SBR活性污泥法去除火电厂脱硫废水中Cr~(3+)、Cd~(2+)和Pb~(2+)的动态试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物吸附剂作为一种新兴的吸附剂,在重金属废水处理方面有着广阔的研究前景和巨大的优势,同时已有众多学者证明生物吸附剂应用于实际过程是可行的,具有良好的社会和经济效益。
     本文选择SBR活性污泥法对微量重金属进行动态吸附研究,探讨SBR反应器中活性污泥作为吸附剂吸附脱硫废水中重金属的可能性及应用性。在SBR反应器中对活性污泥吸附脱硫废水溶液中Cr(Ⅲ)、Cd(Ⅱ)、Pb(Ⅱ)的行为进行研究。通过研究各种不同条件:HRT,污泥浓度,溶液起始重金属浓度以及pH对吸附的影响,确定了动态吸附下的最佳条件。研究结果如下:
     (1)在HRT=16h的情况下,吸附率达到71%,保证了活性污泥对重金属充分的吸附时间并且不会发生重金属离子的解析,吸附效果最佳。
     (2)在污泥浓度为5000~5500mg/L时,COD去除率达到88.7%,活性污泥对有机物降解能力达到最高;并且对Cr(Ⅲ)去除率达到了70%。
     (3)溶液起始重金属浓度(1~1000μg/L)范围内,在Cr(Ⅲ)为1~600μg/L时,活性污泥对Cr(Ⅲ)的吸附量和吸附率在不断增大,在Cr(Ⅲ)浓度=600μg/L时吸附率达到最大,为85%;当Cr(Ⅲ)达到600~1000μg/L时,活性污泥对Cr(Ⅲ)的吸附量仍旧增大,吸附效率开始下降,到Cr(Ⅲ)浓度=980μg/L时吸附率已经下降到了78%。
     (4)pH值对活性污泥吸附重金属的影响最为显著,当pH(?)3时,过低的pH会导致污泥的直接死亡;当pH>7时,由于吸附点位的减少和点位吸附能力的降低又会影响吸附效果;经过试验研究,在pH=6时,活性污泥对重金属吸附量和吸附率分别达到了12.82μg/g和72.3%,为最佳的吸附条件。
     (5)在多种重金属的共存于溶液中的情况下,会引起对吸附点位的竞争,不同的重金属离子之间的竞争产生对吸附的抑制作用,在有其他干扰重金属离子存在的情况下,目标离子的吸附效率会降低。向Cr(Ⅲ)浓度为600μg/L的废水中分别加入Pb(Ⅱ)和Cd(Ⅱ)后,Cr(Ⅲ)的去除率为56%和68%,同溶液中只存在Cr(Ⅲ)时相比,Cr(Ⅲ)的去除率分别下降了41%和22%,Pb(Ⅱ)和Cd(Ⅱ)的存在均影响了Cr(Ⅲ)的吸附效果。
     (6)通过对比拟和出活性污泥吸附重金属的Langmuir吸附模型和Freundlich吸附模型。得到活性污泥对Cd(Ⅱ)和Pb(Ⅱ)的吸附适合用Langmuir吸附模型解释,对Cr(Ⅲ)的吸附适合用Freundlich吸附模型解释,活性污泥对不同重金属离子的吸附能力顺序为:Pb(Ⅱ)>Cd(Ⅱ)>Cr(Ⅲ)。
     (7)SBR活性污泥法运用于实践当中,可以将实际脱硫废水中的重金属离子处理到国外排放标准。其中主要的重金属离子Cd~(2+)、Cr~(3+)、Hg~(2+)、Pb~(2+)、Zn~(2+)的出水浓度分别为21μg/L、17μg/L、8μg/L、13μg/L、215μg/L,出水中各种金属浓度均低于国外重金属排放标准。
     (8)通过对活性污泥中的微生物进行研究,发现前期的累枝虫对活性污泥吸附重金属起到了主要的吸附作用。同时污泥中存在大量原、后生动物,有助与食物链的延长和增强,便会使生物量减少理论上能够达到污泥减量的目的。
As an advanced absorbent, biological absorbent which has been proved to be engineering feasible and economical beneficial, has an extensive vista of research and large advantages in the treatment of wastewater that contains heavy metals.
     An SBR reactor was used to discuss the feasibility and utility of heavy metal biosorption by activated sludge in the treatment of desulfurization wastewater which contains traces of heavy matals. The biosorption capacities of activated sludge towards Cr(Ⅲ), Cd(Ⅱ) and Pb(Ⅱ) in the desulfurization wastewater were observed. In this study, the influences of different hydraulic retention times(HRT), MLSS, initial concentrations of heavy metals and pH on the heavy metal biosorption process were assessed and an optimum operation condition of heavy metal biosorption by activated sludge process were obtained. The research results are as follows:
     (1) HRT=16h is an optimum operation time for sufficient biosorption and at the same time non-desorption towards heavy metals, the biosorption efficiency is at its best with a value of 71 %.
     (2) When the concentrations of activated sludge (MLSS) are 5000~5500 mg/L, the metal biosorption capacity of activated sludge reaches a highest value, with COD removal rate of 88.7% and Cr (Ⅲ) removal rate of 70%.
     (3) when the initial Cr(Ⅲ) concentrations are 1~600μg /L, the capacity and efficiency of Cr biosorption are increasing constantly with the increase of initial Cr(Ⅲ) concentrations and reaches an extreme of 85% by biosorption efficiency at the Cr(Ⅲ) concentration of 600μg /L. However, the biosorption efficiency of Cr begins to drop when the initial Cr(Ⅲ) concentrations are 600~1000μg/L while the biosorption capacity remains to increase. The biosorption efficiency lowered to 78% at the initial Cr(Ⅲ) concentration of 980μg/L.
     (4) pH values influence heavy metal biosorption by activated sludge most. When pH<4, the out-lowered pH leads to the death of activated sludge; when pH>7, biosorpation capacity is affected by reducing the adsorption points and weakening the adsorption capability of points.In the experiment, pH=6 is optimal for heavy metal biosorption of activated sludge with the biosorption capacity and biosorption efficiency of 12.82μg/g and 72.3 %, respectively.
     (5) Heavy metals compete for binding sites of activated sludge in case that several metals are contained. This competition leads to the inhibition of heavy metal biosorption, and the biosorption capacity of target ions will be lowered. The Cr(Ⅲ) removal rates are lowered to 44% and 63%, compare to the condition of only existing Cr(Ⅲ),which are fell by 41% and 22%, when Pb (Ⅱ) and Cd (Ⅱ) are added to the system, respectively. The existence of Pb (Ⅱ) and Cd (Ⅱ) affects the biosorption of activated sludge towards Cr(Ⅲ).
     (6) Simulate the heavy metal biosorption of activated sludge using Langmuir and Freundlich adsorption models. It's obtained that Cd(Ⅱ) and Pb(Ⅱ) biosorptions fit Langmuir adsorption model and Cr(Ⅲ) biosorption fits Freundlich adsorption model. The metal-sludge affinity order is obtained as follow: Pb(Ⅱ)>Cd(Ⅱ)>Cr(Ⅱ).
     (7) An SBR activated sludge process is practical for heavy metal treatment in full-scale desulfurization wastewater to the discharge standard abroad. In this study, the main heavy metals in the desulfurization wastewater such as Cd~(2+), Cr~(3+), Hg~(2+), Pb~(2+) and Zn~(2+) are treated to 21μg /L, 17μg /L, 8μg /L, 13μg /L and 215μg /L, resbectively, which are all lower than the discharge standard abroad.
     (8) Through the research on microorganism of activated sludge, founding that the Epistylis Vrceolata played a major role in the absorption of heavy metal by activated sludge. At the same time there are a lot of Protozoans and Epigenetic animals exist in the activated sludge, it will reduce the amount of sludge theoretically and able to achieve the objective of reducing.
引文
[1] 陈涛,雄先哲.污泥的农林处置与利用[J].环境保护科学,2000,26(99):32-34
    
    [2] 罗明典.生物治理环境污染物的研究进展[J].环境保护,1998(4):17-18
    
    [3] 吴乾菁等.微生物治理电镀废水的研究[J].环境科学,1997,18(5):47-50
    
    [4] 卞华松,张仲燕,刘芝玲.有机污泥改制含炭吸附剂工艺及应用[J].环境科学, 1999,20(6):56-59
    
    [5] Chiang P.C., You J.H.. Use of sewage sludge for manufacturing adsorbents[J]. Canadian journalof chemical engineering, 1987,65(6):922-927
    
    [6] Xiaoge Chen, S.Jeyaseelan. Study of sewage sludge pyrolysis mechanism and Mathematical modeling[J]. Journal of environmental engineering, 2001,127(7): 585-593
    
    [7] 张德见,魏先勋,曾光明等.化学活化法制取污泥衍生吸附剂的实验研究[J].安全与环境 学报,2003,3(5):44-46
    
    [8] G.Q.Lu, J.C.F.Low, C.Y.Liu, et al. Surface area development of sewage sludge Duringpyrolysis[J].Fuel, 1995,74(3):344-348 (无全文)
    
    [9] Andrey Bagreev, Teresa J. Bandosz, David C. Locke. Pore structure and surface Chemistry ofadsorbents obtained by pyrolysis of sewage sludge-derived fertilizer[J]. Carbon, 2001,39(13):1971-1979
    
    [10] S.Bashkova,A.Begreev,T. J .Bandosz. Adsorption of Methyl Mercaptan on ActivatedCarbons[J]. Environ. Sci. Technol., 2002, 36(12): 2777-2782
    
    [11] Bagreev A., Bashkova S., Locke D. C., et al. Sewage Sludge Derived Materials As EfficientAdsorbents for Removal of HydrogenSulfide[J]. Environ. Sci. Technol., 2001, 35(7):1537-1543
    
    [12] S. Comte, G. Guibaud, M. Baudu. Biosorption properties of extracellular polymetric substances(EPS) towards Cd, Cu and Pb for different pHvalues[J]. Journal of Hazardous Materials,2008(151): 185-193
    
    [13] Liu Y, Lam M.C., Fang H. H.. Adsorption of heavy metals by EPS of activated sludge[J]. WaterSci. Technol., 2001,43(6): 59-66
    
    [14]Hui Xu, Yu Liu, Joo- Hwa Tay. Effect of pH on nickel biosorption by aerobic granular sludge[J]. Bioresource Technology, 2006, 97(3): 359-363
    
    [15] 吴涓,李清彪.黄孢原毛平革菌吸附铅离子机理的研究[J].环境科学学报,2001,21(3): 291-295
    
    [16] 刘恢,柴立元等.活性污泥处理重金属废水的研究进展[J].工业用水与废水,2004,35(4):9-12
    
    [17] 沈祥信,李小明等.活性污泥吸附重金属离子的研究进展[J].工业用水与废 水,2006,37(4):7-10
    
    [18] 蒋成爱,吴启堂,吴顺辉.活性污泥吸附重金属的研究进展[J].土壤与环 境,2001,10(4):331-334
    
    [19] B. W. Atlinson, F. Bux, H. C. Kasan. Bioremediation of metal-contaminated industrial effluentsusing waste sludges[J]. Wat. Sci. Tech., 1996, 34( 9): 9-15
    
    [20] Alaa H. Hawari, Catherine N. Mulligan. Biosorption of lead (Ⅱ), cadmium (Ⅱ), copper (Ⅱ) andnickel (Ⅱ) by anaerobic granular biomass [J]. Bioresource Technology, 2006, 97(4): 692-700
    
    [21] Yu Liu, Shu- Fang Yang, Hui Xu, et al.. Biosorption kinetics of cadmium(Ⅱ) on aerobic granularsludge [J]. Process Biochemistry, 2003, 38(7): 997-1001
    
    [22] A. Lopez, N. Lazaro, J. M. Priego, et al.. Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39[J]. Ind. Microbiol. Biot., 24(2000): 146-151
    
    [23] 董新姣,俞林伟,朱聪.真菌对铜离子生物吸附的研究[J].城市环境与城市生态,2003, 16(2):13-15
    
    [24] Renmin Gong, Yi Ding, Huijun Liu, et al. Lead biosorption and desorption by intact andpretreated spirulina maxima biomass[J]. Chemosphere, 2005, 58(1): 125-130
    
    [25] Hsuan- Liang Liu, Bor- Yann Chen, Yann-Wen Lan, et al. Biosorption of Zn (Ⅱ) and Cu (Ⅱ) bythe indigenous Thiobacillus thiooxidans[J]. Chemical Engineering Journal, 2004, 97(2-3):195-201
    
    [26] G(u|¨)lay Bayramoglu, Sema Bektas, M. Yakup Arica. Biosorption of heavy metal ions on immobilized white - rot fungus Trametes versicolor [J]. Journal of Hazardous Materials, 2003, 101(3):285-300
    
    [27] M. Yakup Arica, G(u|¨)lay Bayramglu. Cr(Ⅵ) biosorption from aqueous solutions using free andimmobilized biomass of Lentinus sajor- caju: preparation and kinetic characterization [J].Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005,253(1-3): 203-211
    
    [28] 王亚雄,郭瑾珑,刘瑞霞.微生物吸附剂对重金属的吸附特性[J].环境科学,2001,22(6): 72-75
    
    [29] I V Zykova, E A Alekseeva, V P Panov. On the Possibility of Recovery of Heavy Metals fromExcess Activated Sludge at 6- 37℃[J] . Russian Journal of Applied Chemistry, 2001, 74(11):1965-1967
    
    [30] A H MVeeken, H V MHamelers. Removal of heavy metal from sewage sludge by extractionwith organic acid [J]. Wat Sci Tech, 1999,40(1): 129-136
    
    [31] Tian-Wei Tan, Bo Hu, Haijia Su. Adsorption of Ni~(2+) on amine-modified mycelium ofPenicillium chrysogenum [J]. Enzyme and Microbial Technology, 2004, 35(6-7): 508-513
    
    [32] Ng. Wun-Jem. Sequencing Batch Reactor (SBR) Treatment of Wastewater[C]. EnvironmentalSanitation Information Center, Bangkok, 1989: 1-5
    
    [33] R.L.Irvine.An Organic Loading Study of Full-scale Sequencing Batch Reactor. Journal waterpollution control federation, 1985, 57(8): 847-853
    
    [34] 刘永淞.SBR法工艺特性研究[J].中国给水排水,1990,6(6):5-11
    
    [35] 彭永臻.SBR法的五大优点[J].中国给水排水,1993,9(2):29-31
    
    [36] L. Ketchtun. First Cost Analysis of Sequencing Batch Biological Reactors. Journal waterpollution control federation, 1979, 51(2): 288-297
    
    [37] R.L.Irvine et al. Controlled Unsteady State Processes and Technologies -AnOverview.Wat.Sci .Tech.1997,35 (1):1-10
    
    [38] 徐期勇,李后强,环境生物技术的现状与发展趋势[J].上海环境科学,1999,18(7)
    
    [39] Hui N.,et al.,Biotechnol.and Bioeng.,1993,42:785-787
    
    [40] 田建民.生物吸附法在含重金属废水处理中的应用[J].太原理工大学学报,2000,31(1): 74-77
    
    [41] 蔡春光.胞外多聚物对污泥絮凝性能、颗粒化及重金属吸附的基础研究[D].上海交通大 学博士学位论文,2004
    
    [42] Mohammadi, T., Moheb, A., Sadrzadeh, M., Razmi, A., et al. Modeling of metal ion removal from wastewater by electrodialysis[J]. Separation and Purification Technology, 41(1): 73-82.
    
    [43] IAehr S K. Effec of pH on metals precipitation in denitrifying biofilms. Water ScienceTechnology, 1995, 32(8): 179-183
    
    [44] Liu Y, Lam M C, Fang H H P. Adsorption of heavy metals by EPS of activated sludge[J].Water Sci Technol,2001,43(6):59-66.与第13篇文献一样。
    
    [45] Liu Hong, Fang H H P. Extraction of extracelular polymeric substances(EPS)of sludge[J]. J.Biotechnol., 2002, 95(3): 249-256
    
    [46] Horn H, Neu T R, wu ow M. Modelling the structure and function of extracelular polymericsubstances in biofilms with new numerical techniques[J]. Water Sci Technol, 2001, 43(6):121-127.
    
    [47] Jang A. Adsorption of heavy metals bY EPS of activatedsludge[J]. Water Sci Technol, 2001,43(6): 41-48.
    
    [48] 郑蕾等.pH值对活性污泥胞外聚合物分子结构和表面特征影响研究[J].环境科学,2007, 28(7):1507-1511
    
    [49] 刘琳.两段式膜生物反应器在污泥减量中的应用研究[D].武汉大学,2005
    
    [50] 魏源送, 樊耀波.污泥减量技术的研究及其应用[J].中国给水排水,2001,17(7):23-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700