高压配电网谐波与无功综合动态治理理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在6kV、10kV、35kV等高压配电网集中治理谐波和补偿无功的方式投资较少,便于集中运行维护,是目前国内外供电系统谐波抑制和无功补偿研究的热点,但是,受限于电力电子开关器件的耐压和容量等级,在高压配电网同时实现谐波和无功综合动态治理具有一定难度。本文以国家自然科学基金项目——企业谐波动态抑制与节能新方法新技术研究(60774043)和国家“863”计划项目——大型工业企业电气节能新技术新装备及其工程应用(2008AA05Z211)为依托,为实现低成本的高压配电网谐波电流动态治理,提出了三种改进结构的注入式混合型有源电力滤波器(IHAPF),为实现高压配电网谐波和无功综合动态治理,提出了IHAPF和静止无功补偿器(SVC)联合运行的高压混合补偿系统HVHC,研究内容涵盖了治理装备的基本补偿原理、检测和控制算法、主电路参数的设计和相关工程实现方案等方面,形成了较为完整的高压配电网谐波与无功综合动态治理的技术方案,主要研究内容和创新如下:
     1、提出了三种改进结构的高压配电网IHAPF,建立各类结构IHAPF的统一电气模型,分析了IHAPF对避免电网谐波放大、无源补偿器件与电网发生谐振的作用,提出了改进遗传算法并引入了IHAPF注入支路参数的多目标优化设计。
     本文在典型的单谐振注入式混合型有源滤波器(S-IHAPF)结构的基础上,提出了三种适用于高压配电网的注入式混合型有源电力滤波器:双谐振注入式混合型有源电力滤波器(D-IHAPF)、多通道注入式混合型有源电力滤波器(M-IHAPF)及改进的注入式混合型有源电力滤波器(I-IHAPF),分析了它们各自的优缺点以及适用的场合,并通过建立各类结构IHAPF的统一电气模型,为对适用于高压配电网IHAPF的特性研究奠定基础;然后,与单独电容器直接补偿方式作比较,分析了注入式混合型有源电力滤波器对避免电网谐波放大和无源器件与电网发生谐振的作用;最后,以单谐振注入式混合型有源电力滤波器为例,从达到滤波效果、经济成本以及安全稳定性等方面考虑,提出了改进的遗传算法并引入了IHAPF关键部分注入支路的多目标优化设计。
     2、针对高压配电网IHAPF的两类关键算法:谐波电流检测和控制算法进行了研究,分析了直流侧电压泵升现象产生的原因,并提出了三种解决方法。
     本文提出了基于ip,iq算法和自适应滤波器的谐波电流预测检测方法,有效减小了延时,提高了系统滤波效果;提出了基于递推积分加PI参数模糊自整定的电流跟踪控制方法,简化了控制算法复杂度,提高了时变量的跟踪控制精度;从动态和稳定两个方面分析了IHAPF在高压配电网应用时产生直流测电压泵升现象的原因,提出了一系列稳定直流侧电压的方法,包括滞环控制能量泄放法、基于逆变器两侧能量平衡的直流侧电压控制方法和基于基波能量交换的直流侧电压PI控制方法,同时详细介绍了三种方法的具体应用场合和效果。
     3、提出了一种高压混合补偿系统HVHC,在能够动态治理谐波的情况下,实现了容性和感性无功连续调节,提出了HAPF和SVC抗耦合复合控制策略,采用了基于同步旋转参考坐标变换的SVC补偿电纳计算方法,提出了谐波电流分频补偿控制方法,实现了HVHC系统在高压配电网综合动态治理谐波和补偿无功的作用。
     本文针对适用于高压配电网IHAPF无法进行动态无功补偿的缺点,提出了一种高压混合补偿系统HVHC,它由IHAPF与SVC并联组合而成,同时IHAPF部分抑制了晶闸管调节时产生的谐波电流,实现了高压配电网高品质电气节能。在分析该装置结构的基础上,就谐波域和基波域进行了模型推导,模型推导的结果证明了该装置的可行性。此外,为了使HVHC实现补偿负载不平衡、提高功率因数、动态治理电网电流谐波的作用,对HVHC的控制方法进行了研究。提出了HAPF和SVC抗耦合复合控制策略,采用了基于同步旋转参考坐标变换的SVC补偿电纳计算方法,提出了谐波电流分频补偿控制方法,仿真及实验结果表明了采用上述方法的HVHC能够在高压配电网稳定、快速、准确的治理谐波电流、补偿负荷的无功功率,维持电网电压的稳定。
     4、结合现场需求,探讨了HVHC在35kV高压配电网应用时的设计和典型应用方案。
     本文以广西电网公司某110kV变电站谐波与无功问题综合治理需求为基础,分析了引起谐波参数超标的原因,根据现场测量的各种数据,建立了110kV变电站的系统等效模型,通过各种工况下的仿真验证了模型的合理性和准确性。在前述理论和设计方法的基础上,设计了一套适用于35kV高压配电网的HVHC,给出了SVC装置组成元件的参数设计方法,对所提出HVHC进行了整体仿真,仿真结果证明了HVHC能够满足现场需求,能够在35kV高压配电网下具备较高的谐波电流注入能力,以较低的成本保证各种工况下的谐波与无功参数满足要求。
     在高压配电网谐波与无功动态综合治理相关理论和技术的指导下,成功研制出了S-IHAPF和TCR联合运行的HVHC实验装置,给出了详细的硬件、软件设计过程,并在实验样机上进行了大量的实验,实验结果验证了本文所提检测方法、控制方法以及相关设计方法的正确性和有效性。
It is low cost and convenient to eliminate harmonic currents and compensate reactive power in high voltage distribution networks. However, due to the voltage and capacity limit of power electronic switching device, it is difficult to realize harmonic currents dynamical suppression and reactive power dynamical compensation at same time. Based on the financial support of The National Natural Science Foundation of China (Project No.60774043) and The National High Technology Research and Development of China (863 Program) (Project No.2008AA05Z211), this paper proposes three types injection type hybrid active power filter(IHAPF) to realize harmonic currents dynamical suppression in high voltage distribution networks. High voltage hybrid compensator (HVHC), consists of static var compensator (SVC) and IHAPF, is proposed to realize harmonic currents dynamical suppression and reactive power dynamical compensation at the same time in high voltage distribution networks. This dissertation expands the structure, principle, detection and control method, as well as the optimum design means of main parameters and some important realizing technologies. The emphasis and achievement of the paper mainly manifests in the following aspects:
     1. Three novel topologies of IHAPF are proposed and their universal electric model is established. Based on the establishment of the electric model, the thesis analyzes the effect of IHAPF to avoid the harmonic amplification, and resonance between passive devices and the grid. Finally, improved genetic algorithm is proposed to design the parameters of injection branches of IHAPF.
     Based on the topology of single-resonance IHAPF(S-IHAPF), this paper proposes three improved topology of IHAPF such as Double-resonance IHAPF (D-IHAPF), Multi-branches IHAPF (M-IHAPF) and Improved IHAPF (I-IHAPF). Their respective strong points are analyzed. The universal electric model is established in succession, it helps to the uniform research of different sort IHAPF. And then, the effect of IHAPF to avoid the harmonic amplification and the resonance between passive devices and the grid is analyzed compared with capacitor. Finally, take S-IHAPF as an example, improved genetic algorithm is proposed to design the parameters of injection branches considering three aspects such as filtering performance, cost, security and stability.
     2. Two key algorithms such as harmonic currents detection algorithm and tracking control algorithm are researched. Furthermore, three methods were proposed to solve the problem based on the steady and dynamic analyze on the sharp rise of DC-side voltage.
     Harmonic predicted detection method based on self-adaptive noise countervailing principle was proposed in this paper. The method reduced the delay and improved the filtering performance. Harmonic current tracking control method based on recursive integral and fuzzy-PI control is proposed to improve the control precision when the controlled variable is periodic. Furthermore, based on the steady and dynamic analyze on the sharp rise of DC-side voltage, three methods were proposed to solve the problem such as hysteresis control energy release method, DC-side voltage control based on energy balance, and DC-side voltage PI control based on the fundamental energy exchange. Their respective strong points are analyzed.
     3. High voltage hybrid compensator (HVHC) is proposed to realize harmonic currents dynamical suppression and reactive power dynamical compensation at the same time in high voltage distribution networks. Furthermore, suppressing coupling crosstalk hybrid control strategy is proposed to eliminate the infection between SVC and IHAPF consists of compensator susceptance calculation method base on synchronous reference frame and harmonic currents dividing frequency control.
     In allusion to the status that IHAPF can not compensate reactive power dynamically, this paper proposed HVHC consists of SVC and IHAPF. In the proposed system, harmonic currents generated by SVC can also be eliminated by IHAPF. HVHC realize high quality energy saving in high voltage distribution networks. Based on the analysis of its topology, model inference has been done in fundamental frequency and harmonic frequencies, the inference results show the validity of HVHC. Furthermore, control method suitable to HVHC is researched to prove that HVHC can compensate reactive power, eliminate harmonic currents and three-phase unbalance. Suppressing coupling crosstalk hybrid control strategy is proposed to eliminate the infection between SVC and IHAPF consists of compensator susceptance calculation method base on synchronous reference frame and harmonic currents dividing frequency control. Simulation and experiment results show that, after the proposed control method has been adapted, HVHC can compensate reactive power and stabilize the grid voltage, suppress harmonic currents steadily, speedily and exactly.
     4. Based on the industrial need on harmonic suppression and var compensation, application scheme when HVHC applied in 35kV grid is researched.
     Based on the project of harmonic suppression and var compensation in an 110kV substation in Guangxi province, this paper analyzes the reason why harmonic parameters exceed the limit, and then system equivalent model of the substation is founded according to the data measured in the substation. Simulation results in three different conditions show the rationality and veracity of the model. Based on the above-mentioned theory and design method, HVHC which is suitable to 35kV grid is designed. Parameters design method of SVC is given. Simulation results show that HVHC can satisfy the industrial need, the harmonic current injection ability can be guaranteed even in 35kV grid, and it is low cost to eliminate harmonic currents and compensate reactive power in each conditions.
     Under guidance of theory and technique in eliminating harmonic currents and compensating reactive power in high voltage distribution networks, HVHC consists of SVC and S-IHAPF has been developed. The design process of hardware and software has been given in detail. Experiment results show the validity of the principle, signal detection, control method and parameter designing means in eliminating harmonic currents and compensating reactive power in high voltage distribution networks.
引文
[1]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998
    [2]Read J C. The Calculation of Rectifier and Converter Performance Characteristics. Journal IEF,1945,92(2):495-590
    [3]Kimbark E W. Direct Current Transmission (Vol. Ⅰ). John Wiley & Sons, New York,1971
    [4]夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波.北京:水利电力出版社,1994
    [5]吴竞昌,孙树勤,宋文南.电力系统谐波.北京:水利电力出版社,1988
    [6]林海雪,孙树勤.电力网中的谐波.北京:中国电力出版社,1998
    [7]阿里拉加J,布莱德勒D A,伯德格尔P S.电力系统谐波.唐统一译.徐州:中国矿业大学出版社,1991
    [8]阿里拉加J,布莱德勒D A,伯德格尔P S.电力系统谐波.容健纲,张文亮译.武汉:华中理工大学出版社,1994
    [9]水利电力部.电力系统谐波管理暂行规定(SD126-84).北京:水利电力出版社,1984
    [10]中国国家标准GB/T14549-93:电能质量 公用电网谐波.北京:中国标准出版社,1994
    [11]肖湘宁.电能质量分析与控制.北京:中国电力出版社,2004
    [12]许遐.公用电网谐波的评估和调控.北京:中国电力出版社,2008
    [13]T.J.E. Miller. Reactive power control in electric systems. New York:Wiley,1982
    [14]Cutsem, Thierry Van. Voltage stability of electric power systems. New York: Springer,2008
    [15]程浩忠.电力系统无功与电压稳定性.北京:中国电力出版社,2004
    [16]苑舜,韩水.配电网无功优化及无功补偿装置.北京:中国电力出版社,2003
    [17]李升.变电站电压无功控制理论与设计.北京:中国水利水电出版社
    [18]Bird B M, Marsh J F, Mclellan P R. Harmonic reduction in multiple converters by triple-frequency current injection. Proc IEE,1969,116(10):1730-1734
    [19]Bhim Singh, Kamal Al-Haddad, Ambrish Chandra. A review of active filters for power quality improvement. IEEE Trans. on I.E.,1999,46(5):1-12
    [20]Gyugyi L, Strycula E C. Active ac power filter. Proc of IEEE/IAS Annual Meeting,1976:529-535
    [21]Mekri F, Mazari B, Machmoum M. Control and optimization of shunt active power filter parameters by fuzzy logic. Electrical and Computer Engineering, 2006,31(3):127-134
    [22]Jin T, Smedley K M. Operation of one-Cycle controlled three-phase active power filter with unbalanced source and load. Power Electronics,2006, 21(5):1403-1412
    [23]Ribeiro R L A, Profumo F, Jacobina C B, Griva G, Da Silva E R C, Lima A M N, Penneta G. Two fault tolerant control strategies for shunt active power filter systems. Electrical and Computer Engineering,2002,1(2):792-797
    [24]Taotao Jin, Xiaofan Chen, Smedley K M. A new one-cycle controlled FACTS element with the function of STATCOM and active power filter. Power Delivery,2003,3(3):2634-2638
    [25]Chang G W, Chen W C. A new reference compensation voltage strategy for series active power filter control. Power Delivery,2006,21(3):1754-1756
    [26]Komurcugil H, Kukrer O. A new control strategy for single-phase shunt active power filters using a Lyapunov function. Industrial Electronics,2005, 53(1):305-312
    [27]Hurng-Liahng Jou, Jinn-Chang Wu, Yao-Jen Chang, Ya-Tsung, N Mohan. A novel active power filter for harmonic suppression.Electrical and Computer Engineering,2005,20(2):1507-1513
    [28]Bhende C N, Mishra S, Jain, S K. TS-fuzzy-controlled active power filter for load compensation. Power Delivery,2006,21(3):1459-1465
    [29]李琼林,刘会金,孙建军,崔福鑫.大容量有源滤波器的拓扑结构分析.高电压技术,2006,32(2):70-74
    [30]Dayi Li, Qiaofu Chen, Zhengchun Jia. A novel active power filter with fundamental magnetic flux compensation. Power Delivery,2004, 19(2):799-805
    [31]Jou H L, Wu J C, Wu K D. Parallel operation of passive power filter and hybrid power filter for harmonic suppression. IEE Proceedings,2001, 148(1):8-14
    [32]Maoh-Chin Jiang. Analysis and design of a novel three-phase active power filter. Aerospace and Electronic Systems,2001,37(3):824-831
    [33]Jou H L, Wu J C. New active power filter and control method. Electric Power Applications,2005,152(2):175-181
    [34]Kuang Li, Guochun Xiao, Jinjun Liu, Zhaoan Wang. Comparison of four control methods to active power filters applied in accelerator power supplies. 2004 IEEE 35th Annual,2004, 1(1):794-799
    [35]Landhult, H.A., Nordberg, B..345 MVA Fully Water-Cooled Synchronousnser for Dumont Station. IEEE transactions on power and systems,1971,90(6): 2578-2777
    [36]T.J.E. Miller, Ed., Reactive Power Control in Electric Power Systems, John Wiley and Sons, New York,1982
    [37]刘文华,宋强,张东江,陈天锦.50MVA STATCOM的链节及其背靠背额定工况运行试验.电工技术学报,2005,20(2):17-22
    [38]纪勇,李向荣,朱庆翔.基于GTO的±20Mvar STATCOM的现场运行及改进.电力系统自动化,2003,27(4):61-65
    [39]刘文华,宋强,滕乐天,王伟,魏文辉,耿俊成.基于链式逆变器的50MVA静止同步补偿器的直流电压平衡控制.中国电机工程学报,2004,24(4):142-150
    [40]姜齐荣,刘文华,韩英铎,纪勇.±20M var STATCOM控制器设计.电力系统自动化,2000,23(7):24-28,70
    [41]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006
    [42]谭甜源,罗安,唐欣.大功率并联混合型有源电力滤波器的研制.中国电机工程学报,2004,24(3):41-45
    [43]Luo An, Fu Qing, Wang Lina. High-capacity hybrid power filter for harmonic suppression and reactive power compensation in the power substation,2004, 24(9):115-123
    [44]刘飞,邹云屏,李辉.C型混合有源电力滤波器.中国电机工程学报,2005,25(6): 75-80
    [45]罗安,章兢,付青.新型注入式并联混合型有源电力滤波器.电工技术学报,2005,20(2):51-56
    [46]唐欣,罗安,涂春鸣.新型注入式混合有源滤波器的研究.电工技术学报,2004,19(11):50-55,60
    [47]陈伯胜.串联电抗器抑制谐波的作用及电抗率的选择.电网技术,2003,27(12): 92-95
    [48]李君权,张国军.谐波电流对电力电容器的影响.辽宁工程技术大学学报,2005,24(3):397-399
    [49]孙瑞祥,屈梁生.遗传算法优化效率的定量评价.自动化学报,2000,26(4): 552-556
    [50]王宏刚,曾建潮,徐玉斌.优良模式自学习遗传算法.自动化学报,1999,25(3):375-379
    [51]涂春鸣,罗安.无源滤波器的多目标优化设计.中国电机工程学报,2002,22(3): 17-21
    [52]庞浩,李东霞,俎云霄,王赞基.应用FFT进行电力系统谐波分析的改进算法.中国电机工程学报,2003,23(6):50-54
    [53]祁才君,王小海.基于插值FFT算法的间谐波参数估计.电工技术学报,2003,18(1):92-95
    [54]Furuhashi, T., Okuma, S., Uchikawa, Y.. A study on the theory of instantaneous reactive power. IEEE Transactions on Industry Electronics,1990, 37(1):86-90
    [55]Hyosung Kim, Blaabjerg, F., Bak-Jensen, B. Jaeho Choi.. Instantaneous power compensation in three-phase systems by using p-q-r theory. IEEE Transactions on Power Electronics,2002,17(5):701-710
    [56]舒双焰,丁洪发,段献忠.基于自适应数字滤波的谐波检测.电力自动化设备,2000,20,(6):13-16
    [57]Mazumdar, J., Harley, R. G., Lambert, F. C.. Neural Network Based Method for Predicting Nonlinear Load Harmonics. IEEE Transactions on Power Electronics,2007,22(3):1036-1045
    [58]王建赜,冉启文,纪延超,柳焯.基于小波变换的时变谐波检测.电力系统自动化,1998,22(8):52-55
    [59]周文晖,林丽莉,周兆经.基于小波变换的谐波检测法.仪器仪表学报,2001,22(3):5-10
    [60]戴丽萍,刘开培.基于自适应预测滤波器的谐波检测.电力自动化设备,2005,25(8):63-65
    [61]范瑞祥,罗安,唐杰.谐振注入式有源滤波器数字化控制系统延时研究.2007,27(13):104-110
    [62]Oscar C. Montero-Hernandez, Prasad N. Enjeti. A Fast Detection Algorithm Suitable for Mitigation of Numerous Power Quality Disturbances. IEEE Transactions on Industry Applications,2005,41 (6):1684-1690
    [63]曾光,苏彦民,柯敏倩,张静刚.用于无功静补系统的模糊-PI控制方法.电工技术学报,2006,21(6):40-44
    [64]洪峰,单任仲,王慧贞,严仰光.一种变环宽准恒频电流滞环控制方法.电工技术学报,2009,1(24):115-119
    [65]周林,沈小莉,周雒维,周小军.单周控制技术在有源电力滤波器中的应用.电力电子技术,2004,38(4):11-13
    [66]钱挺,吕征宇,胡进,黄植宏.基于单周控制的有源滤波器双环控制策略.中国电机工程学报,2003,23(3):34-37
    [67]张淼,吴捷.基于灰色预测的有源滤波器预测控制技术.华南理工大学学报(自然科学版),2005,33(7):74-77
    [68]唐欣,罗安.基于重复控制的有源滤波器的三态滞环控制方法.电工技术学报,2009,2(9):134-139
    [69]常鹏飞,曾继伦,王彤.三相四线有源电力滤波器直流侧电压控制方法.电力系统自动化,2005,29(8):75-78
    [70]纪飞峰,Mansoor,解大.基于直流侧电压周期离散控制的单相有源滤波器.中国电机工程学报,2005,25(20):37-43
    [71]Luo S, Ha Z. An adaptive detecting method for harmonic and reactive currents. IEEE Transactions on Industrial Electronics,1995,42(1):85-89
    [72]Karimi H, Karimi-Ghancmani M, Reza Iravani M. An adaptive filter for synchronous extraction of harmonic and distortion. IEEE Transactions on Power Delivery,2003,18(4):1350-1356
    [73]陈尚勤,李晓峰.快速自适应信息处理.北京:人民邮电出版社,1993
    [74]J.G.Proakis. Digital communications. McGraw-Hill, New Yoik:McGraw-Hill, 1995
    [75]J. B. Ziegler, N. B. Nichols. Optimum settings for automatic controllers. Transactions of A.S.M.E.,1942,64(5):759-768
    [76]Patrick K. Simpson. Fuzzy Min-Max Neural Networks—Part 2:Clustering. IEEE Transactions on Fuzzy Systems,1993,1(6):32-45
    [77]Chuen-Yau Chen, Chun-Yueh Huang, Bin-Da Liu. A Current-Mode Defuzzifier Circuit to Realize the Centroid Strategy. in Proc. IEEE International Symposium on Circuits and Systems,1997,1(3):609-612
    [78]刘文华,陈建业,王仲鸿,王新超,李承业,刘毓,王旬,李向荣.采用GTO的新型静止无功发生器.电力系统自动化,1997,21(3):24-32
    [79]卓放,胡军飞,王兆安.采用多重化主电路实现的大功率有源电力滤波器.电网技术,2000,24(8):5-7
    [80]许湘莲,邹云屏,丁凯,王成智,金红元.级联多电平逆变器在STATCOM的应用研究.武汉大学学报(工学版),2005,38(4):34-37,41
    [81]刘文华,宋强,严干贵,陈远华,于庆广.基于三电平中点箝位逆变器的高压变频调速器.清华大学学报(自然科学版),2003,43(3):357-360
    [82]刘海波,毛承雄,陆继明,王丹.基于多绕组变压器隔离型变换器的链式STATCOM研究.电力自动化设备;2007,27(12):5-9
    [83]王碧芳,刘溟,袁拓来,张振环.中压有源电力滤波器主电路拓扑结构研究.电力自动化设备,2006,26(6):23-26,62
    [84]戴斌,黄安子.大容量电力系统有源电力滤波器的研究现状.湖北电力,2008,32(5):18-20
    [85]刘文华,宋强,滕乐天,郑东润,张东江.基于集成门极换向晶闸管与链式逆变器的±50Mvar静止同步补偿器.中国电机工程学报,2008,28(15):55-60
    [86]李鹏,石新春,粱志瑞.对电弧炉平衡化补偿实用公式推导及验证.电工技术学报,2001,16(1):77-80
    [87]唐杰,罗安,涂春鸣.配电静止同步补偿器的补偿电流检测方法.中国电机工程学报,2008,28(28):108-112
    [88]邓礼宽,姜新建,朱东起,陈峻岭.APF和SVC联合运行的稳定控制,2005,29(18):29-32,94
    [89]陈国柱,吕征宇,钱照明.有源电力滤波器的一般原理及应用.中国电机工程学报,2000,20(9):17-21
    [90]罗世国,候振程.有源电力滤波器的参数计算及其控制.重庆大学学报,1994,17(2):12-16
    [91]欧阳帆,周有庆,邵霞.基于平衡变压器的单相/三相移相供电方式的研究及参数匹配.变压器,2007,44(10):9-13
    [92]易兆林,胥军.SVC及其TCR电抗器的设计.电工技术学报,2006,01:66-68
    [93]茅建华.无源消谐滤波器LC参数选择原则的研究.电力建设,2005,26(5): 53-55,58
    [94]毕向阳,朱凌.无源滤波器的设计及仿真研究.电力电容器与无功补偿,2008,29(5):22-26
    [95]陈伯胜.串联电抗器抑制谐波的作用及电抗率的选择.电网技术,2003,27(]2): 92-95
    [96]谭劲.谐波对并联电容器的影响及抑制对策.西化师范大学学报(自然科学版),2005,26(2):187-190
    [97]许胜,赵键锋,唐国庆.SVC控制中功率因数给定的精确跟踪方法.电力电子技术,2008,06:6-10
    [98]林良真,叶林.电磁暂态分析软件包PSCAD/EMTDC.电网技术,2000,24(1): 65-66
    [99]何仰赞,温增银.电力系统分析(上).武汉:华中科技大学出版社,2002
    [100]姜齐荣,谢小荣,陈建业.电力系统并联补偿结构、原理、控制与应用.北京:机械工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700