (4)两种构型人工湿地对污水都具有较好的净化效果。在相同植物组合条件下,在去除有机污染物(COD)、脱氮(NH_4-N、NO_3-N、TN)方面均是ⅡⅤCW的去除效果要好于ⅣCW的。而对TP的去除则是ⅣCW的去除效果要好于ⅡⅤCW。
     (5)人工湿地基质上层的磷酸酶、脲酶、过氧化氢酶活性最高。同一构型人工湿地中,彩叶草—太阳草植物组合的酶活性普遍较美人蕉—大水剑植物组合的高。其中磷酸酶与脲酶活性变化规律为:上层(0~5cm)高于中层(5~15cm),中层高于下层(15-25cm);而过氧化氢酶活性变化规律为:上层高于下层,下层高于中层。
     (6)通过对上层基质酶活性与污水净化效果进行相关性分析,可以看出,基质磷酸酶活性与TP去除率之间存在极显著正相关(r=0.9975);基质脲酶活性与TN、COD的去除率呈显著正相关(分别r=0.9712,0.9592)。
     综合上述研究结果,可以看出,ⅡⅤCW构型净化效果优于ⅣCW;彩叶草—太阳草组合的净化效果优于美人蕉—大水剑组合,为探寻净化效果较佳的复合垂直流人工湿地构型和植物组合方式提供实验支持。
At present, water resources used by us is gradually decreasing. Although the purification effect of sewage with tradition albiochemistry is higher, the processing cost of it is higher, that causes the treatment rate of sanitary sewage very lowly. However, the conducted wetlands sewage treatment system has lower processing cost, better purification effect, higher landscape value, it is henceforth becoming study tendency.We constructed Integrated Vertical Constructed Wetlands (IVCW) System and Improving Integrated Vertical Constructed Wetlands (IIVCW) System with plants selected by us. We studied on the growth situation of wetland plants, the purification effect of sewage treatment, some enzyme activities between IVCW and IIVCW in order to mouse out the pattern with better configuration or plant combination, higher purification effect. And we analyzed the correlation between the purification effect of sewage and enzyme activities for searching initially the purification mechanism of integrated vertical constructed wetlands. The results will provide the theory basis and experience for sewage treatment with integrated vertical constructed wetlands in the future. The main results as follows:
     (1) The result of selection hydrophytes indicated that growth condition of Acorus Calamus, Tonina Fluviatilis and Hygrophila Difformis were all well. The plant height, root height and fresh weight have obviously increased. Purification capacity of TP, COD, and TN were all high. So we chose Acorus Calamus, Tonina Fluviatilis as spare plants in the constructed wetlands.
     (2) The plants grew well in constructed wetlands, were not in the illness of lack nutrition. The plant growth were slightly different in two kinds of configuration wetlands. The plant height of Canna L..was higher and its division quantity was more in the IVCW than in the IIVCW. But the plant height and division quantity of other three kinds of plants were higher and more in the IIVCW than in the IVCW.
     (3) The purification effect of constructed wetlands system with different plant combination in the same tectonic of constructed wetlands are different. Compared with without plants in the constructed wetlands system, the purification effect universally were better in constructed wetlands system with plants. And the purification capacity was higher in the combination system with Coleus blumei Benth—Tonina Fluviatilis than with Canna L.—Acorus Calamus.
     (4) The sewage purification effect were well both kinds of tectonic constructed wetlands. The removal rate of Chemical Oxygen Demand (COD), Ammonia Nitrogen(NH_4~+-N), Nitrate Nitrogen(NO_3~--N), Total Nitrogen(TN) in IIVCW was higher than in IVCW. However the removal rate of Total Phosphor(TP) in IVCW was higher than in IIVCW.
     (5) The enzyme activity of the upper lay was highest in the three lays. In the identical artificial wetlands system, the enzyme activity was higher in the combination system with Coleus blumei Benth—Tonina Fluviatilis than with Canna L-Acorus Calamus. The variety orderliness of phosphatase activity and urease activity were the highest in the upper lay (0~5cm), the higher in the intermediate lay (5~15cm), and the lowest in the lower lay (15~25cm). But the enzyme activity was the highest in the upper lay, the higher in the lower lay, and the lowest in the intermediate lay.
     (6) Through the correlation analysis between removal rates and enzyme activity of the upper lay, we could see, the phosphatase enzyme activity was fearfully positively correlated to the removal rate of TP (r=0.9975 ) ; urease enzyme activity was positively correlated to the removal rate of TN、COD (r=0.9712, 0.9592) .
     Comprehensive results of the study, we knew that the purification effect of sewage by IIVCW was higher than IVCW, and the purification capacity of the combination system with Coleus blumei Benth—Tonina Fluviatilis was higher than one with Canna L.—Acorus Calamus, Tonina Fluviatilis combination system, which provided an important experimental support for mousing out constructed wetlands systems with better configuration or plant combination, higher purification effect.
引文
[1] 奥特威,吴文芳译,污染中的生物化学,哈尔滨,哈尔滨工业大学出社,1986,10
    [2] 蔡晓明,生态系统生态学,北京,科学出版社,2000,281
    [3] 国家环境保护总局,中国环境状况公报(2001),环境工作通讯,2002,7,5~8
    [4] 白晓慧,王宝贞,人工湿地水处理技术及其发展应用,哈尔滨建筑大学学报,1999,32(8),209~223
    [5] Miklas S, Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrialwastewater contaminated with lead and copper, BioresourceTechnology, 2002, 83, 71~79
    [6] Huett D O, Nitrogen and phosphorus removal from plant nursery run of in vegetated and unvegetated subsurface flow wetlands, Water Research, 2005, 39, 3259~3272
    [7] Solano M L, Soriano P, Constructed Wetlands as a Sustainable Solution for Wastewater Treatment in Small Villages, Biosystems engineering, 2004, 87(1), 109~118
    [8] Srinivasan N, Improvement of domestic wastewater quality by subsurface flow constructed wetlands, BioresourceTechnology, 2000, 75(1), 19~25
    [9] Adcock, Reed beds take on industrial waste, Water, 1999, 21(4), 50~52
    [10] Simi A L, Design and hydraulic performance of a constructed wetland treating oil refinery wastewater, Water Science and Technology, 1999, 40(3), 301~307
    [11] 籍国东,自由表面流人工湿地处理超稠油废水,环境科学,2001,22(4),95~99
    [12] Braskerud B C, Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution, Ecological Engineering, 2002, 18, 351~370
    [13] Lin Y F, Nutrient removal from aquaculture wastewater using a constructed wetlands system, Aquaculture, 2002, 209, 169~184
    [14] 吴晓磊,人工湿地废水处理机理,环境科学,1995,16(3),83~86
    [15] Eissenstat D M, Yanai R D, The Ecology of root life span, Advances in Ecological Research, 1997, 27, 1~60
    [16] 申建波,张福锁,毛达如,根际微生物系统中的碳循环,植物营养与肥料学报,2001,7(2),232~240
    [17] 张甲耀,潜流型人工湿地污水处理系统的研究,环境科学,1998,(4),389~395
    [18] Jurgen K, Christine I, Treatment of Domestic and Agricu-tural, Wasterwater by Reed Bed system, Ecological Engineering, 1999, (12), 13~25
    [19] Mandi L, Bouhoum K, Ouazzani N, Application of Constructed Wetlands for Domestic wastewater Treatment in an Arid Climate, Water Science and Technology, 1998, (1), 379~387
    [20] Leal K V, Salt C A, Treatment of Acidic Metal-rich Drainage fromReclaimed, Water Science and Technology, 1999, (12), 141~148
    [21] Brix H, Use of construced wetland on water pollution control, historical development, present status and future eperspectives, Water Science and Technology, 1997, 30(8), 209~223
    [22] 成水平,夏宜铮,香蒲、灯心草人工湿地的研究——Ⅱ净化污水的空间,湖泊科学,1998,10(1),62~66
    [23] 沈耀良,王宝贞,人工湿地系统的除污机理,江苏环境科技,1997,10(3),1~6
    [24] Knight R L, Constructed wetlands for livestock waste water management, Ecological Engineering, 2000, 15, 41~55
    [25] Ann, Influence of chemical amendments on phosphoru immobilization in soils from a constructed wetland, Ecological Engineering, 2000, 14, 157~167
    [26] 孟宪奇,北方寒冷地区氧化塘运行规律与科学管理,黑龙江环境通报,2002,26(3).13~17
    [27] 成水平,况琪军,夏宜铮,香蒲、灯心草人工湿地的研究—Ⅰ净化污水的效果,湖泊科学,1997,5(4),351~357
    [28] 辛晓云,马秀东,氧化塘水生植物净化污水的研究,山西大学学报(自然科学版),2003,26(1),85~87
    [29] Blazejewski R, Sadzide S, clogging phenomena in constructed wetlands with subsurface flow, Water Science and Technology, 1997, 35(5), 183~188
    [30] 詹德昊,吴振斌,张晟,等,堵塞对复合垂直流湿地水力特征的影响,中国给水排水,2003,19(2),1~4
    [31] Stottmeister U, Wiono N, Kuschk P, et. al, Efects of plants and microorganisms in constructed wetlands for wastewater treatment, Biotechnology Advances, 2003, 22, 93~117
    [32] 李科得,胡正嘉,芦苇床系统净化污水的机理,中国环境科学,1995,15(2),140~144
    [33] 李科得,胡正嘉,人工模拟芦苇床系统处理污水的效能,华中农业大学学报,1994,13(5),511~517
    [34] Hammer D H, Kadlec R H, A model for wetland surface water dynamics, Water Resources Research, 1986, 22(13), 1951~1958
    [35] Kadlec R H, Hammer D E, Modeling autrient behavior in wetlands, Ecological Modelling, 1988, 40, 37~66
    [36] Walton R, Chapman R S, Davis J E, Development and application of the wetlands dynamic water budget model, Wetlands, 1996, 16(3), 347~357
    [37] Liu W X, Dahab M F, Surampalli R Y, Nitrogen transform ations modeling in subsurface.flow constructed wetlands, Water Environment Research, 2005, 77(3), 246
    [38] 廖新悌,骆世明,吴银宝,等,人工湿地处理废水有机物动态模型的研究,工业用水与废水,2004,35(4),23~26
    [39] 吴振斌,梁威,成水平,等,人工湿地植物根区土壤酶活性与污水净化效果及其相关分析,环境科学学报,2001,21(5),622~624
    [40] 王庆安,任勇,钱骏,等,人工湿地塘床系统净化地表水的试验研究,四川环境,1995,19(1),9~15
    [41] 王庆安,任勇,钱骏,等,成都市活水公园人工湿地塘床系统的生物群落,重庆环境科学,2001,23(2),52~55
    [42] 陈德强,吴振斌,成水平,等,不同湿地组合工艺净化污水效果的比较,中国给水排水,2003,19(9),12~15
    [43] Kadlec H R, Knight R L, Treatment Wetlands, Boca Raton, Lewis Publishers, 1996, 48
    [44] 占家智,王君英,观赏水草与水草造景,北京,金盾出版社,2004,146
    [45] 韦三立,水生花卉,北京,中国农业出版社,2004,208
    [46] 韦三立,水生花卉,北京,中国农业出版社,2004,190
    [47] 中国国家环保总局,水和废水监测分析方法(第4版),北京,环境科学出版社,2002
    [48] 蒋跃平,葛滢,岳春雷,等,人工湿地植物对观赏水中氮磷去除的贡献,生态学报,2004,24(8),1720~1725
    [49] 吴振斌,詹得,成水平,等,复合垂直流构建湿地的设计方法及净化效果,武汉大学学报(工学版),2003,36(1),12~16
    [50] 宋铁红,尹军,崔玉波,不同进水方式人工湿地除污效率对比分析,安全与环境工程,2005,12(3),46~51
    [51] 崔玉波,尹军,宋铁红,间歇式潜流人工湿地中COD、NH_4~+-N动态变化特征,环境工程,2003,21(3),62~64
    [52] 周巧红,吴振斌,付贵萍,等,人工湿地基质中酶活性和细菌生理群的时空动态特征,环境科学,2005,26(2),108~112
    [53] 梁威,吴振斌,詹发萃,等,人工湿地植物根区微生物与净化效果的季节变化,湖泊科学,2004,16(40),312~316
    [54] 梁威,吴振斌,周巧红,复合垂直流构建湿地植物根区磷酸酶及脲酶活性与污水净化的关系,植物生理学通讯,2002,38(6),545~548
    [55] 吴振斌,徐光来,周培疆,等,复合垂直流人工湿地对不同氮污水的净化,环境科学与技术,2004,27(增刊),30~32
    [56] 许光辉,郑洪元,土壤微生物分析方法手册,北京,农业出版社,1986
    [57] Tam N F Y, Effects of wastewater dishcharge on microbial populations and enzyme activities in mangrove soils, Environmental pollution, 1998, 102, 233~242
    [58] 李智,杨在娟,岳春雷,人工湿地基质微生物和酶活性的空间分布,浙江林业科技,2005,25(3),1~5
    [59] 梁威,吴振斌,周巧红,等,复合垂直流构建湿地基质微生物类群及酶活性的空间分布,云南环境科学,2002,21(1),5~8
    [60] 吴振斌,梁威,邱东茹,等,复合垂直流构建湿地基质酶活性与污水净化效果,生态学报,2002,22(7),1012~1017
    [61] Dinges R, Natural systeans for water pollution control, New York, Vanstrand Reinlmkl Co, 1982, 14
    [62] Shalla G, The nutrient assimilative capacity of maerl as a subslrale in constructed wetlands system for waste treatment, Water Researdi, 2000, 34(8), 2183~2190
    [63] 吴振斌,梁威,成水平,等,人工湿地根区土壤酶活性与污水净化效果及其相关分析,环境科学学报,2000,21(5),622~624
    [64] 岳春雷,常杰,葛滢,等,人工湿地基质中土壤酶空间分布及其与水质净化效果之间的相关性,科技通讯,2004,20(2),112~115
    [65] Srinivasan N, Weaver R W, Lesikar B J, et. al, Improvement of domestic wastewater quallty by subsurface flow constructed wetland, Bioresource Technology, 2000, 75, 19~25
    [66] Tanner C C, Kadlec R H, Gibbs M M, et. al, Nitrogen processing gradients in subsurface-flow treatment wetlands-influence of wastewater characteristics, Ecological Engineering, 2002, 18, 499~520.
    [67] Tanner C C, Kadlec R H, Oxygen flux. implications of observed nitrogen removal rates in subsurface-flow treatment wetlands, Water Science and Technology, 2003, 5, 191~198
    [68] Kadlec R H, Knight R H, Treatment wetlands, Boca Raton, Lewis Publishers, 1996, 112
    [69] Reddy K R, D'Angelo E M, Biogecho chemical indicators to evaluate pollutant removal efficiency in constructed wetlands, Water Science and Technology, 1997, 35, 1~10
    [70] Kadlec R H, Knight R L, Treatment wetlands, Boca Raton, Lewis Publishers, Chelsea, MI, 1996, 217
    [71] Vymazal J, Brix H, Cooper P F, et. al, Removal mechanism and types of constructed wetlands, Leiden, Backhuys Publishers, 1998, 17~66
    [72] Ostrom A J, Nitronen removal constructed wetlands treating nitrified meat processing effluents, Water Science and Technology, 1995, 132(3), 137~147
    [73] Hammer D A, Knight R L, Designing constructed wetlands for nitrogen removal, Water Science and Technology, 1994, 29, 15~27
    [74] Lee M A, Stansbury J S, Zhang T C, The effect of low temperatures on ammonia removal in laboratory-scale constructed wetland, Water Environment Research, 1999, 71, 340-343
    [75] Cooke J G, Stub L, Mora N, Fractions of phosphorus in the sediment of a wetland after a decade of receiving sewage effluent, Journal Environment Quality, 1992, 21, 726-732
    [76] Richardson C J, Craft C B, Effective phosphorus retention in wetlands, fact or fiction In, Moshiri G A Jr, (Ed), Constructed wetlands for Water Quality Improvement, Boca Raton, Lewis Publishes, 1993, 271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700