水解酸化-SBR工艺处理果汁废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浓缩果汁生产废水属高浓度有机废水,具有固体杂质多,有机物含量高,水质变化大等特点,如不处理就直接排放,将会对天然水体造成严重污染。目前,我国一般采用物化+生化处理的方法对果汁废水进行处理。由于果汁产业是近年新兴工业,果汁废水处理的研究相对于啤酒废水、酒精废水、淀粉废水等其它高浓度有机废水处理的研究来说有些滞后,相关的研究报道和工程实例也较少,已有工艺大多仿照其它高浓度有机废水的处理工艺设计,由于没有考虑到果汁废水的自身特点,很多都在启动和运转过程中产生了一系列问题,因此,有必要对果汁废水处理的工艺及工艺运行参数进行试验研究,提出可行的工艺和最佳的控制参数。
     本研究根据果汁废水COD值高、SS值高的特点,采用水解酸化—SBR这一组合工艺对果汁废水处理进行试验研究,通过分析废水COD、BOD5、SS等指标的去除效果和变化规律,探索了该组合工艺在启动和运行过程中的最佳控制参数,研究结果如下:
     1.采用低负荷接种挂膜法对水解酸化池进行启动,经过22天的调试运行,水解酸化反应器挂膜成功,处理效果趋于稳定,COD去除率保持在42.2%~47.3%之间,SS去除率保持在76.2%~82.4%之间。短时间完成启动过程的现象表明果汁废水具有良好的水解酸化处理活性。
     2.通过单因素试验得到水解酸化反应器处理果汁废水的适宜参数控制条件为:HRT为8h,搅拌间隔2h。在此条件下,当进水COD浓度为3838~4310mg/L时,水解酸化工艺对果汁废水COD、BOD5和SS的去除率分别稳定在45%、28%和78%左右。表明以水解酸化工艺作为前处理单元,可高效去除果汁废水SS,使BOD5/COD值由处理前的0.45~0.53提高到处理后的0.60~0.66,可为后续SBR工艺的稳定运行创造有利条件,提高组合工艺的整体效果和稳定性。
     3.采用好氧活性污泥工艺处理较高浓度的有机废水时,活性污泥的培养驯化是处理系统取得成功的一个必要手段,试验中通过24天的连续培养驯化过程,得到了活性较高的污泥,外观呈黄褐色,絮状,SV30在20%~35%之间,SVI在70~100之间,可承受较大范围内的COD负荷。
     4.采用SBR工艺进行后处理时,通过单因素试验确定最其适的操作条件为:曝气时间7h,曝气量0.1m3/h,沉淀时间1h以及MLSS为3500~4000 mg/L,在此条件下SBR对水解酸化预处理后的果汁废水COD、BOD5及SS的去除率分别达到94.3%~97.1%、96.4%~98.1%和67.1%~73.2%,连续运行试验表明其稳定性较好。
     5.在分别得到各单元工艺的最佳控制条件后,进行了水解酸化—SBR组合工艺处理果汁废水的连续运行试验,并对其抗冲击负荷能力进行了分析研究。结果表明:组合工艺处理效果稳定、抗冲击负荷能力较强,当进水COD位4000mg/L左右时,出水COD、BOD5、SS去除率分别达到了96.7%~97.8%、97.7%~98.7%和92.4%~94.2%,最终出水可满足GB8978-1996二级排放标准。
     综上所述:水解酸化-SBR组合工艺对果汁废水具有较高的处理效率,同时,该组合工艺具有占地面积小、设备利用率高、过程控制灵活、耐冲击能力强等优点,对于实际推广有着十分重要的意义。
Syrup wastewater belongs to a category of high concentrated organic wastewater. Having the unique charateristics such as high concentrated organic pollutant and solid impurity, changeable water quality and so on. If it is not properly treated, it could cause serious pollution to the environment. At present, combined technology of physic-chemical and biochemical treatment is usually adopted to sovle the problem. Since that syrup industry quickly developped only these years, research on syrup wastewater is fewer compare to other high concentrated organci waserwater as brewery wastewater, alcohol wastewater and starch wastewater. The existing projects are mainly designed following other high concentrated organic wasterwater treatment technology, without cnsidering the charaistics of syrup wastewater, many problems occur. So it is essential to make some research on technics of syrup wastewater treatment and quest for the suitable controlling parameters.
     In this research, an experimental study on syrup wastewater with hydrolytic acidification-SBR technology has been carried out, through analyzing the COD, BOD5 and SS removal effect of the combined technology, the optimal controlling parameters during the start-up and circulate of the combined technology is explored. The results showe that:
     1. When taking a methed of low load inoculated biofilm formation to startup the hydrolytic acidification reactor, 22 days of operation showed that the biofim growed well and that the removal rate of COD was between 42.2%~47.3%, the removal rate of SS was between 76.2%~82.4%. It took few days to complete the start-up process showed that syrup wastewater is easy to hydrolytic and acidificate.
     2. Results of the single factor experiment showed that when taking hydrolytic acidification reactor to treat syrup wastewater, the optimum HRT was 8h and the optimum agitation interval time is 2h. Under this condition, when the COD of influent was 3838~4310 mg/L, COD, BOD5 and SS removal rate of the wastewater stabilized at about 45%, 28% and 78%. It was demonstrated that the SS was removed mostly through the hydrolytic acidification process, BOD5/COD increased from 0.45~0.53 to 0.60~0.66, which can create a suitable condition for the subsequent SBR process and enhance the efficiency of the combined technology.
     3. The activated sludge domestication process was an essential step when using activated sludge technology to treat with higher concentrated organic wastewater. In this resrarch, some high efficiency activated sludge which could endure higher extension of COD loading was obtained through 24 days’domestication process, it was floccule and filemot, its SV30 was between 20%~35% and its SVI was between 70~100.
     4. Taking SBR process as the subsequent treatment after hydrolytic acidification process, it was proved that the optimal MLSS concentration of SBR was about 3500~4000mg/L, and the optimal aeration rate was 0.1m3/h, the times for aeration and settlement were 7h and 1h, respectively. Under this condition, COD, BOD5 and SS removal rate of the influent were between 94.3%~97.1%, 96.4%~98.1% and 67.1%~73.2%, the continuous operation experiment proved that the effect of SBR process was also stable.
     5. Having got the optimal controlling parameters of each unit technics, continuous operation experiment about syrup wastewater treatment with hydrolytic acidification-SBR technology was taken, and the anti-impact load ability was analyzed during this process. The results showed that the combined technology had stable removal effect and strong anti-impact. After treated by the combined technology, the removal rate of COD, BOD5 and SS were about 96.7%~97.8%, 97.7%~98.7% and 92.4%~94.2%, and the last effluent could reach the second standard of G8978-1996.
     In conclusion, when hydrolytic acidification technology is used in syrup wastewater treatment, the removal efficiency of organic contaminant is high, and the combined technology also has the unique charateristics of small covering size, high efficiency of equipment, flexible modulated operation, strong anti-impact and so on, so it can be popularized in actual application of ayrup wastewater or some other high concentrated organic wastewater.
引文
[1] 陈景光. 高浓度果汁废水处理工艺优化研究[D]. 中国海洋大学硕士学位论文,2003.
    [2] 莫钟川. 高浓度苹果汁生产废水处理工艺研究[D]. 华南热带农业大学硕士学位论文,2006.
    [3] 赵延杰. 果汁行业将成为饮料行业投资热电[J]. 特别调查,2003,4:14~17.
    [4] 仇农学,肖旭霖,邓红. 陕西浓缩苹果汁行业可持续发展的战略思考[J]. 农业工程学报,2000,16(1):122~124.
    [5] 王绍文,罗志疼,钱雷编著. 高浓度有机废水处理技术与工程实例[M]. 北京:冶金工业出版社,2003.
    [6] 李键. 高浓度有机废水治理新技术研究[J]. 安徽化工,2007,33(3):56~58.
    [7] 阮文权著. 废水生物处理工程设计实例详解[M]. 北京:化学工业出版社,2006.
    [8] 徐庆贤,钱午巧,陈彪. UASB 处理污水现状及效果分析[J]. 能源与环境,2001, 2:34~38.
    [9] A.P.Annachatre, A.Amornkaew. Upflow Anaerobic Sludge Blanker Treatment of Strch Wastewater Containing Cyanide[J]. Water Environment Research, 2001, 75(5): 622~632.
    [10] 张忠波,陈吕军,胡纪萃. IC 反应器技术的发展[J].环境污染与防治,2000, 22(3):39~41.
    [11] L.H.A.Habets etc. Anaerobic treatment of inuline effluent in and internal circulation reactor[J]. Water Science and Technology, 1997, 35(10): 189~197.
    [12] 周垒,陈朱蕾,廖波. 厌氧折流板反应器性能研究进展[J].工业水处理,2005, 25(6):1~5.
    [13] 王松. 水解酸化—生物接触氧化工艺处理印染废水的试验研究[D]. 武汉理工大学硕士学位论文,2005.
    [14] 区岳州,胡勇友编著. 氧化沟污水处理技术及工程实例[M]. 北京:化学工业出版社,2005.
    [15] 李辐枝,刘飞. 水处理技术的研究[J]. 水利科技与经济,2007,13(9):653~656.
    [16] 孙秀波,尤晓慧,郑金伟. 高浓度有机废水湿式氧化处理技术综述[J]. 低温建筑技术,2004,100(4):69~71.
    [17] 孙玉香,荆建刚,刘京伟. 高浓度有机废水深度氧化治理技术进展[J]. 城市环境与城市生态,2004,17(6):27~29.
    [18] U.A.Hauan, K.H.Rosenwinkle. Two Examples of Anaerobic Pretreatment of wastewater in the Beverage Industry[J]. Water Science and Technology, 1997, 22(2): 62~65.
    [19] 丁亚兰. 国内外污水处理工程设计实例[M]. 北京,化学工业出版社,2000.
    [20] Sun G. Gray K R, Biddlestone A J. Treatment of agricultural wastewater in a combined tidal flow-down reed bed system[J]. Water Science and Technology. 1999, 40(3): 139~146.
    [21] 王晓,高伟,王强. 水解—接触氧化法处理果汁生产废水工程介绍[J]. 山东环境,2001,104:32~33.
    [22] 张安龙,李颖,崔炜. 水解—接触氧化—砂滤工艺处理高浓度果汁加工废水[J]. 工业水处理,2006,26(3):91~93.
    [23] 魏永,王书敏,由圆义等. CAST 工艺在处理果汁加工废水中的应用[J]. 工业水处理,2005,25(9):68~70.
    [24] 王立军,于德利,庞维珍等. 浓缩苹果汁高浓度有机废水处理工程的改造[J]. 中国给水排水,2006,22(24):35~37.
    [25] 程凯英,黄石峰,邓耀杰. 水解酸化反应器在工程应用中的研究与展望[J]. 工业水处理,2005,25(3):39~42
    [26] 沈耀良,王宝贞. 水解酸化工艺及其应用研究[J]. 哈尔滨建筑大学学报,1999, 32(6):35~38.
    [27] Hong Zhu, Ji-hua Chen. Study of hydrolysis and acidification process to minimie excess biomass production[J]. Journal of Hazardous Materials 2005,B127: 221~227.
    [28] L.Gueerrero. Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein[J]. Water Researcher, 1999, 33(15): 3281~3289.
    [29] 孙美琴,彭超英. 水解酸化—好氧生物法处理工业废水[J]. 工业水处理,2003,23(5):16~18.
    [30] 朱文亭,颜玲. 污水的水解酸化—好氧生物处理工艺[J]. 城市环境与城市生态,2000,13(5):43~46.
    [31] 郑圣坤. 马铃薯淀粉废水处理工艺研究[D]. 华南热带农业大学硕士学位论文,2007.
    [32] 魏新吉. 厌氧折流板反应器(ABR)处理高浓度精细化工废水研究[D]. 重庆大学硕士学位论文,2007.
    [33] 白利云. 水解酸化在高浓度制药废水处理中的应用性研究[D]. 广州大学硕士学位论文,2007.
    [34] Richard R Dague. Anaerobic Sequencing Batch Reactors Treatment of Dilute Wastewater at Psychrophilic treatment[J]. Water Environ Rea, 1998, 70:155~169.
    [35] Irvine, R.L. Sequencing Batch Biological Reactors[J]. Water Science and Technology, 1997, 35(1): 1~10.
    [36] Y.F.Tsang, F.L.Hua, H.Chua, Otimization of biological treatment of paper mill effluent in a sequencing batch reactor[J]. Biochemical Engineering Journal, 2007,34: 193~199.
    [37] M.F.Hamoda, I.M. Al-Attar. Effects of High Sodiun Chirine Concentions on Activated Sludge Treatment[J]. Water Science and Technology, 1995, 31(9): 61~72.
    [38] Yilmazer, Gulum. Two-stage anaerobic treatment of cheese whey[J]. Water Science and Technology, 1999, 40(1): 289~295.
    [39] 金颖. 新型 SBR 反应器的研究与应用[D]. 大连交通大学硕士学位论文,2005.
    [40] 蒋进元,刘继霞,潘一廷等. SBR工艺处理糠醛废水研究[J]. 环境污染与防治, 2006, 28(12): 938~940
    [41] 刘文胜,杨云龙. 浅议 SBR 法(序批式活性污泥法)[J]. 科技情报与开发经济,2006, 16(10):159~160.
    [42] 刘晓阳,吕伟娅. SBR 法及其在废水处理中的应用及发展[J]. 南京建筑工程学院学报,2001, 2 (57):51~56.
    [43] 王凯军,贾立敏著. 城市污水生物处理新技术开发与应用(水解酸化-好氧生物处理工艺)[M]. 北京:化学工业出版社,2001.
    [44] 于颂明. 水解酸化—间歇式活性污泥法处理肉类加工废水的试验研究[D]. 哈尔滨工业大学硕士学位论文,2002.
    [45] 杨文澜,马皆文,蒋家超. 处理汽水类饮料废水的水解酸化+SBR 工艺[J]. 水资源保护,2006, 22(1):81~84.
    [46] 刁俊明. 水解酸化—好氧法处理啤酒废水的原理与实践[D]. 广东工业大学硕士学位论文,2005.
    [47] 张子间. 水解酸化—SBR 组合工艺处理焦化废水[J]. 山东理工大学学报(自然科学版),2004,18(6):68~70.
    [48] 水解酸化—SBR 工艺处理印染废水的研究[J]. 中国环境科学,2004,24(4):489~491.
    [49] 陶如钧. 物化—水解酸化—CAST 工艺处理制革废水[J]. 工业给排水,2003,29(9):31~32.
    [50] 蒋展鹏主编. 环境工程学(第二版)[M]. 北京:高等教育出版社,2005.
    [51] 国家环保局《水和废水监测分析方法》编委会. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002.
    [52] 贺延龄著. 废水的厌氧生物处理[M]. 北京:中国轻工业出版社,1998.
    [53] 奚旦立,孙裕生,刘秀英合编. 环境监测(第三版)[M]. 高等教育出版社,北京:2004.
    [54] 田凯勋. 有机废水水解酸化预处理研究[D]. 湘潭大学硕士学位论文,2003.
    [55] 解岩. 水解酸化—膜生物反应器处理青霉素废水试验研究[D]. 南京理工大学硕士学位论文,2007.
    [56] 赵大传,倪寿清,崔清洁. 生活污水水解酸化的研究[J]. 山东建筑工程学院学报,2006,21(2):154~158.
    [57] 邵丕红,高南飞,崔志新. 废水高效水解酸化试验研究[J]. 长春工程学院学报(自然科学版),2004,5(1):15~17.
    [58] 陈扬,同帜,程刚等. 印染废水处理工艺的研究[J]. 西北纺织工学院学报,1999,13(2):52~54
    [59] 白利云. 水解酸化在高浓度制药废水处理中的应用性研究[D]. 广州大学硕士学位论文,2007.
    [60] 温江,杨秀强,董梅. 水解酸化预处理工艺的理论与实践[J]. 山东环境,1999,91(3):8~10.
    [61] Su Jiang, Yinguang Chen, Qi Zhou. Effect of sodium dodecyl sulfate on waste activate sludge hydrolysis and acidification[J]. Chemical Engineering Journal, 2007,132: 311~317.
    [62] 严进,水解酸化—SBR工艺处理味精废水[J]. 环境工程,2006,24(6):29~31
    [63] H.Bouallagui, M. Torrijos, J.J.Godon. Two-phaes anaerobic digestion of fruit and vegetable wastes: bioreactors performance[J]. Biochemical Engineering Journal, 2004,21: 193~197.
    [64] Su Jiang, Yinguang Chen, Qi Zhou. Effect of sodium dodecyl sulfate on waste activate sludge hydrolysis and acidification[J]. Chemical Engineering Journal, 2007,132: 311~317.
    [65] 顾夏声著. 废水生物处理数学模型[M]. 北京:清华大学出版社,1993.
    [66] 刘志强,张建,刘超翔. 水解(酸化)处理水产品废水的生物降解动力学研究[J]. 重庆环境科学,2003, 25(8):12~15.
    [67] 陈启斌,杨云龙. 水解酸化提高焦化废水可生化性的动力学分析[J]. 科技情报开发与经济,2004,14(5):164~165.
    [68] 蒋进元,刘继霞,潘一廷等. SBR工艺处理糠醛废水研究[J]. 环境污染与防治, 2006, 28(12): 938~940
    [69] M.strous, J.J.Heijnen, J.G.Kuenen M.S.M.jetten. The Sequencing Batch reactor as a powerful tool for study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl Microbiol Biotechnol, 1998, 50: 589~596.
    [70] 贾卫华. 水解酸化—序列间歇式活性污泥法处理碱法造纸钟段废水的研究[D]. 陕西科技大学硕士学位论文,2004.
    [71] CR. Woolrad, R.L.Irvine. Treatment of Hypersaline Wastewater in the Sequencing Batch Reactor[J]. Water Researcher, 1995, 29(4): 1159~1168.
    [72] 喻学敏. SBR 法处理饲料废水的工艺特性研究[D]. 东南大学硕士学位论文,2000.
    [73] 吴方同,苏秋霞,王云波等. SBR 工艺处理垃圾渗滤液的试验研究[J]. 长沙电力学院学报(自然科学版),2006,21(4):120~125.
    [74] Ng.W.J. Effect of acidogenic stage on anaerobic toxic organic removal[J]. Journal of EnvironmentalEngineering, 1999, 125(6): 495~500.
    [75] Beccari.M. Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents[J]. Water Science and Technology, 1998, 38(4): 53~60.
    [76] 毛小方. UASB—SBR 工艺处理黄姜皂素生产废水试验研究[D]. 长安大学硕士学位论文,2006.
    [77] 金颖. 新型 SBR 反应器的研究与应用[D]. 大连交通大学硕士学位论文,2005.
    [78] 水解酸化—SBR 法在化工废水处理中的应用[J]. 污染防治技术,2007,20(4):70~72.
    [79] 李本玉. SBR 法处理啤酒废水的动力学分析[J]. 南京化工大学学报,2000, 22(3):23~25.
    [80] 王敏尔,董志勇,李探微等. SBR 法基质降解动力学过程研究[J]. 浙江工业大学学报,2004, 32(5):551~554.
    [81] 姚曙光,杨玉杰,李贵森等. SBR 数学模型在污水处理中的研究进展[J]. 化学工程与设备,2007,2:88~91.
    [82] Barker, P.S. and Dold, P.L.. Denitrification behavior in biological excess phosphorus removal activated sludge system[J]. Water Researcher, 1996, 30(4): 769~780.
    [83] N. Artan, P Wilderer, D. Orhon. The mechanism and design of sequencing batch reactor[J]. Water Science and Technology, 1997, 35(1): 95~104.
    [87] Nakbla G. F.. Modeling of sequencing batch reactors treating inhibitory and noninhibitory wastewaters[J]. Water Environment Research, 1997, 69(1): 6~13.
    [85] 张玉环,张俊贞,李哲. SBR 法基质降解数学模型的建立和参数估计[J]. 天津理工学院学报,2004,20(4):55~57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700