磁场作用下聚合物的凝固组织研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以高密度聚乙烯(HDPE)、等规聚丙烯(iPP)、间规聚苯乙烯(sPS)、聚甲醛(POM)以及聚对苯二甲酸乙二醇酯(PET)为研究对象,采用0.1T~0.3T的直流磁场、交流磁场、10T脉冲磁场及12T强磁场,考察聚合物凝固过程中结晶形态及取向的变化。采用金相显微镜、差示扫描量热法(DSC)、X射线衍射法(XRD)和红外光谱法(FT-IR)对磁场改性前后的结晶聚合物的结构变化进行了系统地观察和分析讨论,研究结果如下:
     高密度聚乙烯(HDPE)在磁场下凝固的组织形貌发生了明显的变化,并且结晶度和结晶取向随着施加磁场强度的增加而增加。在直流磁场下凝固的聚乙烯的片晶厚度明显增大,片晶间距有小幅增加,形成的球晶尺寸增加;施加交流磁场后,片晶厚度变小,片晶间距也明显减小。
     等规聚丙烯(iPP)在直流、交流和脉冲三种磁场下凝固时分子链易受外磁场的作用而产生诱导偶极,凝固时分子链构象规整性提高,晶粒沿外加磁场方向择优取向。直流磁场和脉冲磁场下凝固的聚丙烯熔点提高,凝固组织有生成串晶的趋势;交流磁场方向的周期变化,阻碍了聚丙烯形成完整的串晶结构,导致了聚丙烯的结晶度下降,熔点降低。
     间规聚苯乙烯(sPS)在直流磁场下凝固的晶型仍为β晶型,晶粒尺寸变小,片晶沿顺磁场方向排列,熔点提高以及晶体中β晶型结晶度增加。这一结果的产生是由于sPS分子链在磁场环境下改变了堆砌方式,分子链沿顺磁场方向排列,阻碍了分子链折叠弯曲,晶粒的生长方向受到限制,片晶尺寸减小,形成了漩涡状的球晶形态。
     聚甲醛(POM)的分子链在磁场下克服空间位阻效应而更有利于C—O—-C对称伸缩振动,减弱了C—O—C弯曲振动,从而减小晶片间增厚阻力,使片晶的厚度和间距增大,晶粒也沿磁场方向取向排列。随着施加磁场的强度增加,聚甲醛晶体的球晶尺寸、熔点以及晶粒沿磁场方向排列的取向比率都呈上升趋势,当磁场强度达到12T时,在聚甲醛晶体的横截面上发现明显的片晶类似漩涡排列的现象。
     聚对苯二甲酸乙二醇酯(PET)在直流磁场中分子链更易于形成反式构象,苯环振动增强,熔体更易于结晶。随着施加磁场的强度增加,聚甲醛晶体的球晶尺寸以及晶粒沿磁场方向排列的取向比率都呈上升趋势,在强磁场的环境下生成的一排排串晶结构,这一现象未见报道。
     综合本文所研究的聚合物结晶形貌发现:聚合物的片晶形貌是与分子链的结构性质有关的。柔性分子链的聚合物结晶时,分子链没有空间位阻可以自由排列,形成了自由弯曲的片晶形貌;而由刚性分子链构成的聚合物,由于较大的空间位阻效应,分子链按一定的形式规则排列,结晶形成了具有一定的刚性平直结构片晶。
     比较本文所研究的聚合物在磁场下凝固组织发现:聚合物凝固组织在磁场作用前后的变化程度是由分子链的结构决定的。随着分子链基团的偶极距增大,磁场的作用就越明显。分子链上没有支链的聚合物,在整个分子链的折叠结晶过程中没有空间位阻的影响而依靠主链上的分子偶极距来感应外界环境的变化,外加磁场对主链产生一个拉伸的作用力,增大了片晶的厚度,使球晶的尺寸增加;而那些带有侧链的聚合物在结晶过程中受到磁场作用而产生构象变化,新的构象会产生空间位阻效应,限制了片晶的自由生长方向,片晶在某些特定的方向上易于生长,在其它生长方向上受到阻碍,凝固得到特定形貌的晶粒。
HDPE, iPP, sPS, POM, and PET were selected in this study to investigate the effects of magnetic fields on morphology, crystal orientation of polymers solidified in the magnetic fields with different types and intensities (including0.1T,0.2T,0.3T DC and AC fields,10T pulse field and12T high field). The microstructures of the polymers solidified with or without the magnetic fields were observed and analyzed by the optics microscope (OP), scanning electronic microscope (SEM), differential scanning calorimeter (DSC), X-ray diffraction (XRD) and infrared spectrometer (FT-IR) respectively. The results are as followings:
     The obviouse change takes place in morphology of HDPE solidified in the magnetic fields, which shows increase in crystal degree and orientation with increase in magntic field intensity. The lamel thickness increases greatly, lamel space increases a little, and globe crystal size increases when HDPE solidified under DC magnetic field. However, the lamel thickness and the lamel space decreased abviously when it solidified under AC magnetic field.
     While iPP were solidified in AC, DC and PC magnetic field, molecule chain were induced by magnetic fields and induced dipole were produced, conformation order of molecule chain was improved and grain orientation trended to the direction of magnetic field. In DC and PC magnetic field, melting point (Tm) of iPP increased and shish-kebab was formed from the melt favourably. Alternating direction change of AC magnetic field stunts the perfect shish-kebab solidified from the iPP melt, which resulted in the decrease of crystal degree and Tm of the samples.
     The crystal type of sPS solidified in the DC magnetic field was still β-crystal. The grain size decrease, lamel arranged along the direction of magnetic field, Tm and crystal degree of β-crystal increased when solidified in DC magnetic field,.which was result from transformation in the molecule chain stack modes of sPS solidified under DC magnetic field. When solidified in DC magnetic field, the circinate sphere shape grains emerged and lamel size decreases because molecule chain arranged along direction of magnetic field, right-angled bend was holden back, growth direction of grain was restricted.
     In DC and high magnetic field, lamels thickness and space of POM were enhanced, grain orientation trended to the direction of magnetic field. Sphere size, Tm and grain tropism increased with increase in intensity of the magnetic field. While intensity of magnetic field reached12T, similar circinate sphere shape was observed in the cross section of POM samples. During the course of solidification in magneic field, the molecule chain of POM could conquer steric hindrance, symmetric stretching vibration of C-O-C bond was enhanced, and bending vibration of C-O-C bond was weakened, and resistance of lamels incrassation was reduced.
     In the course of solidification in DC magneic field, molecule chain of PET favored reverse conformation, benzene vibration was enhanced, and PET melt crystallized more availably. With the increase in intensities of magnetic field, sphere size and grain orientation along with the direction of magnetic field increased. In the12T high magnetic, a row of shish-kebab emerged. This result was not be reported in publications.
     According to above results it can be found that lamel shape was related with the structure of molecule chain. During solidification, flexible chain can arrange freely without any steric hindrance and crystal lamel can be bend freely. Moreover, rigid chain needs to arrange on principle due to steric hindrance, even rigid lamels formed in the polymers, which were made up of rigid chain.
     Comparing the microstructure of polymer solidified in the magnetic field in this paper, it was found that the structure of molecule chain decided the crystal shape of polymer solidified in the magnetic fields. The more the dipole of molecule chain, the stronger the effects of the magnetic fields on the microstrucutres. The molecule chain of polymer without side group was not affected by steric hindrance and the molecule dipole was influenced by magnetic field. The magnetic field produced a extended force to main chain so that the lamel thickness and sphere dimension were increased. The molecule chain of polymer with side group was influenced by magnetic field and conformation was transformed. The new conformation brought steric hindrance and hindered growth of lamel with freedom. Thus, growth direction of lamel follow certain orientation, other growth direction was restricted, and special shape of grains formed.
引文
1.R J塞缪尔斯.结晶高聚物的性质[M],北京:科学出版社,1981,3-26.
    2.朱胜杰.聚丙烯的结晶细化及性能改性研究[D],青岛科技大学,2005,12-26.
    3.马德柱,徐种德,何平笙等.高聚物的结构与性能[M],北京:科学出版社,2000,46-75.
    4.魏刚,余燕,黄锐.PBT的增韧改性研究进展[J],工程塑料应用,2008,33(05):70-72.
    5.周林洋,江弱平.PBT结晶速度方程及其应用[J],合成纤维工业,2002,25(6):17-20.
    6.边界,叶胜荣,封麟先.PET, PBT结晶过程Avrami方程的探讨[J],高等学校化学学报,2000,21(9):1481-1484.
    7.范泽夫,王霞瑜,姜勇等.原子力显微镜研究环带球晶的形貌和片晶结构[J],中国科学B辑,2003,33(1):40-46.
    8.黄福堂,金荣波,姜兴剑.国内外聚丙烯技术发展概况[J],2001,17(8):47-49.
    9.许健民,周志平,宋诩冰.等规立构聚丙烯链构象的分析[J],科学通报,1989,24:1864-1867.
    10.顾海伟,龚俊.低密度聚乙烯的结晶与热分解特性的表征[J],金山石油化纤,2001,(01):18-25.
    11.沈俊芳,陈静波,周应国等.聚合物结晶过程及计算机模拟研究进展[J],高分子材料科学与工程,2007,23(1):1-5.
    12. Hoffman J D, Davis G T, Lauritzen J I J. Treatise on Solid State Chemistry [M], New York: Plenum Press,1976,86-89.
    13.余坚,何嘉松.聚合物熔体结晶的方式(Regime)理论[J],高分子通报,2001,(01):25-33.
    14.李秀洁,廖明义,张燕等.成核PP的结晶过程与熔融过程研究[J],当代化工,2006,35(3):153-156.
    15.孙义明,邹小明,彭少贤等.超声波对聚丙烯结晶过程和热性能的影响[J],现代塑料加工应用,2005,17(5):11-13.
    16.周贵恩.聚合物X射线衍射[M],合肥:中国科学技术大学出版社,1989,85-102.
    17.刘凤岐,汤心颐.高分子物理[M],北京:高等教育出版社,1995,16-56.
    18.殷敬华,莫志深.现代高分子物理学[M],北京:科学出版社,2001,49-86.
    19. Kongkhlang T, Tashiro K, Kotaki M, Chirachanchai S. Electrospinning as a New Technique To Control the Crystal Morphology and Molecular Orientation of Polyoxymethylene Nanofibers [J], Journal of The American Chemistry Society,2008,130 (46):15460-15466.
    20.陈庆勇,李悦生,莫志深.间规聚苯乙烯的多晶型和结晶行为概述[J],功能高分子学报,2003,16(1):97-106.
    21.廖霞,何嘉松.间规聚苯乙烯的同质多晶现象[J],高分子通报,2003,(03):34-46.
    22.沈德言.红外光谱法在高分子研究中的应用[M],北京:科学出版社,1982,46-98.
    23. Cranston E D, Gray D G.. Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field [J], Science and Technology of Advanced Materials,2006,7(4):319-321.
    24.许光学,林尚安.间规聚苯乙烯(sPs)非等温结晶动力学[J],高分子材料与工程,1999,15(2):65-68.
    25.于英波,张宏放.茂金属间规立构聚丙烯结晶动力学研究[J],高分子学报,1999,(3):302-308.
    26.郭玉国,张亚利,赵文元等.高分子液晶材料的研究现状及开发前景[J],青岛大学学报,2000,15(03):24-28.
    27.高宇.高海拔和磁场环境下环氧树脂的绝缘破坏[D],天津大学,2006.
    28.李勇,田国华,王鑫磊.高密度聚乙烯/线性低密度聚乙烯的共结晶研究[J],电子显微学报,2006,25(增刊):152-153.
    29.薛锋,傅伟文,李文波等.机械振动对聚丙烯结晶作用的影响[J],高分子学报,2006,(4):620-623.
    30.于英宁,张宏放,莫志深.间规立构聚丙烯的结晶度研究[J],应用化学,1998,15(6):77-79.
    31.毛益民,杨其,李光宪等.剪切场下聚合物结晶行为的在线研究方法[J],中国塑料,2003,17(1):91-94.
    32.霍红,李宏飞,蒙延峰等.剪切条件下等规聚丙烯的结晶行为[J],高分子通报,2004,(6):58-66.
    33.顾庆超.鉴别聚丙烯和聚乙烯的简捷方法[J],南京大学学报,1981,(2):286-287.
    34.胡晓华,马进,雷军庆.结晶形态对聚丙烯性能的影响[J],塑料加工应用,2002,24(1):24-27.
    35. Chen J Y, Chen H C. Effects of polymer media on electrospun mesoporous titania nanofibers [J], Material Chemistry and Physics,2008,107(2):480-487.
    36. Pakiari A H, Aazami S M.. Electronic interactions of typical liquid crystal molecules with typical contacted species generated from the surface of different materials [J], Journal of Molecular Liquids,2007,139(1):1-6.
    37.韩哲文,何志群,周贵恩.聚p丙烯晶型在拉伸时的晶型转化[J],中国科学技术大学学报,1986,16(2):175-180.
    38.洪浩群,何慧,贾德民.聚丙烯与三单体固相接枝物的等温结晶行为[J],华南理工大学学报,2007,35(2):79-84.
    39.王兴良,刘小云,路建忠等.聚对苯二甲酸丙二醇酯的结晶性能研究[J],合成纤维,2003,(1):11-15.
    40.程晓敏,马德柱,罗筱烈.对苯二甲酸丁二酯-ε-己内酯多嵌段共聚物中硬链段的受限结晶[J],化学物理学报,2001,14(2):251-256.
    41.吕军,黄锐,袁绍彦等.结晶性芳香聚酯高压结晶行为研究进展[J],高分子通报,2004,(1):1-7.
    42.侯斌,刘文华,樊祥琳等.聚丙烯结晶度测试方法的对比分析[J],理化检验,2007,43(9):452-455.
    43.钱知勉.结晶型工程塑料的收缩与模具设计[J],上海塑料,2005,06(2):15-18.
    44.徐涛,金志浩,于杰.聚丙烯结晶度的实验测定[J],合成树脂及塑料,2000,17(6):28-30.
    45.徐涛,于杰,金志浩.聚丙烯聚集态结构与力学性能间关系研究进展[J],材料科学与工程,2001,7(3):6-10.
    46.孙玉璞,徐英,陈方生.聚丙烯球晶的研究[J],工业大学学报,2000,(4):353-358.
    47.张志英.聚合物结晶动力学理论和方法研究[D],天津工业大学,2006.
    48. Xanthos M, Baltzis B C, Hsu P P. Effects of carbonate salts on crystallization kinetics and properties of recycled poly(ethylene terephthalate) [J], Journal of Applied Polymer Science, 1997,64(7):1423-1435.
    49.范克雷维伦D W.聚合物的性质一性质的估算及其与化学结构的关系[M],北京:科学出版社,1981,36-66.
    50. Van Antwerpen F, Van Krevelen D W. Influence of crystallization temperature.molecular weight, and additives on the crystallization kinetics of poly(ethylene terephthalate) [J], Journal of Polymer Science:Polymer Physics Edition,1972,10(12):2423-2435.
    51. Turnbull D, Fisher J C. Rate of nucleation in condensed systems [J], Chem Phys,1949,17(1): 71-73.
    52. Magill J. Rates of crystallization of Polymers [M], New York:Wiley,1999,25-86.
    53. Turska E, Gogolewski S. Study on crystallization of nylon-6 (Polycapramide):Part 2. Effect of molecular weight on Isothermal crystallization kinetics [J], Polymer,1971,12(10): 629-641.
    54. Risch B G, Srinivas S, Geibel G, et al. Crystallization behaviour of Poly(P-phenylene sulfide):Effects of molecular weight fractionation and endgroup counterion [J], Polymer,1996, 37(16):3623-3636.
    55. Point J J, Dosiere M. Crystal growth rate as a funetion of molecular weight in polyethylene crystallized from the melt:an evaluation of the kinetic theory of poly crystallization [J], Polymer,1989,30(12):2292-2296.
    56.张乾.聚乙烯结晶度测定及结晶机理的研究[D].西北工业大学,2003.
    57.闵敏,芦艾.力场下聚合物的结晶行为研究进展[J],塑料科技,2007,35(7):98-103.
    58.贺燕,张辉平,徐端夫等.PE/PP共混物红外光谱分析[J],纤维工业,2004,7(2):55-59.
    59.管鸿才,王凡非,蒋晓青等.红外光谱法对共混合金高聚物的定性分析[J],化学工业,2005,(6):36-38.
    60.刘子铭,童元建,王琼丽等.力场效应在聚丙烯腈分子热分解环化初期的作用[J],北京化工大学学报,2007,34(4):385-388.
    61.于茂赏.双峰聚乙烯及其共混物的流变学、结晶动力学和力学行为[D],河北大学,2003.
    62.胡红旗,王文治,陈鸣才等.DSC升温速率对β-PP结晶度测定的影响[J],中国塑料,2005,(6):99-102.
    63.朱兵,冯庭,汪黎明.DSC在聚合物等温结晶中的应用[J],化学世界,2000,S1:216-217.
    64.冯丽.采用DSC方法研究添加陶瓷粉对聚丙烯结晶的影响[J],纺织科学研究,2004,(04):12-14.
    65.王会剑.差示扫描量热法(DSC)检验塑料绳[J],山西警官高等专科学校学报,2007,15(2):78-80.
    66.贾昧,范晓东,孔杰.差示扫描量热法研究HDPE与LLDPE共混[J],塑料科技,2004,161(03):32-34.
    67.朱新远,田国华,王国明等.等规聚丙烯DSC熔融双峰的成因[J],高分子材料科学与工程,2001,17(1):75-78.
    68.解云川,张乾,范晓东.调制式DSC测定聚乙烯的结晶度[J],高分子材料科学与工程,2004,20(3):179-186.
    69.贺燕,张辉平,徐端夫等.PE/PP共混物纤维X-射线衍射的研究[J],非织造布,2002,10(1):13-16.
    70.张学东,温变英.X-射线衍射测定PP/EV共混物晶胞参数的研究[J],测试技术学报,1996,10(2):642-645.
    71.韩曙鹏,徐樑华,曹维宇等.X射线衍射法研究聚丙烯腈原丝的晶态结构[J],北京化工大学学报,2005,32(2):63-67.
    72.林海云,田雪,李冰等.全同立构聚丙烯等温结晶行为的研究[J],沈阳化工学院,2006,20(3):201-204.
    73.吴平平,王海燕,储凤等.拉伸对p晶型聚丙烯结构的影响[J],高分子学报,1989,(1):65-69.
    74. Hine P J, Ward I M, Olley R H, et al. The hot compaetion of high modulus melt-spun polyethylene fibres [J], Material Science,1993,28(2):316-324.
    75. Kubat J, Manson J A. High modulus/high sterngth polyethylene obtained by high-pressure injection molding [J], Polymer Engineer and Science,1983,2(4):869-876.
    76. Zhang G, Fu Q, Shen K Z, et al. Studies on blends of high-density polyethylene and polypropylene produced by oscillating shear stress field [J], Journal of Applied Polymer Science,2002,86(1):58-63.
    77. Terrill N J, Fairclough J P, Towns-Anrews E, et al. Density fluctuations:the nucleation event in isotactic polypropylene crystallization [J], Polymer,1998,39(11):2381-2386.
    78. Tang T, Huang B. Fractionated crystallization in polyolefins-nylon 6 blends [J], Journal of Applied Polymer Science,1994,53(2):355-360.
    79. Xu J T, Fairclough J P A, Mai S M, et al. Isothermal crystallization kinetics and melting behavior of poly(oxyethylene)-b-poly(oxybutylene)/poly(oxybutylene) blends [J], Macromo-lecules,2002,35(18):6937-6945.
    80. Quiram D J, Register R A, Marchand G. R. Crystallization of asymmetric diblock copolymers from microphase-separated melts [J], Macromolecules,1997,30(16):4551-4558.
    81. Quiram D J, Register R A, Marchand G. R, et al. Chain orientation in block copolymers exhibiting cylindrically confined crystallization [J], Macromolecules,1998,31(15):4891-898.
    82. Hamley I W, Fairclough J P A, Terrill N J, et al. Crystallization in oriented semicrystalline diblock copolymer [J], Macromolecules,1996,29(27):8835-8843.
    83. He Y, Zhu B, Inoue Y. Nanoscale-confined and rfractional crystallization of poly(ethylene oxide) in the interlamellar region of poly(butylene succinate) [J], Macromolecules,2004, 37(9):3337-3345.
    84. Li Y J, Kaito A. Crystallization and orientation behaviors of poly(vinylidene fluoride) in the oriented blend with nylon12 [J], Polymer,2003,44(26):8167-8176.
    85. Schmidt P, Rab M. Structural transformation of polyethylene phase in oriented polyethylene /polypropylene blneds:a hierarchical structure approach [J], Polymer,2001,42(12): 5321-5326.
    86. Wittmann J C, Lotz B. Epitaxial crystallizatoin in the Spp/nylon-12 semicrystalline polymer system [J], Progress Polymer Science,1990,15(4):909-948.
    87. Yan S, Petemrann J. Controling factors of the occurrence of heteroepitaxy of polyethylene on highly oriented isotactic polypropylene [J], Polymer,1998,39(19):4569-4578.
    88. Yan S, Petermann J. Yang D. Epitaxial crystallization in the Spp/nylon-12 semicrystalline polymer system [J], Polymer,1996,37(13):2681-2685.
    89. Lotz B, Wittmann J C. Structural relationships in blends of isotactic polypropylene and polymers with aliphatic sequences [J], Journal of Polymer Science Part B:Polymer Physics, 1986,24:1559-1575.
    90. Lotz B, Wittmann J C. Polyethylen-Isotactic polypropylene epitaxy:analysis of the diffraction patterns of oriented biPhasic blends [J], Journal of Polymer Science Part B:Polymer Physics., 1987,25(5):1079-1087.
    91. Fitchmun D R, Newman S. Surface crystallation of polypropylene [J], Journal of Polymer Science Part A-2:Polymer Physics,1970,8(9):1545-1564.
    92. Fitchmun D R, Newman S, Wiggle R. Electorplating on crystalline polypropylene, I. Compression molding and adhension [J], Journal of Applied Polymer Science,1970,14(11): 2447-2456.
    93. Campbell D, Qayyum M M. Enhanced fracture strain of polypropylene:effect of contact with fiber substrates [J], Journal of Polymer Science Part B:Polymer Physics,1980,18(1): 83-93.
    94. Campbell D, Qayyum M M. Enhanced rfracture strain of polypropylene by incorporation of thermroplastic fibers [J], Material Science,1977,12(10):2427-2434.
    95. Caramaro L, Chabert B, Chauchard J. Morphology and mechanical performance of polyphenylenesulfide carbon fiber composites [J], Polymer Engineer and Science,1991,31(5): 1279-1285.
    96. Wang C, Liu C R. Transcrystallization of polypropylene comoosites:nucleating ability of fibres [J], Polymer,1999,40(2):289-298.
    97. Wu C M, Chen M, Karger-Kocsis J. The role of metastability in the micro morphologic feautres of sheared isotactic polypropylene melts [J], Polymer,1999,40(2):4195-4203.
    98. Muratoglu O K, Argon A S. Crystalline morphology of polyamide-6 near planar surfaces [J], Polymer,1995,36(11):2143-2152.
    99. Bartczak Z, Argon A S, Cohen R E. Thoughness mechanism in semi-crystalline polymer blends:I. High-density polyethylene toughened with rubbers [J], Polymer,1999,40(9): 2331-2346.
    100.杨红军,伍玉娇,郭建兵等.热处理对聚丙烯力学性能及结晶结构的影响[J],金属材料,2007,(03):75-76.
    101.左长明,周建略,陈红等.聚丙烯薄膜表面改性的X射线光电子能谱研究[J],四川大学学报,1992,29(3):385-391.
    102.曾春莲,林志丹,麦堪成.聚丙烯熔融特性与MDSC条件的相关性[J],合成树脂及塑料,2003,20(5):8-11.
    103.郑爱国,赵莹,徐怡庄等.利用红外光谱成像技术研究PP/PE共混物[J],光谱学与光谱分析,2004,24(7):803-805.
    104. Erin Camponeschi, Richard Vancr, Marwan Al-Haik. Properties of carbon nanotube-polymer composites aligned in a magnetic field [J], Carbon,2007,45 (10):2037-2046.
    105.王国全.高分子磁化学[J],现代化工,1997,(12):40-41.
    106.陆模文,胡文祥.有机磁合成化学研究进展[J],有机化学,1997,17(04):289-294.
    107.李金华.跨世纪的磁化学[J],化工之友,1999,(03):20-21.
    108.李红,胡道道,房喻等.磁场对大分子构象的影响研究进展[J],高分子通报,2005,(10):108-113.
    109.刘强,葛研,郭树国等.磁场诱导下的等规聚丙烯薄膜显微结构分析[J],沈阳化工学院学报,2005,19(1):28-31.
    110. Rongguan L, Tang R, Kan J Q. Effecti of magnetic field on properties of polyaniline doped with dysprosium chloride [J], Materials Chemistry and Physics,2006,95(2):294-299.
    111.丁学文,王俊,张启芳等.磁场对环氧树脂及其复合材料性能的影响[J],复合材料学报,2000,17(4):39-42.
    112. Otsuka I, Abe H, Ozeki S. Magnetic field control of structure and function of poly(N-isopropylacrylamide) gels [J], Science and Technology of Advanced Materials,2006, 7(4):327-331.
    113. Ignacio R, Christine W. Magnetic field effects on the free radical solution polymerization of acrylamide [J], Polymer,2007,48(7):1903-1914.
    114. Michelle S. Meruvia, Jose A. Freire, Jonas Gruber. Magnetic field release of trapped charges in polys (fluorenylenevinylene) [J], Organic Electromics,2007,1(1):1-7.
    115. Witold B, Elena A F, Kamensky M G. Orientation of a longitudinal polymer liquid crystal in a constant magnetic field [J], Polymer,1999,40(6):1441-1449.
    116. Molchanov Y M, Rodin Y P, Kisis E R.Some characteristics of structural changes in epoxy resin in the presence of magnetic field [J], Mekh Polim,1978,14(4):583-589.
    117. Rodin Y P, Molchanov Y M. Orientation of molecules of epoxy oligomers in auniform constant magnetic field [J], Mekh Kompoz Mater,1982,18(6):1056-1062.
    118. Stadnik A D, Miroshnichenko F D. Influence of constant magnetic field on some properties of polymers [J], Mekh Polim,1978,14(2):344-351.
    119. Rodin Y P. Magnetic field and physicomechanical properties of polymers [J], Mekh Kompoz Mater,1991,27(3):490-495.
    120.宁超峰,李光远,胡春圃.磁场存在下制备的聚氨酯弹性体的形态[J],合成橡胶工业,2000,23(5):320-321.
    121.闫石,王维强,黄锡珉.磁场作用下液晶材料参数和锚定能的测试[J],液晶与显示,1998,13(4):283-296.
    122.王林格,黄勇.磁场对乙基纤维素胆甾型液晶相的影响[J],高分子学报,2005,(03):476-479.
    123.李伯傅.液晶物理[J],液晶与显示,2001,16(1):59-76.
    124. Michelle S. M, Jonas G, Carlos F O. Graeff. Magnetic field release of trapped charges in polys (fluorenylenevinylene) [J], Organic Electronics,2007,8(6):695-701.
    125.王晖,任忠鸣,蒋国昌.均恒强磁场在材料科学中的应用[J],材料科学与工程,2001,19(2):119-123.
    126.吴存有.强磁场作用力对材料组织和性能的影响[D],大连理工大学,2003.
    127.耿力强,尹大川,韩王超等.强磁环境下的生物大分子结晶研究[J],材料导报,2007,(6):28-33.
    1.梁泊润.高分子物理学[M],北京:中国纺织出版社,2000,1-29.
    1. Fleury L, Zumbusch A, Orrit M, et al. Spectral diffusion and individual two-level systems probed by fluorescence of single terrylene molecules in a polyethylene matrix [J], Journal of Luminescence,1993,56(1):15-28.
    2. Boiron A M, Tamarat P, Lounis B, et al. Are the spectral trails of single molecules consistent with the standard two-level system model of glasses at low temperatures [J], Chemical Physics.1999,247(1):119-132.
    3. Bloess A, Durand Y, Matsushita M, et al. Microscopic Structure in a Shpol'skii System:A Single-Molecule Study of Dibenzanthanthrene in n-Tetradecane [J], The Journal of Physical Chemistry A,2001,105(13):3016-3021.
    4.朱焕扬,杨斌,张剑平等.改性纳米二氧化钛光催化降解聚乙烯薄膜的研究[J],功能材料,2007,38(3):462-468.
    5. Nakae M, Uehara H, and Kanamoto T. Structure Development upon Melt Drawing of Ultrahigh Molecular Weight Polyethylene:Effect of Prior Thermal History [J], Macromolecules,2000,33 (7):2632-2641.
    6. Mami A, Lin M, Heb C Q, et al. Ultradrawing of blend films of ethylene-dimethyl-aminoethyl methacrylate copolymer and ultra-high molecular weight polyethylene prepared by gelation/crystallization from solutions [J], Polymer,2004,45(2):409-421.
    7. Jiang X Q, Yu H K, Frayne R, et al. Strother. Surface functionalization of polyethylene for magnetic resonance signal-enhancing coating Materials [J], Chemical Materials,2002,14 (5): 1915-1920.
    8. Chen W W, Kinemuchi Y, Tamura T, et al. Grain-oriented calcium hydroxyapatite ceramic and film prepared by magnetic alignment [J], Materials Letters,2007,61(1):6-9.
    9. Makiya A, Kusumi Y, Tanaka S, et al. Grain oriented titania ceramics made in high magnetic field [J], Journal of the European Ceramic Society,2007,27(2):797-799
    10. Cranston E D, Gray D G. Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field [J], Science and Technology of Advanced Materials,2006,7(4):319-321.
    11. Takahashi Y. Infrared and raman spectra of polyethylene and polyethylene-d4 in He temperature region (5-300 K) [J], Macromolecules,2001,34(22):7836-7840.
    12. Kanga N, Xua Y Z, Cai Y L, et al. Different states in orthorhombic crystalline phase of high-density polyethylene [J], Journal of Molecular Structure,2001,562(1):19-24.
    13. Agosti E, Zerbi G, ward I M. Structure of the skin and core of ultradrawn polyethylene films by vibrational spectroscopy [J], Polymer,1992,33(20):4219-4229.
    14. Watanabe S, Sano N, Noda I, et al. Surface Melting and Lamella Rearrangement Process in Linear Low Density Polyethylene [J], Journal of Physical Chemistrty B,2009,113(11): 3385-3394.
    15. Cao W Y, Tashiro K, Hanesaka M, et al. Relationship between Morphological Change and Crystalline Phase Transitions of Polyethylene-Poly(ethylene Oxide) Diblock Copolymers, Revealed by the Temperature-dependent Synchrotron WAXD/SAXS and Infrared/Raman Spectral Measurements [J], Journal of Physical Chemistrty B,2009,113(8):2338-2346.
    16. Yang L Q, Zhang F R, Endo T, et al. Microstructure of Maleic Anhydride Grafted Polyethylene by High-Resolution Solution-State NMR and FTIR Spectroscopy [J], Macromolecules,2003,36(13):4709-4718.
    17. Marand H, Huang Z Y. Isothermal Lamellar Thickening in Linear Polyethylene:Correlation between the Evolution of the Degree of Crystallinity and the Melting Temperature [J], Macromolecules,2004,37(17):6492-6497.
    18. Andrea D I, Craig J P, Stephen A M. Linear Low-Density Polyoxymethylene versus Linear Low-Density Polyethylene [J], Macromolecules,2007,40(22):7739-7741
    19. Gareth J P, Fiona K, Andrew A C. Sonochemically-Assisted Modification of Polyethylene Surfaces [J], Macromolecules,1996,29(17):5664-5670.
    20. Bruni P, Conti C, Corvi A, et al. Damaged polyethylene acetabular cups microscopy FT-IR and mechanical determinations [J], Vibrational Spectroscopy,2002,29(1):103-107
    21. Mackenzie M W (ED). Advances in applied fourier transform infrared spectroscop [M]. New York:Wiley,1998,34-88.
    22. Marcos J I, Orlandi E, Zerbi G. Poly (ethylene oxide)-poly (methyl methacrylate) interactions in polymer blends:an infra-red study [J], Polymer,1990,31(10):1899-1903.
    23. Uehara H, Yamanobe T, Komoto T. Relationship between Solid-State Molecular Motion and Morphology for Ultrahigh Molecular Weight Polyethylene Crystallized under Different Conditions [J], Macromolecules,2000,33(13):4861-4870.
    24. Yoshida H, Ichimura Y, Kinoshita R, et al. Kinetic analysis of the isothermal crystallization of an n-alkane and polyethylene observed by simultaneous DSC/FT-IR/WAXD measurement [J], Thermochimica Acta,1996,282/283:443-452.
    25. Li J X, Wang Q, Chan C M, et al. Effect of molding temperature on crystalline and phase morphologies of HDPE composites containing PP nano-fibers [J], Polymer,2004,45(16): 5719-5727.
    26.澹才茂.聚乙烯拉伸过程中晶态变化及形变机理[J],高分子学报,1989,(1):93-97.
    27.卜海山,于同隐.聚乙烯片晶中链折迭区的能态[J],高分子通讯,1984,(4):265-270.
    28.马定洋,章林溪.拉伸分子动力学方法研究聚乙烯单链的力学行为[J],高分子学报,2008,(5):448-453.
    29. Zuo F, Keum J K, Yang L, et al. Thermal Stability of Shear-Induced Shish-Kebab Precursor Structure from High Molecular Weight Polyethylene Chains [J], Macromolecules,2006,39(6): 2209-2218.
    30. Zhang Q H, Lippits D R, Rastogi S. Dispersion and Rheological Aspects of SWNTs in Ultrahigh Molecular Weight Polyethylene [J], Macromolecules 2006,39(2):658-666.
    31. Matsuba G, Sakamoto S, Ogino Y, et al. Crystallization of Polyethylene Blends under Shear Flow. Effects of Crystallization Temperature and Ultrahigh Molecular Weight Component [J], Macromolecules,2007,40(20):7270-7275.
    32. Yang L, Somani R H, Sics I, et al. Shear-Induced Crystallization Precursor Studies in Model Polyethylene Blends by in-Situ Rheo-SAXS and Rheo-WAXD [J], Macromolecules,2004, 37(13):4845-4859.
    33. Haggenmueller R, Fischer J E, Winey K I. Single Wall Carbon Nanotube/Polyethylene Nanocomposites:Nucleating and Templating Polyethylene Crystallites [J], Macromolecules, 2006,39(8):2964-2971.
    1. Karger-Kocsis J. Polypropylene structure, blends and composites [M], London:Chapman and Hall,1995,43-134.
    2. Norton D R, Keller A. The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene [J], Polymer,1985,26(5):704-716.
    3. Yamada K, Matsumoto S, Tagashira K, et al. Isotacticity dependence of spherulitic morphology of isotactic polypropylene [J], Polymer,1998,39(22):5327-5333.
    4. Turner-Jones A, Cobbold A J. The β crystalline form of isotactic polypropylene [J], Journal of Polymer Science Part B,1968,6(8):539-546.
    5. Meille S V, Bruckner S, Porzio W. γ-sotactic polypropylene. A structure with nonparallel chain axes [J], Macromolecules,1990,23(18):4114-4121.
    6. Lovinger A J, Chua J O, Gryte C C. Studies on the α and β forms of isotactic polypropylene by crystallization in a temperature gradient [J], Journal of Polymer Science:Polymer Physics Edition,1977,15(4):641-656.
    7. Busico V, Cipulla R. Microstructure of polypropylene [J], Progress in Polymer Science,2001, 26(3):443-533.
    8. Li H H, Jiang S D, Wang J J, et al. Optical Microscopic Study on the Morphologies of Isotactic Polypropylene Induced by Its Homogeneity Fibers [J], Macromolecules 2003,36(8): 2802-2807.
    9.林海云,田雪,李冰等.全同立构聚丙烯等温结晶行为的研究[J],沈阳化工学院学报,2006,20(3):201-210.
    10. Kawai T, Kimura T. Magnetic orientation of isotactic polypropylene [J], Polymer,2000,41(1): 155-159.
    11. Inoue T, Yamashita K. Aggregation behavior of polypropylene oxide end-capped by positive charges [J], Journal of Colloid and Interface Science,2007,308(2):525-531.
    12. Lezak E, Bartczak Z, Galeski A. Plastic deformation behavior of b-phase isotactic polypropylene in plane-strain compression at room temperature [J], Polymer,2006,47(26): 8562-8574.
    13. Somani R H, Hsiao B S, Nogales A, et al. Structure Development during Shear Flow-Induced Crystallization of i-PP:In-Situ Small-Angle X-ray Scattering Study [J], Macromolecules, 2000,3(25):9385-9394.
    14. Somani R H, Yang L, Hsiao B S. Shear-Induced Precursor Structures in Isotactic Polypropylene Melt by in-Situ Rheo-SAXS and Rheo-WAXD Studies [J], Macromolecules, 2002,35(24):9096-9104.
    15. Agarwal P K, Somani R H, Weng W Q, et al. Shear-Induced Crystallization in Novel Long Chain BranchednPolypropylenes by in Situ Rheo-SAXS and-WAXD [J], Macromolecules, 2003,36(14):5226-5235.
    16. Ogino Y, Fukushima H, Takahashi N, et al. Crystallization of Isotactic Polypropylene under Shear Flow Observed in a Wide Spatial Scale [J], Macromolecules,2006,39(22):7617-7625.
    17. Boger A, Heise B, Troll C, et al. Orientation of the a- and c-modification of elastic polypropylene at uniaxial stretching [J], European Polymer Journal,2007,43(8):3573-3586.
    18. Somani R H, Yang L, Hsiao B S. Effects of high molecular weight species on shear-induced orientationand crystallization of isotactic polypropylene [J], Polymer,2006,47(15): 5657-5668.
    19. Z. Bartczak, A. Galeski. Yield and plastic resistance of a-crystals of isotactic polypropylene [J], Polymer,1999,40(13):3677-3684.
    20. Somani R H, Hsiao B S, Nogales A. Structure Development during Shear Flow Induced Crystallization of i-PP:In Situ Wide-Angle X-ray Diffraction Study [J], Macromolecules, 2001,34(17):5902-5909.
    21. Xu H, Cebe P. Transitions from solid to liquid in isotactic polystyrene studied by thermal analysis and X-ray scattering [J], Polymer,2005,46(20):8734-8744.
    22. Qiu J, Wang Z G, Yang L, et al. Deformation-induced highly oriented and stable mesomorphic phase in quenched isotactic polypropylene [J], Polymer,2007,48(23): 6934-6947.
    23. Su Z Q, Wang H Y, Dong J Y, et al. Conformation transition and crystalline phase variation of long chain branched isotactic polypropylenes (LCB-iPP) [J], Polymer,2007,48(3): 870-876.
    24. Sun Y J, Li H H, Huang Y, et al. Epitaxial crystallization of poly (butylene adipate) on highly oriented isotactic polypropylene thin film [J], Polymer,2006,47(7):2455-2459.
    25. Bartczak Z, Martuscelli. Orientation and properties of sequentiallydrawn films of an isotactic polypropylene/hydrogenated oligocyclopentadiene blend [J], Polymer,1997,38(16): 4139-4149.
    26. Mohmeyer N, Schmidt H W, Kristiansen P M, et al. Influence of Chemical Structure and Solubility of Bisamide Additives on the Nucleation of Isotactic Polypropylene and the Improvement of Its Charge Storage Properties [J], Macromolecules,2006,39 (17): 5760-5767.
    27. Zhou J J, Li L, Lu J. The influence of stem conformation on the crystallization of isotactic polypropylene [J], Polymer,2006,47(1):261-264.
    28. Hea P, Xiao Y, Zhang P M, et al. Thermal degradation of syndiotactic polypropylene and theinfluence of stereoregularity on the thermal degradation behaviour by in situ FTIR spectroscopy [J], Polymer Degradation and Stability,2005,88(3):473-479.
    29. Nedkov E, Dobreva T. Wide and small-angle X-ray scattering study of isotactic polypropylene gamma irradiated in bulk [J], European Polymer Journal 2004,40(11): 2573-2582.
    30. Naiki M, Kikkawa T, Endo Y, et al. Crystal ordering of a phase isotactic polypropylene [J], Polymer,2000,42(12):5471-5477.
    31. Jia J, Raabe D. Evolution of crystallinity and of crystallographic orientation in isotactic polypropylene during rolling and heat treatment [J], European Polymer Journal,2006,42(8): 1755-1766.
    32. Zhu X Y, Yan D Y, Fang Y P. In Situ FTIR Spectroscopic Study of the Conformational Change of Isotactic Polypropylene during the Crystallization Process [J], J. Phys. Chem. B, 2001,105(50):12461-12463.
    1. Natta G. Crystalline high polymers a-olefins [J], Journal of Polymer Science,1955,77(6): 1708-1710.
    2. Ishihara N, Seimiya T, Kuramoto M, et al. Crystalline syndiotactic polystyrene [J], Macromolecules,1986,19(9):2464-2465.
    3. Cimmino S, Pace E D, Martuscelli E, et al. Syndiotactic polystyrene:Crystallization and melting behavior [J], Polymer,1991,32(6):1080-1083.
    4. Immirzi A, Candia F D, Iannelli P, et al. Solvent-induced polymorphism in syndiotactic polystyrene [J], Macromollecules Chemistry, Rapid Communnication,1988,9(11):761-764.
    5. Manfredi C, Rosa C D, Guerra G, et al. Structural changes induced by thermal treatments on emptied and filled clathrates of syndiotactic polystyrene [J], Macromolecular Chemistry and Physics,1995,196(9):2795-2808.
    6. Guerra G, Vitagliano V M, Rosa C D, etr al. Polymorphism in melt crystallized syndiotactic polystyrene samples [J], Macromolecules,1990,23(5):1539-1544.
    7. Greis O, Xu Y, Asano T, Petermann J. Morphology and structure of syndiotactic polystyrene [J], Polymer,1989,30(4):590-594.
    8. Chatani Y, Shimane Y, Inoue Y, et al. Structural study of syndiotactic polystyrene:1, Polymorphism [J], Polymer,1992,33(3):488-492.
    9. Woo E M, Sun Y S, Yang C P. Polymorphism, thermal behavior, and crystal stability in syndiotactic polystyrene vs. its miscible blends [J], Polymer Science,2001,26(6):945-983.
    10.赵翔,陆明,麦堪成.滑石粉填充间规聚苯乙烯结晶行为与晶型[J],高分子材料科学与工程,2009,25(1):94-97
    11. Sun Y S, Woo E M. Morphology and crystal structure of cold-crystallized syndiotactic polystyrene [J], Polymer,2001,42(5):2241-2245.
    12. Woo E M, Sun Y S, Lee M L. Crystal forms in cold-crystallized syndiotactic polystyrene [J], Polymer,1999,40(15):4425-4429.
    13. Lin R H, Woo E M. Melting behavior and identification of polymorphic crystals in syndiotactic polystyrene [J], Polymer,2000,41(1):121-131.
    14.窦红静,朱诚,何素芹.聚苯乙烯结晶及其晶型转化[J],高分子通报,2000,(3):56-60.
    15.何素芹,郭建国,朱诚身等.间规聚苯乙烯的等温熔体结晶[J],东华大学学报(自然科学版),2005,31(3):115-118.
    16. Yamato M, Kimura T, Relationship between magnetic alignment and the crystallization condition of isotactic polystyrene [J], Science and Technology of Advanced Materials,2006, 7(4):337-341.
    17.陈庆勇,于英宁,那天海等.不同晶型间规聚苯乙烯结晶度的研究[J],应用化学,2002,19:837-841.
    18. Bu W S, Li Y Y, He J S, et al. An interpretation of the formation of α- and δ-form crystals in bulk syndiotactic polystyrene [J], Macromolecules,1999,32(21):7224-7225.
    19.周文乐,沈志刚,赵申等.间规聚苯乙烯的多晶现象[J],合成树脂及塑料,2000,17(1):51-53.
    20. Kobayashi M, Nakaoki T, Ishihara N. Polymorphic structres and molecular vibrations of syndiotactic polystyrene [J], Macromolecules,1989,22(9):4377-4382.
    1.张德震,苏诚伟,徐种德等.聚甲醛结晶动力学研究[J],功能高分子学报,1995,8(2):123-127
    2. Aich R, Higele P C. Atomistic calculation of chain conformations and crystal structures of polyoxymethylene [J], Progress in Colloid & Polymer Science,1985,71:86-95
    3. Tashiro K, Kamae T, Asanaga H, Oikawa T. Structural Analysis of Polyoxymethylene Whisker Single Crystal by the Electron Diffraction Method [J], Macromolecules,2004,37(3): 826-830
    4. Plummer C J G, Kausch H H. DSC non-isothermal crystallization curves in polyoxymethylene [J], Colloid & Polymer Science,1995,273(3):227-232.
    5. Samyn P, Driessch I V, Schoukens G. Thermal and spectroscopic analysis of wornpolyoxymethylene surfaces and wear debris explaining degradation and polymerisation mechanisms [J], J Polym Res,2007,14:411-422.
    6. Plummer C J G, Kausch H H. Real-time image analysis and numerical simulation of isothermal spherulite nucleationand growth in polyoxymethylene [J], Colloid & Polymer Science,1995,273(8):719-732.
    7. Mucha M. Isothermal thermogravimetric studies of molten diacetate terminated polyoxymethylene in nitrogen and air [J], Colloid & Polymer Science,1984,262(11): 851-855.
    8. Hasegawa S, Takeshita H, Yoshii F, et al. Thermal degradation behavior of gamma-irradiated acetyloxy end-capped poly(oxymethylene) [J], Polymer,2000,41(1):111-120.
    9. Seymour R B. Engineering Polymer Sourcebook [M], New York:McGraw-Hill Publ.,1990, 11-45.
    10. Pielichowski K, Leszczynska A. TG-FTIR Study of the thermal degradation of polyomxymethylene (POM)/thermoplastic polyurethane (TPU) blend [J], Journal of Thermal Analysis and Calorimetry,2004,78(2):631-637.
    11. Cranston E D, Gray. D G. Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field [J], Science and Technology of Advanced Materials,2006,7(4):319-321.
    12. Yamato M, Kimura T. Relationship between magnetic alignment and the crystallization condition of isotactic polystyrene [J], Science and Technology of Advanced Materials,2006, 7(4):337-341.
    13. James E M. Conformations and Spatial Configurations of Inorganic Polymers [J], Macromolecules,1978,11(4):627-633.
    14. Ohsaku M, Imamura A. Electronic Structures and Conformations of Polyoxymethylene and Polyoxyethylene [J], Macromolecules,1978,11(5):970-976.
    15. Kongkhlang T, Kousaka Y, Umemura T, et al. Role of primary amine in polyoxymethylene (POM)/bentonite nanocomposite formation [J], Polymer,2008,49(6):1676-1684.
    16. Hama H, Tashiro K. Structural changes in isothermal crystallization process of polyoxymethylene investigated by time-resolved FTIR, SAXS and WAXS measurements [J], Polymer,2003,44(22):6973-6988.
    17. Hama H, Tashiro K. Structural changes in non-isothermal crystallization process of melt-cooled polyoxymethylene. [I] Detection of infrared bands characteristic of folded and extended chain crystal morphologies and extraction of a lamellar stacking model [J], Polymer, 2003,44(10):3107-3116.
    18. Archodoulaki V M, Luftl S, Koch T, et al. Property changes in polyoxymethylene (POM) resulting from processing, ageing and recycling [J], Polymer Degradation and Stability,2007, 92(12):2181-2189.
    19. Plummer C J G, Kausch H H. The effect of melting point distributions on DSC melting peaks [J], Polymer Bulletin,1996,36(3):355-360.
    20. Shi J, Jing B, Zou X X, et al. Investigation on thermo-stabilization effect and nonisothermal degradation kinetics of the new compound additives on polyoxymethylene [J], Journal of Materials Science,2009,44(5):1251-1257.
    21. Bruni P, Conti C, Giorgini E, et al. Proceedings of the 11th international conference on fourier transform spectroscopy, Vol.564. The American Institute of Physics,1998.
    22. Kongkhlang T, Tashiro K, Kotaki M, et al. Chirachanchai electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers [J], J. Am. Chem. Soc.,2008,130(46):15460-15466.
    23. Runt J, Wagner R F, Zimmer M. Ultimate elastic modulus and melting behavior of poly(oxymethylene) [J], Macromolecules,1987,20(10):2531-2535.
    24. Tashiro K, Kamae T, Asanaga H, et al. Structural Analysis of Polyoxymethylene Whisker Single Crystal by the Electron Diffraction Method [J], Macromolecules,2004,37(3): 826-830.
    25. Archodoulaki V M, Lu"ftl S, Seidler S. Effects of coloration on the physical and mechanical properties and on the thermal stability of polyoxymethylene [J], Advanced Polymer Technology,2006,25(1):63-72.
    26. Archodoulaki V M, Luftl S, Seidler S. Thermal degradation behaviour of poly-(oxymethylene):1. Degradation and stabiliser consumption [J], Polymer Degradation Stabality,2004,86(1):75-83.
    27. Inoue M. Crystallization and melting of copolymers of polyoxymethylene [J], Journal of Applied Polymer Science,1964,8(5):2225-2238.
    1. Xanthos M, Baltzis B C, Hsu P P. Effects of carbonate salts on crystallization kinetics and properties of recycled poly(ethylene terephthalate) [J], Applied Polymer Science,1997,64(7): 1423-1435.
    2.江渊,吴立衡.红外光谱在聚对苯二甲酸乙二醇酯纤维结构研究中的应用[J].高分子通报,2001,(2):62-67.
    3. Kimura T, Kawai T, Sakamoto Y. Magnetic orientation of poly(ethylene terephthalate) [J], Polymer,2000,41(2):809-812.
    4. Ito M, Takahashi M, Kanamato T. Uniaxial orietation and tensile properties of poly(ethylene terephthalate)/poly(ethylene-2,6-naphthalate) bind [J], Polymer,2002,43(13):3675-3681.
    5.任敏巧,张志英,赵家森等.单轴取向聚对苯二甲酸乙二酯非等温结晶动力学研究[J],高分子学报,2003,(1):87-92.
    6.董知之,张志英,陈莉等.聚对苯二甲酸乙二酯非等温结晶过程研究[J],纺织学报,2008,28(3):13-16.
    7.刘远峰,何光建,翟金平.正弦脉动挤出流场对PET非等温结晶行为的影响[J],中国塑料,1006,20(1):57-60.
    8. Zhang Z Y, Ren M Q, Zhao J S, et al. Kinetics of non-isothermal cold crystallization of uniaxially oriented poly(ethylene terephthalate) [J], Polymer,2003,44(8):2547-2551.
    9. Maurizio C, Fabio B. Supermolecular structure and thermal properties of poly(ethylene terephthalate)/lignin composites [J], Composites Science and Technology,2007,67(15-16): 3151-3157.
    10. Lee B, Shin T J, Lee S W, et al. Time-resolved X-ray scattering and calorimetric studies on the crystallization behaviors of poly(ethylene terephthalate) (PET) and its copolymers containing isophthalate units [J], Polymer,2003,44(8):2509-2518.
    11.沈德言。红外光谱法在高分子研究中的应用[M].北京:科学出版社,1982,195-199.
    12. Guevremont J, Ajji A, Cole K C, et al. Orientation and conformation in poly(ethylene terephthalate) with low draw ratios as characterized by specular reflection infra-red spectroscopy [J], Polymer,1995,36(17):3385-3392.
    13. Cunningham A, Ward I M, Willis H A, et al. An infra-red spectroscopic study of molecular orientation and conformational changes in poly(ethylene terephthalate) [J], Polymer,1974, 15(11):749-756.
    14. Campbell D, Monteith L K, Turner D T. Post-irradiation free-radical reactions in poly(ethylene terephthalate)[J], Journal of Polymer Science Part A-1:Polymer Chemistry, 1970,8(9):2703-2711.
    15. Kunugi T, Suzuki A, Hashimoto M. Mechanical properties and superstructure of high-modulus and high-strength PET fiber prepared by zone annealing[J], Journal of Applied Polymer Science,1981,26(6):1951-1960.
    16. Shen D, Long F, Wen Z, et al. Conformational changes of amorphous poly(ethylene terephthalate) films during uniaxial stretching[J], Die Makromolekulare Chemie,1991,192(2): 301-309.
    17. Wu G, Tucker P A, Cuculo J A. High performance PET fibre properties achieved at high speed using a combination of threadline modification and traditional post treatment[J], Polymer,1997,38(5):1091-1100.
    18.孙福革,沈德言,钱人元.取向态聚对苯二甲酸乙二酯膜热弛豫过程的偏振红外光谱研究[J],高分子学报,1995,(01):93-98.
    19. D'esposito L, Koenig J L. Application of fourier transform infrared spectroscopy to the study of semicrystalline polymers:Poly(ethylene terephthalate) [J], Journal of Polymer Science: Polymer Physics Edition,1976,14(10):1731-1741.
    20. Heuvel H M, Huisman R. Infrared spectra of poly(ethylene terephthalate) yarns. Fitting of spectra, evaluation of parameters, and applications [J], Journal of Applied Polymer Science, 1985,30(7):3069-3093.
    21. Jain A K, Gupta V B. An infrared spectroscopic study of molecular orientation in heat-set poly(ethylene terephthalate) yarn using attenuated total reflection technique[J], Journal of Applied Polymer Science,1990,41 (11):2931-2939.
    22. Zhang R C, Xua Y, Ai L, et al. Shear-induced crystallization of poly(phenylene sulfide) [J], Polymer,2008,49(10):2604-2613.
    23. Masayuki I, Keisuke K. Polymer crystallization from the metastable melt:The formation mechanism of spherulites [J], Polymer,2006,47(15):5544-5554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700