间歇式反应釜的容错控制设计及仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
容错控制技术是一门应用型边缘学科,它的理论基础涉及现代控制理论、模式识别、人工智能、信号处理以及相应的学科知识。它的出现和发展是实际应用需求与多学科理论发展交替作用的结果。它的应用为逐渐复杂及大型化的现代工业控制提供新的的可靠性和安全性保障途径。因此,对于工业生产容错控制方案的开发与应用研究具有十分重要的意义。
     本文从研究间歇式反应釜釜内温度控制出发,对于采用串级控制方式控制反应釜的釜内温度在主传感器失效的情况下,对其进行了深入的容错控制的研究。
     首先,论文系统的介绍了模型辨识的方法,并提出了利用单变量影响关系的线性叠加确定数学模型结构,采用最小二乘法辨识模型参数的建立复杂系统数学模型方法。论文根据对象反应釜的特点,选取了反应釜的夹套温度,冷却水温度和冷却水流量作为输入,釜内温度作为输出,结合曲线拟合和最小二乘法建立了开环状态下反应釜釜内温度系统的三输入单输出代数模型。并且为了对比仿真的需要,利用两阶段随机梯度算法在闭环系统辨识过程中根据实验室提取数据辨识了被控对象(反应釜)的特性。
     其次,论文中讨论了容错控制的基本方法,在此基础上,基于状态观测器的原理,利用所得的数学模型采用信号重构的方式设计了对象反应釜在控制系统主传感器失效时控制重构的容错控制方案。在故障检测单元激励下,利用数学模型估算的输出值取代主传感器的输出反馈回控制器,保证系统仍然可以正常运行。
     最后,利用Matlab对设计的容错控制系统进行了仿真试验研究,仿真实验结果表明了,所设计的容错控制系统可以保证系统的稳定运行。也证明了当系统中某些测量元件出现故障导致控制信号丢失时,用系统模型的计算结果实现控制系统的容错控制的设想是完全可行的。
Fault-tolerant control technology is an interdisciplinary study. Its theoretical basis involves the modern control theory, pattern recognition, artificial intelligence, signal processing and corresponding science. Its appearance and the development are the result of Alternate effects by the development both in practical applications demand and the multidisciplinary theory. Fault-tolerant control technology provides new ways to the reliability and security of modern industrial control which becomes more and more complicated and extended gradually. For this sake, the development and the research in the fault-tolerant control program of industrial production make a great significance.
     Starting with temperature control of the Vessel proceeding Batch Reactor, this paper makes a further studying in condition of using cascade control to the reactor temperature as the master sensor fails to work.
     Firstly, a model identification method is introduced systematically, proposing a mathematical model method. This method covers a way to identify the construction of mathematical model by a use of single variable affecting the relationship between linear superposition, and it also refers to the Least-squares method to the identification of model parameters. According to the characteristic of the reactor, Jacket temperature, cooling water temperature and the cooling water flow are selected as input, Kettle temperature as output. With the combination of curve fitting and least-squares method, the algebraic model with three-input single-output under open-loop system is established. For the sake of simulation comparison, the object (reactor) features is identified by using two-stage stochastic gradient algorithm according to the data extracted under laboratory in the process of the closed-loop system.
     Secondly, this paper discussed the basic fault-tolerant control methods. An active fault-tolerant control program, using signal reconstruction to achieve a cascade control as sensor fails to work in the main control with proceeds mathematical mode, is designed based on the principle of state observer. In the stimulation from fault detection unit, the feedback controller, with the inputs from the mathematical model estimates instead of the inputs from the master sensor, can makes the systems in the normal operation.
     Finally, the simulation results show that, when the measurement of certain components in the system fails to work, leading to the lost of control signal, the assumptions to realize the system Fault Tolerant Control through the use of results calculated by the system model is totally feasible.
引文
[1] 周东华,叶银忠.现代故障诊断与容错控制.北京:清华大学出版社,2000.
    [2] 王福利,张颖伟.容错控制.沈阳:东北大学出版社,2003.
    [3] 袁由光.容错计算原理.哈尔滨:哈尔滨工程大学出版社,2006.
    [4] 王仲生.智能故障诊断与容错控制.西安:西北工业大学出版社,2005.
    [5] 张家新,戴冠中.多重系统同时稳定的动态补偿器的设计.控制与决策,1991,6(1):1-6.
    [6] Gundes A N. Stability of feedback systems with sensor of actuator failures:annlysis. Int. J. Control, 1992,56(4):735-753.
    [7] Kabamba P T,Yang C. Simultaeous controller design for linear time-invariant systems. IEEE Trans. on Automatic Control, 1991,36(1):106-111.
    [8] Khargonekar P P, Pascoal A, Ravi R. Stabilization of linear time-invariant plans:strong, simultaneous, and reliable stabilization. In:Proc. of American Control Conf.,1988. 2477-2482.
    [9] Olbrot A W. Fault tolerant control in the presence of noise:a new algorithm and some open problems. In:Proc. of 12th IFAC World Congress, 1993,7:467-470.
    [10] 孙金生,李军,王执铨等.动态大系统的分散容错控制.南京理工大学学报,1998,2(2):117-120.
    [11] 王伟,张庆振,任章.传感器失效的飞控系统完整性控制器设计.火力与指挥控制,2007,32(7):19-22.
    [12] Yu D, Shields D N.A bilinear fault detection filter. Int. J. Control, 1997,68(3): 417-430.
    [13] Kwong W A et al. Expert supervision of fuzzy learning systems for fault tolerant aircraft control. In:Proceedings of the IEEE, 1995, 83(3): 466-483.
    [14] 罗峰,李响,邓建华.可重构飞控系统的鲁棒控制研究.西北工业大学学报,2002,20(1):91-95.
    [15] Looze D P, Weiss J L, Eterno J S. An automatic redesigh approach for reastructurable control system. Proceeding of the National Aerospace and Electronics Conference, Washington, 1995: 570-576.
    [16] 孙金生,李军,王执铨.时滞不确定系统的鲁棒容错控制.控制理论与应用,1998,15(2):267-271.
    [17] 厉玉鸣.化工仪表及自动化.北京:化学工业出版社,2006.
    [18] 李鹏波,胡德文.系统辨识基础.北京:中国水利水电出版社,2006.
    [19] 侯媛彬,汪梅,王立琦.系统辨识及其MATLAB仿真.北京:科学出版社,2004.
    [20] 潘立登,潘仰东.系统辨识与建模.北京:化学工业出版社,2004.
    [21] 喻娅娅.控制系统在线闭环辨识与性能评价方法的研究:(硕士学位论文).北京:华北电力大学,2005.
    [22] Van den Hof P M J, Schrama R J P. An indirect method for transfer function estimation from closed-loop data. Automatica, 1993, 29(6): 1523-1527.
    [23] 靳其兵,夏丹阳.一种闭环条件下的多变量系统辨识方法.微计算机信息,2007,23(7):282-230.
    [24] 曹江涛,李平,姬晓飞.两阶段闭环辨识算法在加热炉控制中的应用.工业仪表与自动化装置,2004,(1):14-17.
    [25] 周煦.计算机数值计算方法.北京:机械工业出版社,2004.
    [26] Ferretti G, Maffezzoni C, Scattolini R. Recursive estimation of time delay Insampled systems. Automatica, 1991, 27(2):137-160.
    [27] 史运涛.故障诊断与容错控制在电厂热工系统中的应用研究:(硕士学位论文).北京:华北电力大学,2003.
    [28] 王政林,郭阳宽.过程控制与Simulink应用.北京:电子工业出版社,2006.
    [29] 陈基明.小波分析基础.上海:上海大学出版社,2002.
    [30] 王大凯,彭进业.小波分析及其在信号处理中的应用.北京:电子工业出版社,2006.
    [31] 贺银芝,沈松,刘正士等.基于小波变换的奇异性检测在发动机连杆轴承故障诊断中的应用.北京工业大学学报,2000,26(4):72-76.
    [32] 赵明旺.容错控制系统动态稳定的控制律重构.控制理论与应用,1999,16(1):123-126.
    [33] 吴文海,危琦,于建立.用状态观测器重构飞行控制律研究.飞机设计,2000,(4):7-11.
    [34] 李雄杰.一类非线性时滞过程的传感器主动容错控制.传感技术学报,2007,20(5):123-126.
    [35] 赵明旺.针对传感器故障的容错控制问题的数值解法.自动化学报,1998,24(4):512-517.
    [36] 吕宁,黄金杰,刘志东.基于稳定性的状态反馈控制系统容错控制策略.北京机械工业学院学报,1999,14(4):20-24.
    [37] 史岩,齐晓慧.基于降维观测器的系统控制律重构研究.控制工程,2006,13(3):212-217.
    [38] 谭善文,秦树人,汤宝平.小波基时频特性及其在分析突变信号中的应用.重庆大学学报(自然科学版),2001,24(2):12-17.
    [39] 冯冲.串级系统主动容错控制设计:(硕士学位论文).大连:大连理工大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700