苯胺类化合物的电子转移性质及抗爆机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自发展非铅抗爆剂以来,人们一直在积极寻找高效清洁的抗爆剂,明确抗爆机理对抗爆剂的研制开发显然有着重要的实践意义。前人对抗爆机理的研究多集中于金属抗爆剂,由于金属抗爆剂的使用业已受到限制,非金属抗爆剂的使用将会逐渐增多,非金属抗爆剂抗爆机理的研究在抗爆剂的发展中将起重要作用。但由于非金属抗爆剂电子转移机理复杂或在一般条件下不发生电子转移反应,从而使其抗爆机理的研究进展缓慢。本文用电化学技术研究具有抗爆性的非金属化合物的电子转移性质及过氧化物的影响,旨在探讨研究变价抗爆剂的抗爆机理的电化学方法。
     许多苯胺类化合物,如苯胺、N-甲基苯胺、二苯胺是性能良好的非金属抗爆制,也是抗爆剂常用的调合组分,且具有电子转移性质,适于电化学研究。本文采用循环伏安法、现场紫外-可见光谱法、交流阻抗法,以抗爆剂中的常用辅助组分1,2-二氯乙烷作溶剂,研究了苯胺类化合物的电子转移性质。研究结果表明:苯胺类化合物的电化学氧化反应属自由基反应,在低浓度、非质子溶剂的条件下,苯胺类化合物正离子自由基的偶合方式主要为“尾-尾”式,其中N-甲基苯胺和N,N-二甲基苯胺的偶合方式呈现多样化。
     抗爆剂的抗爆震作用是抑制或消除汽油在发动机内燃烧时产生的过氧化物。本文在分析苯胺类化合物电化学性质的基础上,通过研究苯胺类化合物与过氧化氢的作用,为芳香胺抗爆机理的研究提供了重要依据,并由此探讨抗爆剂的抗爆性与电化学性质的关系。研究结果表明:苯胺类化合物均能与过氧化氢发生作用,其中对甲苯胺和N,N-二甲基苯胺与过氧化氢的作用不明显,而N-甲基苯胺与过氧化氢反应较显著。而实际上采用胺类化合物作抗爆剂时,一般使用N-甲基苯胺、苯胺、邻甲苯胺及间甲苯胺,尚未见到使用对甲苯胺和N,N-二甲基苯胺的报道。这一实际应用情况与各苯胺类化合物所表现出的电化学性质是相符的,表明利用电化学性质探讨抗爆机理是可行的,也对抗爆剂的寻求具有指导意义。同时本文工作对苯胺类化合物的电聚合性能的研究与发展具有促进作用。
More efficient and non-polluting antiknock have been seeking since developing nonleaded gasoline. It is obviously that clarifying the mechanisms of antiknock has important effects on developing new antiknock. So far, the mechanism of the metal antiknock has been paid more attention. However, the studies of the mechanisms of non-metal antiknock will play an important part in exploring new antiknock in the future, with non-metal antiknock being employed increasingly and metal antiknock restricted. But the study of the mechanisms of non-metal antiknock has developed slowly due to the complex of the electron-transfer mechanisms or no electron-transfer properties under common condition. The electron-transfer properties of non-metal antiknock and the effects of peroxide have been investigated with electrochemical technique, aiming at exploying electrochemical method of studying the mechanism of antiknock which has variable quantivalency.
    Many aromatic amine, such as aniline and N-methylaniline and diphenylamine, whose antidetonating quality are excellent, are not only often employed as concocting ingredient of antiknock but also suitable to research with electrochemical methods. We investigated the electron-transfer properties of aromatic amine in 1,2-dichloroethane which is a common auxiliary ingredient of antiknock by cyclic voltammetry and situ UV spectra and ac impedance spectroscopy. The research results indicate that the electrochemical oxidation reactions of aromatic amine belong to the free radical reaction. Under the conditions of low concentration and non-protonic solvent, the cation free radical produce substituted benzidines by tail-tail couplings. However, the couplings of N-methylaniline and N,N-dimethylaniline appear diversifying.
    The role of antiknock is to eliminate peroxide produced by the combustion of gasoline in engine. We have presented some important evidences to the antiknocking mechanisms of aromatic amine through investigating the reactions
    
    
    of aromatic amine and peroxide on the premise of analyzing the electrochemical properties of aromatic amine. As a result, the relationship of antidetonating quality and electrochemical properties has been discussed. The research results indicate that p-toluidine and N,N-dimethylaniline has no significant counts. However, the reaction of N-methylaniline and peroxide is the most striking. As a matter of fact, N-methylaniline and aniline and toluidine is generally employed. We have not found any reports that o-toluidine and N,N-dimethylaniline can be used as antiknock. The electrochemical properties of aromatic amine are in line with its' antidetonating quality and actual application. The study results further indicate that it is feasible that studying the mechanisms of antiknock by making use of the electrochemical properties, which has guiding purpose in seeking new antiknock. Moreover, our work can promote the development of the electrochemical polymerization of aromatic amine.
引文
1 邓致礼.《车用汽油》.北京:烃加工出版社,1985:47~49
    2 陆克久.汽油发动机爆燃的危害及控制措施.汽车技术,1999,(3):31~32
    3 周正仁.几种提高汽油辛烷值的添加剂.化学工程师,1992,26(2):27-31
    4 Gursky J, Vesely V, Paycelt E. Detonnation characteristics of gasolines and antidetonating substances Ⅳ.cyclopentadienylmanganese-tricarbonyl in aromatic fuels. RopaUhlie, 1972, 14(10): 550~555
    5 Honlon J V, Hager W M, Cunninghem L J. Motor fuels of enhanced properties. Eur Pat Appl EP 466511, 1992
    6 Nesmeyanov AN, Zaitsev V A, Anisimov KN, Lerner M O, Kolobova N E, Poretskays A P, Magomedov G K. Anknock effectiveness of some organomanganese compounds. Margantsevye Antidetonatory.1971, 53-63(Russ).
    7 鲍德山.汽油抗爆剂.《发明专利申请公开说明书》CN 1222560,1999
    8 Chao T S, Owston Ernest H J. Iron-containing motor fuel compositions. US 4104036, 1978
    9 Hamm F J, Rackl F. Cyclopentadiene~iron~decarbonyl halides as fuel additives. Ger often 2627157, 1978
    10 Edmund L N. Antiknock compounds. US 3353938, 1967
    11 Braid M. Additives for improving the research octane number of liquid hydrocarbon fuels. US US 4536192, 1985
    12 Cullis C F, Herron D, Hirschler M.M. Organosilicon compounds as antiknock additives. Combust Flame. 1985, 59(2): 151-165
    13 王贺武,边耀璋.FE-1抗爆剂对汽油性能影响的研究.西安公路交通大学学报,1997,17(3):71~74
    14 Enver M, Maurice R B. Alkali metal oxides of hydroxy ethers as antiknock
    
    additives. US 3367789, 1968
    15 Eisentraut K J, Tischer R L, Sievers R E. Rare earth β~ketoenolates are good antiknock for gasoline. US 3794473, 1974
    16 Hartle R J. Chelates of cerium(Ⅳ) and gasoline containing said chelates. US 4036605, 1977
    17 袁晓东,刘治中.羧酸镧作为车用汽油抗爆剂的研究.炼油设计,2001,31(2):43~45
    18 Polyakov S.A. Use of trimethylearbinol in automobile gasoline. Neftepererab Neftekhim(Moscow), 1989, (9): 12~24.
    19 Lascaray Z, Jose M. Gasoline additives for automobile use as an octane improver. Span.ES 2017030, 1990
    20 张海涛,丁百全.MTBE的潜在危害及其替代产品的探讨.中氮肥,2000,(3):7-9
    21 EGaribaldi著.苏惠珍译.新配方汽油的关键组分.石油炼制译丛,1992,(12):38~43
    22 Dolhyj S R, Guttmann A T, Velenyli L J C Moter fuel containing an antiknock additives. Eur Pat Appl 9966, 1980
    23 Standard oil co(ohio.). Antiknock additives for gasoline. Jpn Kokai Tokkyo Koho 8050091, 1980
    24 Sugito K, Takeda S. Fuel composition for internal combustion engines. Fr Demande 2460992, 1981
    25 Jessup P J, Brass S G. Malonates. US US 4602919, 1986
    26 Voelz F, Schoen W F. Zinc alkyl phosphates~cresyl diphenyl phosphates: gasoline additive. US 3481717, 1969
    27 Iwasaki T. Diazo acetates as antiknock agents. Jpn Kokai 7351004, 1973
    28 Mackinven, R. A gasoline conposition. Brit 1444431, 1976
    29 Loder Wallace R J, Fay P S, Veatch F. Nonlead gasoline having improved antiknock quality. US 3976439, 1976
    30 Gottlieb K, Jungbluth H, Wessendorf R. Liquid organic fuels for otto or
    
    diesel engines. Ger often DE 4308053, 1994
    31 Endo M, Sugama N, Takayanagi Y. Octane improvers of alkyl alkoxyisobutyrates for gasoline. Jpn Kokai Tokkyo Koho JP 0867884, 1996
    32 Jessup P J, Brass S G, Croudace Michael C. Gasoline composition containing acid anhydrides as antiknock additives. US US 4647292, 1987
    33 Bums L D, Parlman R M. Motor fuel composition containing an ashless antiknock agents. US US 4444567, 1984
    34 Guibet J C. Gasoline and diesel fuel additives. Fr Demande FR 2544738, 1984
    35 Heiba El-Ahmadi I, Stournas S. Liquid hydrocarbon fuels containing alkali metal salts of diakylaminomethylcresols. US 3770397, 1973
    36 Shang Jer-Yu, Bisson B A, Wynkoop R. Composition comprising a methylphenol and an ether for gasoline fuels. US 3976437, 1976
    37 Bums L D. Motor fuel. US US 4378231, 1983
    38 Mulard P, Labruyere Y, Forestiere A, Bregent R. Ethoxylated dicarboxylic acids as octane enhancers gasoline detergent-dispersants for gasoline and diesel fuels. Eur Pat Appl EP 530094, 1993
    39 Yokoyama N. Gasoline with high octane number. Jpn Kokai Tokkyo JP05271673, 1993
    40 Gottlieb K, Neitsch H, WessendorfR. Glycerol, a sustainable raw material. Chem-Ing.-Tech., 1994, 86(1): 64~66
    41 Endo M, Sugama N, Takayanagi Y. Octane improvers of alkyl alkoxyisobutyrates for gasoline. Jpn Kokai Tokkyo Koho JP 0867884, 1996
    42 Brit.U P. GB 2106933, 1983
    43 Iida T. Aromatics amines as antiknock compounds. Sekiyu Gakkai Shi 1971, 14 (7): 512-517(Japan).
    44 Bums L D. Motor fuel. US US 4294587, 1981
    45 Bums L D. Motor fuel. US US 4321063, 1982
    46 Svaigl O, Matejka, Hable K C. Antiknock mixture for lead-free and
    
    low-lead gasoline. CS 275640, 1992
    47 Derosa T F, Studzinski W M, Russo J M, Kaufman B J, Habn R T. Non-metallic antiknock fuel additives. US US 5468264, 1995
    48 Derosa T F, Studzinski W M, Russo J M, Kaufman B J, Hahn R T. Nonmetallic antiknock fuel additive.US US 5536280, 1996
    49 禹茂章主编.《世界精细化工手册》(续编).北京:化学工业部科学技术情报研究所,1986:341~342
    50 Palkovics I, Zalka L, Peter I. Improved process for products of N, N'-dialkylphenylenediamines useful as octane boosters. Hang.Teljes HU 40400, 1986
    51 Licke G C. Gsoline containing N-sulfinyl amines as antiknock agents. US3554712, 1971
    52 Edmund L.N. US 3373005, 1968
    53 Vis J H., Leder W R. J. Motor fuel containing dimine additives. US 3685976, 1972
    54 Milnovic I, Humski K. Ues of MTBE as a gasoline additives. GorivaMaziva, 1977, 16(5~6): 11~24.
    55 Bums, L D. Motor fuel. US US 4295862, 1981
    56 Bums, L D. Motor fuel additives. US US 4295861, 1981
    57 Parlman R M, Lee R C, Bums L D. Motor fuel. US US 4321061, 1982
    58 Frankel M B, Flanagan J E. Liquid hydrocarbon fuel containing one or two alkyl polynitro additives. Fr Demande FR 2491946, 1982
    59 Hudson R L, Williams K C, Smith M B. Mixed nitrosoalkane or nitrroso aromatic dimmers. US 3647777, 1972
    60 Ruechardt C, Becnhaus H D, Duismann W. Branched azoalkanes. Geroften. 2304765, 1974
    61 Bums L D. Motor fuel. US US 4341529, 1982
    62 Chavet B, Destors D. Doped fuel for internal combustion engines. Fr2123583, 1972
    
    
    63 Steinmetz I. 2-Methyl-2-methoxypropane. Can 1010066, 1977
    64 Wehner K, Welkeer J, Boczek A, Kollecker R, Stroukal H. Improving the antiknock quality of moter fuels. Ger.(East) 132875, 978
    65 Charles J.Stem.Jr, Edward G B. Organoboron-phosphorus coordination compounds. US 3372200, 1968
    66 Chavet B, Destors D. Modified fuels for internal combustion engines. Fr Addn 2128957, 1972
    67 Heiba EI-Ahmadi I, Stournas S. Alkali metal salts of diaryl carbamates act as antiknock agents.(Na N, N-diphenyl carbamates) Ⅰ. US 3771979, 1973
    68 Bums, L D. Motor fuel. US US 4339245, 1982
    69 Stourans S, Heiba E A, Dessau R M. Antiknock liquid hydrocarbon fuel comprising organic nitroges-containing compounds. US 3706541, 1972
    70 Porrier M A. Aminofulvene derivatives as antiknock compounds. US US 5718325, 1992
    71 Papachristos M J, Evans J S. 3, 4-Dihydro-1, 3-(2H)benzoxazine derivatives as antiknock additives. Brit UK Pat Appl GB 2308849, 1997
    72 刘民富.一种提高汽油品质及辛烷值的生物酶媒添加剂.《发明专利申请公开说明书》CN 1160077,1999
    73 于天荣,王绍勤,秦平.TKC助剂提高催化裂化汽油辛烷值的工业应用.炼油设计,1997,27(3):56~57
    74 李贵勤,陈巨星,李鸿根.无铅高辛烷值车用汽油的调合.上海化工,1999,24(21):18~21
    75 Ahadiat N. Effects of the additives aminobenzene and methanol in gaeoline formuiation(Tanpa TEL)on physical-chemical characterisitics and octane numbeer. LembaranPubl.Lemigas, 1988, 22(2): 173~177
    76 Svaigl O M, Hable K C. Antiknock mixture for lead-free and low-lead gasoline. CS 275640, 1992
    77 Borisv Y A, Kllepov Y. Antiknock properties of gasoline components containing added methanol or formaldehyde. Fiz Goreniya Vzryva, 1986,
    
    22(2):130~133
    78 袁晓东.烃类爆震燃烧机理和抗爆剂作用机理的探讨.石油与天然气化工,2002,31(2):78~81
    79 欧文.格拉斯曼著(美).赵惠富,张宝成译.《燃烧学》.北京:科学出版社,1983:53~54
    80 Neta P, Huie R E., Mosseri S, Shastri L V., Mittal J P, Maruthamuthu P, Steenken S. Rate constants for Reduction of Substituted Methylperoxyl Radicals by scorbate Irons and N, N, N',N'-Tetramethyl-p-phenylenediamine. J. Phys.Chem.1989, 93: 4099-4104
    81 Gavrilov B.G.(USSR).Zh.prikl.Khim(Leningrad), 1968, 41 (5): 1155-1158(Russ)
    82 Salooja K C. Decomposition of peroxides by lead oxides: accompanying changes in the nature of lead oxides. Combust.Flame, 1968, 12(4): 302-306.
    83 Rao V K, Prasad C R. Knock suooression in gasoline engines. Combust Flame, 1972, 18(2): 167~172.
    84 Benson S W. Themechanism of inhibition of knock by lead additives, a chain debranching reaction. J.Phys.Chem., 1988, 92(6): 1531~1533.
    85 Erhard K L. Studies of knock and antiknock by kinetic spectroscopy. Proc RoySoc, 1956, 234A: 178~191
    86 Girelli A. Antiknock action and working mechanism of MMT in fuels of different composition.. Riv Combust, 1962, 16(9): 371~378.
    87 王一平,黄群武,张金利,郭翠梨,韩立君.甲基环戊二烯基三羰基锰的合成和应用进展.化学工业与工程,2001,18(3):172~175
    88 郁章玉,齐丽云,秦梅,郭道军,王慧云.甲苯-乙醇介质中二茂铁催化分解过氧化氢机理的探讨.应用化学,2004,21(1):41~44
    89 王绍勤,郭宇光,卜凡宏.新型汽油辛烷值改进剂研究进展.油气加工,1997,7(3):76~78
    90 格根托雅,叶秋梅,刘炎武.几种无铅汽油抗爆剂作用机理及工业应用.辽宁化工,1999,28(3):151~154
    
    
    91 Klingebiel W J.等著.沈宏孚译.何种含氧化合物能填补辛烷值差额.石油炼制译丛,1987,(10):19~24
    92 Zaharova E L, et al. Additives for improvement and Ecological Properties of Motor Gasolines. Chemistry and Technology of Fuels and Oils(Russian), 1994, (2): 35~38
    93 殷长龙,夏道宏.汽油辛烷值改进剂研究进展.石油大学学报(自然科学版),1998,22(6):129~133
    94 王金环.非铅汽油的抗爆剂及其配制.《发明专利申请公开说明书》CN1222562,1999
    95 韩秀山.燃料添加剂的发展现状及趋势.四川化工与腐蚀控制,2002,5(2):47~54
    96 Norwize George, KeliherPeterN.. Anal.Chem., 1981, 53 (8): 1238~1240
    97 阳小燕,陈果树,彭在姜.阻抑动力学光度法测定痕量苯胺类化合物分析化学,2000,28(2),215~218
    98 韦进宝,王玉宾,唐智勇,等.苯胺极谱测定新方法及其机理研究高等学校化学学报,1997,18(3):388~390
    99 王玉玲,蔡乃才,霍耀东,等.苯胺在SnO_2/Ti电极上的电化学氧化.物理化学学报,2001,17(7):609~613
    100 张耀庆.改善车用汽油抗爆性和排放性能用的添加剂.小型内燃机,1995,24(5):52~56
    101 Martijn M W, Rene A. J. J., Stable Triplet-State Di (Cation Radicals) of a Meta-Para Aniline Oligomer by "Acid Doping". J. Am. Chem. Soc., 1996, 118 (43): 10626-10628
    102 Hand R. L., Nelson R.F. Anodic Oxidation Pathways ofN-Alkylaniline. J. Am. Chem. Soc.1974, 96(3): 850~860.
    103 Bacon J., Adams R. N. Anodic oxidations of aromatic amines Ⅲ.Substituted anilines in aqueous media. J. Am. Chem. Soc., 1968, 90(24): 6596~6600
    104 David M.M., Admas R.N., Argersinger W.J. Investigation of the kinetics and mechanism of the anodic oxidations of aniline in aqueous sulfuric acid
    
    solution at a platinum electrode. J. Am. Chem. Soc 1962, 84:3618-3622
    105 Nelson R. F., Admas R. N. Anodic oxidation pathways of substituted triphenylamines. Ⅱ. Quantitative studies of benzidine formation.J. Am. Chem. Soc., 1967, 90(15): 3925-3930
    106 Stiwell D E, Su-Moon Park. Electrochemistry of conducive polymers Ⅱ. Electrochemical studies on growth properties of polyaniline. J. Electrochem. Soc., 1988, 135(9): 2254- 2262.
    107 Neubert G, Prater K B. The electro-oxidative coupling of N, N-dimethylaniline: A rotating ring-disk electrode study. J.Electrochem.Soc., 1974:745 - 749
    108 Cases F., Huerta F., Garce's P., Morallo'n E., Va'zquez J. L. Voltammetric and in situ FTIRS syudy of the electrochemical oxidation of aniline from aqueous solutions buffered at pH5[J]. J. Electroanal Chem., 2001, 501: 186~192.
    109 魏守强,陆嘉星,张五昌.苯胺电化学聚合机理的研究.合成化学,1994,2(3):258~262
    110 刘春艳,任新民.苯胺类化合物的电化学氧化及随后化学反应.应用化学,1990,7(3):19~23
    111 GraffG. Chemical Week, 1985, 136 (1~2): 20~26
    112 沈鹤柏,张五昌.电解聚合法合成导电高分子.大学化学,1990,5(3):31~34
    113 王扬勇,强军锋,井新利,姚胜.导电高分子聚苯胺及其应用.化工新型材料,2003,31(3):1~6
    114 钟平,黄承玲,王青豪.Pan/Pt修饰电极的电色效应及其在滴定分析中的应用.理化检验.化学分册,2002,38(12):595~599
    115 Mongoli, G. et al, J. Appl. Poly. Sci., 1981, 26:4207~4213
    116 丁克强,贾振斌,曹江林,等.聚苯胺/聚硫橡胶复合膜的电化学行为的研究河北师范大学学报(自然科学版),2001,25(1):66~69
    117 李红,马文石.聚苯胺对DMcT氧化还原反应的电催化作用.电源技术,
    
    2002,26(1):32-35
    118 郭景东,陈衍珍,田昭武.物理化学学报,1988,4(5),505~509
    119 孙东豪,丁进青,张展屏.聚邻甲苯胺合成及性能研究.塑料工业,1999,27(1):3~6
    120 盛恩宏,褚道葆.沈广霞.电化学法制备纳米TiO_2/聚郃甲苯胺复合膜精细化工,2001,18(4):212~214
    121 孙东豪,石玉军,穆绍林.掺杂阴离子对电化学合成的聚邻甲苯胺性质的影响.高等学校化学学报,1991,12(7):983~986
    122 孙东豪.聚(N-甲基)苯胺电极材料的电化学性质研究.电源技术,1999,23卷增刊:91~93
    123 徐成增,莫志深,王佛松.高分子材料科学与工程,1990,6(5):19~24
    124 Wantanable A, Mori K. Macromolecules, 1989, 22:3521~3529
    125 张占恩,张丽君.电化学聚合N,N-二甲基苯胺固定过氧化物酶生物传感器.苏州城建环保学院学报,1999,12(3):17~21
    126 曹大均,吴霞琴,胡自强,等.聚苯胺修饰电极研究.上海师范大学学报(自然科学版),1994,23(3):57~62
    127 Baldwin Ye R. J. Anal. Chem., 1988, 60:1979~1984
    128 马利,汤琪.导电高分子材料聚苯胺的研究进展.重庆大学学报,2002,25(2):124~127
    129 许一婷,戴李宗,何云游,等.聚苯胺衍生物膜修饰电极的电化学和催化性质.物理化学学报,2003,19(6):564~568
    130 David E. Stiwell, Su~Moon Park. J. Electrochem. Soc., 1988, 135(9): 2254~2262.
    131 Tetsuhiko Kobayashi. J. Electroanal. Chem., 1984, 161: 419~423
    132 宋发益,蔡铎昌.二苯胺的电化学聚合机理四川师范学院学报,1994,15(2):162~166
    133 Genies, E. M., Tsintavis, C. Redox mechanism and electrochemical behaviour of polyaniline deposits. J. Electroanal. Chem., 1985, 195: 109~128
    134 Britta Lindholm, Michael Sharp. J. Electroanal. Chem., 1987, 235: 169~177
    
    
    135 Glarum S. H., Marshall J. H.. J. Eectrochem. Soc., 1987, 134(1): 142~147
    136 廖川平,顾明元.苯胺自催化聚合反应的混合电位.物理化学学报,2001,17(10):904~907
    137 Wawzonek S., Mclntyre T. W. Electrolytic oxidation of aromatic amines. J. Eectrochem. Soc., 1967, 114 (10): 1025~1029
    138 张升水,仇卫华,刘庆国.Pan/PEO-LiClO_4界面交流阻抗研究.物理化学学报,1992,8(4):515~517
    139 贾振斌,龚克成.苯胺与聚硫橡胶复合膜阻抗表征河北师范大学学报(自然科学版),1999,23(1):69~73
    140 何创龙,高宇.电位扫描椭圆法对苯胺电聚合的研究.渝州大学学报(自然科学版),2002,19(2):60~63
    141 黄梅芳.可溶性导电聚苯胺的研究现状及其发展湘潭大学学报,2000,24(1)2:185~188
    142 杨耿,杨周生.超微盘电极上聚邻甲苯胺的电化学性质研究.安徽师大学报(自然科学版),1998,21(4):328~332
    143 杨周生,张祖训.超微盘电极上苯胺的循环扫描伏安法电化学聚合.分析化学,1996,24(5):559~562
    144 尹斌,张祖训,肖跃武.影响苯胺电化学计量聚合因素的探讨.分析化学,1995,23(12):1414~1417
    145 孙东豪,穆绍林.苯胺的电聚合研究.苏州丝稠工学院学报,1991,19(3):21~25
    146 郑海鹏,张瑞丰,吴芳,等.聚(N,N-二甲基苯胺)中稳定自由基的性质研究.功能高分子学报,1998,11(2):183~186
    147 穆绍林,阚锦晴,张爱光.苯胺在碱性溶液中的电化学聚合和聚合物的性质.电化学,1996,2(1):54~60
    148 孙再成,邝力.景遐斌,等.化学和电化学方法合成苯/胺封端苯胺四聚体.高等学校化学学报,2002,23(3):496~499
    149 颜流水,魏洽,王承宜,等.聚苯胺膜的电化学合成机理及掺杂行为.功能材料,2000,31(5):548~550
    
    
    150 董绍俊,车广礼,谢远武.《化学修饰电极》.北京.科学出版社,1995.338~350
    151 齐丽云.曲阜师范大学硕士学位论文,2002
    152 程能林.溶剂手册(第二版).化学工业出版社.北京.1994,9:203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700