并联型有源电力滤波器谐波检测及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力电子技术的广泛应用为工业设备提供了高速、高效和节能的控制手段,但同时也给电网注入了不可忽视的无功以及谐波电流。有源电力滤波器是一种高效、稳定、灵活的优化电能质量的重要而且先进的手段,它的应用在提高公用电网质量上将占据重要地位。
     本文首先介绍了谐波的产生及危害、国际及国家规定的谐波标准、谐波抑制的方法、有源电力滤波器的分类以及基本工作原理。
     并联型有源电力滤波器常见的主电路结构有三相三线APF、电容中点型三相四线APF和三相四桥臂APF。数学模型是所有研究工作的基础,本文分别建立了三种主电路在同步旋转坐标系下的数学模型。虽然这些数学模型中存在着d轴与q轴电流的耦合,但在同步旋转坐标系下基波正序分量被变换成直流分量给控制策略带来了优势。
     对于三种主电路来说,在同步旋转坐标系下的双闭环控制策略基本相同。三相三线APF采用了SVPWM策略,电容中点型三相四线APF采用了SPWM策略,三相四桥臂APF采用了3D-SVPWM策略。调制策略的不同造成了直流侧电压利用率的不同,也即是相同的直流侧电压下APF的补偿能力不同。电容中点型APF与三相四桥臂APF相比有着以下缺点:由于采用了SPWM算法,输出波形畸变率较大,直流侧电压利用率较低,需要提高直流侧电压以满足补偿精度的要求;由于电容中点与零线相连,当需要补偿不平衡电流时,电容上会流过补偿电流,将会导致电容的使用寿命的减少。而优势在于结构简单,节省了一个桥臂的IGBT及输出电抗;SPWM算法实现简单,编程容易;由于该主电路与三相三线有源电力滤波器使用相同的主电路、控制电路,在实际工业应用时,可补偿三相三线系统和三相四线系统的谐波电流,对于不同的系统采用不同的控制软件即可。总的来说,目前国内外的APF产品多采用电容中点型的拓扑结构,这样既可以应用于三相三线系统,也可以应用于三相四线系统。
     直流侧电压控制是并联型有源电力滤波器的关键技术之一。直流侧电压的指令值都是根据电网电压的工作范围、APF的直流侧电容、额定输出电流、PWM逆变器输出侧电感、电流电压调节器以及调制策略等参数设计一个固定值,这样设计出来的直流侧电压指令值通常比较高。而较高的直流侧电压需要较大的直流侧电容耐压值同时带来了较大的开关损耗。直流侧电压的大小影响了APF的功率损耗大小。另一方面,直流侧电压的大小又会影响APF的补偿性能。本文提出了一种采用下垂调节器来控制直流侧电压指令值的控制策略。当电网电压升高时,提高直流侧电压,从而提高APF的补偿性能;当电网电压降低时,降低直流侧电压,在保证APF的补偿性能的基础上降低功率损耗。采用下垂调节器能够实现APF功率损耗和补偿性能的综合优化。
     谐波检测算法是影响有源电力滤波器性能的一个关键因素。在负载波动时,有源电力滤波器的动态响应速度与谐波电流指令的跟踪速度密切相关。通常负载电流发生变化时,任何谐波检测算法都需要一定的时间来跟踪这个变化,而这个时间的大小也就是谐波检测算法的动态响应时间。在这个动态响应时间内,谐波检测算法计算出的谐波指令是存在误差的。如果在负载电流的波动中含有有功电流的波动,则对于不同的谐波检测算法来说,这个误差也不相同。通常对各种谐波检测算法的分析仅包括了动态响应速度的分析,比较其动态响应时间,而并没有分析在动态响应时间内这个误差对有源电力滤波器的工作是否会造成影响。本文将以同步坐标变换检测算法和递归的离散傅立叶变换检测算法为例,来介绍基波提取算法和谐波直接提取算法在负载波动的暂态过程中对直流侧电压控制的影响。
     为提高有源电力滤波器的补偿性能和动态响应,本文提出了一种基于多同步旋转坐标的谐波电流控制策略,采用通过与某指定次正序或负序谐波角速度同步的旋转坐标变换,将该指定次谐波变成直流量,实现指定次谐波的检测和PI控制,从而实现对某指定次谐波电流的无静差补偿。完整的谐波电流控制器由多个独立的不同角速度的谐波电流控制器叠加组成。本文建立了APF在谐波旋转坐标系下的数学模型,针对谐波坐标系下的电流耦合提出一种更简单的综合解耦策略。对提出的指定次谐波电流控制器进行了分析,从理论上证明了与传统的电流环控制方法相比,指定次谐波控制可以使得补偿精度明显提高,利用零极点对消方法对提出的控制器参数进行了设计。试验结果验证了提出的控制策略的优越性。
     最后在以上研究的基础上,本文研制了三台并联型有源电力滤波器装置,采用了三种主电路结构。在这些装置基础上本文对调制策略、谐波检测算法、直流侧电压控制和电流调节器等进行了大量的实验研究,实验验证了本文论述的观点。
Being the fast, potent, and economical control means to industrial devices, extensive use of power electronics technology, however, have also deteriorated power quality by injecting the non-negligible harmonics and reactive current to the network. Active Power Filter (APF) is an efficient, stable and flexible advanced mean for optimizing power's quality, its application will play a significant role in improving the quality of power grid.
     This paper presents an introduction to the cause and perniciousness of the harmonic current, the harmonic current standard at home and abroad,the ways to-suppress the harmonic current, the classification of APF, and the basic principle of work.
     The familiar main circuits of shunt APF are three phase three wire APF, split-Capacitor three phase four wire APF, and three phase four leg APF. The mathematical model is the basis of any researches. This paper builds three mathematical models for three main circuits of shunt APF at synchronization rotational coordinate. Although there are coupled currents between d axes and q axes in these models, that the positive sequence component of the fundamental wave is transformed DC is a strong point for control strategy.
     Double closed-loop control strategies of three main circuits are similar at synchronization rotational coordinate. Three phase three wire APF use Space Vector Pulse Width Modulation (SVPWM) strategy. Split-Capacitor three phase four wire APF use Sinusoidal Pulse Width Modulation (SPWM) strategy. Three phase four leg APF use three-dimensional SVPWM strategy. The difference of the modulation strategy make different DC link voltage usage, that means APF have different compensate ability when DC link voltage is same. What follows is the shortcoming of Split-Capacitor three phase four wire APF in comparison with three phase four leg APF. The distortion of output wave is bigger and DC link voltage usage is lower because of SPWM strategy. Because of the midpoint of capacitor link with zero curve, the compensate current pass through capacitor when APF compensate unbalance current, that will make useful time of capacitor reduce. The strong point of Split-Capacitor three phase four wire APF is this main circuit saves IGBT and output inductance of a leg, and it has same main circuit and control circuit with three phase three wire APF. So it can be applicable three phase three wire system and three phase four wire system by using different software.
     DC link voltage control is a key technology of shunt APF. DC link voltage reference is designed according to operating space of the Grid voltage, DC link capacitor value, rating output current, output inductance value, current regulator, voltage regulator, and modulation strategy etc. parameters. That will bring the higher designed value of DC link voltage. The higher value will bring the bigger losses of APF. So the value of DC link voltage effects on power losses and compensative ability of APF. This paper introduces a control strategy which uses a drop regulator to regulate the reference value of DC link voltage. When Grid voltage increase, DC link voltage increase by the drop regulator for ensuring compensative ability of APF. When Grid voltage decrease, DC link voltage decrease by the drop regulator for decrease power losses of APF. The drop regulator can realize comprehensive optimization between power losses and compensative ability of APF.
     Harmonic detection algorithm is an important part of shunt active power filter and significantly affects its filtering characteristics. When the load current is fluctuating, all of harmonic detection algorithms need dynamic response time to track the varied load current and compute the real time harmonic current value. In the dynamic response time, there is error between the computed harmonic current value and the actual harmonic current value. For the different types of harmonic detection algorithms, the error is different. The previous publications are mainly focused on the dynamic response speed and dynamic response time of harmonic detection algorithms and do not analyze the error which will affect the APF system in the dynamic response time. This paper will analyze the error which is caused by computing with the different types of harmonic detection algorithms when the load current is fluctuating and the APF system is working in transient state. Then it moves on to discuss whether the error will affect DC link voltage control.
     To improve the compensation characteristic and dynamic response of three-phase shunt active power filter (APF), a novel control strategy based on multiple synchronous rotating reference coordinates is proposed. Positive-sequence and negative-sequence harmonic current are both transformed into DC components by respective harmonic synchronous rotating transformation, which are then controlled by proportion-integral (PI) regulators in order to implement zero steady-state error compensation. The complete harmonic current control is realized as the superposition of all individual harmonic controllers. Mathematical model is built based on the harmonic synchronous rotating frame and the combined decoupling control strategy is proposed. Theoretical analysis of harmonic current controller proves that the compensation accuracy is improved compared to the traditional current control of APF. The proposed controller is designed based on the pole-zero cancellation technique. The superiority of the control architecture proposed is verified completely by experimental results.
     Finally, based on all research above, three prototypes which use three main circuits respectively were realized. On the basis of these prototypes, this paper did a plentiful research on the modulation strategy, harmonic detection algorithm, DC link voltage control, and current regulator. The theories and strategies proposed in this paper are verified completely by experimental results.
引文
[1]陈坚.电力电子学—电力电子变换和控制技术(第二版).北京:高等教育出版社.2002
    [2]George J.Wakileh.电力系统谐波-基本原理、分析方法和滤波器设计.(第一版)徐政译.北京:机械工业出版社,2003
    [3]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.(第一版).北京:机械工业出版社,2004
    [4]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社.2006
    [5]中国国家标准GB/T 12325-2008.电能质量供电电压偏差.北京:中国标准出版社,2008.
    [6]中国国家标准GB/T 12326-2008.电能质量电压波动和闪变.北京:中国标准出版社,2008.
    [7]中国国家标准GB/T 15945-2008.电能质量电力系统频率偏差.北京:中国标准出版社,2008.
    [8]中国国家标准GB/T 15543-2008.电能质量三相电压不平衡.北京:中国标准出版社,2008.
    [9]中国国家标准GB/T 24337-2009.电能质量公用电网间谐波.北京:中国标准出版社,2009.
    [10]陈国柱,吕征宇,钱照明.有源电力滤波器的一般原理及应用.中国电机工程学报.2000年9月第20卷第9期,PP.17-21.
    [11]陈仲.并联有源电力滤波器实用关键技术研究.[博士学位论文].浙江大学.2005.8
    [12]H. Akagi, Y. Kanazawa, and A. Nabae, "Instantaneous reactive power compensators comprising switching devices without energy storage components," IEEE Trans. Ind. Appl., vol. IA-20, no.3, pp.625-630, Jan./Feb.1984.
    [13]H. Akagi, F. Z. Peng, A. Nabae. A new approach to harmonic compensation in power systems. IEEE/IAS Ann. Meeting Conf. Rec.1988,874-880
    [14]Peng F Z. Application issues of active power filters. IEEE Trans Industry Applications, 1998,4(5):21-30
    [15]熊健.三相电压型高频PWM整流器研究:[博士学位论文].武汉:华中科技大学 图书馆,1999.
    [16]W. M. Grady, M. J. Samotyj, and A. H. Noyola, "Survey of active power line conditioning methodologies," IEEE Trans. Power Delivery, vol.5,1990, pp. 1536-1542
    [17]康勇.高频大功率SPWM逆变电源输出电压控制技术研究:[博士学位论文],华中科技大学图书馆,1994.
    [18]魏学良.三相三线并联型APF电流环数字化控制研究.[博士学位论文],华中科技大学图书馆,2008
    [19]戴珂.双三相电压源PWM变换器串并联补偿型UPS控制技术研究.[博士学位论文],华中科技大学图书馆,2003
    [20]Thomas T, Haddad K, Joos G, Jaafari A. Design and performance of active power filters. IEEE, Industry Applications Magazine,1998,4:21-31
    [21]Noriega G V, Karady G G.Five step-low frequency switching active power filter for network harmonic compensation in substations.IEEE Trans Power Delivery,1999, 14(4):1298-3303.
    [22]姜齐荣,赵东元,陈建业.有源电力滤波器——结构·原理·控制.(第一版).北京:科学出版社,2005
    [23]Akagi H, Fujita H. A new power line conditioner for harmonic compensation in powersystems. IEEE Transactions on Power Delivery.1995,10(3):1570-1575.
    [24]Mishra M K,Joshi A, Ghosh A. A new algorithm for active shunt filters using instantaneous reactive power theory. IEEE Trans. On Power Engineering review,2000, 20:56-58
    [25]魏学良,戴珂,谢斌,康勇,彭华良.不平衡负载下并联有源电力滤波器的控制策略[J].中国电机工程学报,2008,28(24):64-69.
    [26]唐欣,曾启明,陈伟乐.有源电力滤波器的双闭环串级控制[J].中国电机工程学报,2008,28(24):59-63.
    [27]方昕.并联型有源电力滤波器的电流数字控制技术.[硕士论文].华中科技大学.2006
    [28]沈安文,万淑芸,王离九等.PWM整流器的输入电流谐波分析及参数确定.电力电子技术,1998,3:4-6
    [29]Kanaan H Y, AI-Haddad K. A linear decoupling multiple-loops control scheme applied to a three-phase series active power filter for voltage harmonic cancellation reactive power compensation.11th International Conference on Harmonics and Quality of Power,2004:299-304
    [30]熊健,康勇,段善旭等.三相电压型PWM整流器控制技术研究.电力电子技术,1999,2:5-7
    [31]魏学良,戴珂,方昕,等.三相并联型有源电力滤波器补偿电流性能分析与改进[J].中国电机工程学报,2007,27(28):113-119.
    [32]刘飞,邹云屏,李辉等.基于重复控制的电压源型逆变器输出电流波形控制方法.中国电机工程学报.2005年10月第25卷第19期,PP.58-63.
    [33]Ying-Yu Tzou, Rong-Shyang Ou, Shih-Liang Jung, Meng-Yueh Chang, "High-performance programmable AC power source with low harmonic distortion using DSP-based repetitive control technique", IEEE Transactions on Power Electronics, vol.12, no.4, July 1997:1201-1210
    [34]T.Inoue, M.Nakano, S.Iwai, "High accuracy control of servomechanism for repeated contouring," in Proc.10th Annual Symp. Incremental Motion Control System and Devices, pp.258-292,1981
    [35]Y.Yamamoto, S.Hara, "The internal model principle and stability of repetitive control systems," Trans. SICE, vol.22, pp.830-834.1986
    [36]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制技术研究. [博士学位论文],华中科技大学图书馆,2000
    [37]熊健,康勇,张凯.电压空间矢量调制与常规SPWM的比较研究.电力电子技术,1999,33(2):25-28
    [38]周卫平,吴国正,唐劲松,刘大明.SVPWM的等效算法及SVPWM与SPWM的本质联系[J].中国电机工程学报,2006,26(2):133-137.
    [39]Kawamura A, Chuarayaratip. R, Haneyoshi T. Deadbeat control of PWM inverter with modified pulse patterns for uninterruptible power supply. IEEE Transactions on Industrial Electronics,1988,35(2).295-300
    [40]杨贵杰,孙力,崔乃政等.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):79-83.
    [41]Wu R, Dewan S B, Slemon G R. Analysis of an AC-to-DC voltage source converter using PWM with phase and amplitude control. IEEE Trans. On Industry Applications, 1991,27:355-364
    [42]Hyosung Kim, Hirofumi Akagi. The Instantaneous Power Theory on The Rotating p-q-r Reference Frames. IEEE 1999 International Conference on Power Electronics and Drive Systems, PEDS'99, July 1999, Hong Kong.
    [43]Aredes M, Watanabe E H. New control algorithm for series and shunt three-phase four-wire active power filters[J]. IEEE Trans. on IA,1994,10(3):1649-1656.
    [44]向东.三相四线并联型有源电力滤波器指定谐波控制技术.[华中科技大学硕士论文],2007.
    [45]Ucar M, Ozdemir E, Kale M. An analysis of three-phase four-wire active power filter for harmonic elimination reactive power compensation and load balancing under non-ideal mains voltage [C]. IEEE 35th Power Electronics Specialists Conference, 2004,4:3089-3094.
    [46]杨柳,刘会金,陈允平等.三相四线制系统任意次谐波电流的检测新方法.中国电机工程学报.2005年7月第25卷第13期,PP.41-44.
    [47]常鹏飞,曾继伦,王彤等.三相四线有源电力滤波器直流侧电压控制方法.电力系统自动化.2005.4第29卷第8期,PP.75-78.
    [48]卓放,杨君,胡军飞等.三相四线制系统并联型有源电力滤波器实验研究.电力电子技术.1999年第6期,PP.16-8.
    [49]Kim S, Enjeti P N. Control strategies for active power filter in three-phase four-wire systems [C]. IEEE 15th Applied Power Electronics Conference and Exposition,2000, 1:420-426.
    [50]乐健,姜齐荣,韩英铎.基于统一数学模型的三相四线并联有源电力滤波器的性能分析[J].中国电机工程学报,2007,27(7):108-114.
    [51]乐健,姜齐荣,韩英铎.基于统一数学模型的三相四线有源电力滤波器的电流滞环控制策略分析[J].中国电机工程学报,2007,27(10):85-91.
    [52]霍伟.并联型三相四线制电力有源滤波研究.[硕士学位论文].哈尔滨工程大学.2006.1
    [53]刘杰.三相四线制电力有源滤波器的研制.[硕士学位论文].山东大学.2006.4
    [54]陈瑶,金新民,童亦斌.三相四线系统中SPWM与SVPWM的归一化研究[J].电工技术学报,2007,22(12):122-127.
    [55]阮新波,严仰光.四桥臂三相逆变器的控制策略[J].电工技术学报,2005,15(1):61-64.
    [56]曹震.三相四桥臂有源电力滤波器的控制与实验研究.[华中科技大学硕士论文], 2008.
    [57]M.G. Villalva,F.E. Ruppert.3-D space vector PWM for three-leg four-wire voltage source inverters.2004,IEEE 35th Annual Power Electronics Specialists Conference,2004,(5):3946-3951
    [58]杨宏,阮新波,严仰光.采用最大误差电流调节的四桥臂三相逆变器.电力电子技术,2003,37(1):32-35
    [59]孙驰,毕增军,魏光辉.一种新颖的三相四桥臂逆变器解耦控制的建模与仿真.中国电机工程学报,2004,24(1):124-130.
    [60]M.C.Wong,Z.Y.Zhao,Y.D.Han. Three dimentional pulse width modulation technique in three-level power inverters for three-phase four wired system.IEEE Trans. Power Electronics.2001,16:418-427
    [61]D. Shen, P.W. Lehn. Fixed-frequency Space Vector Modulation Control for Three-phase Four-leg Active Power Filters. IEEE Proceedings Electric Power Applications,2002,149(4):268-274
    [62]C.A.Quinn,N.Mohan. Active filtering of harmonic currents in three-phase four-wire systems with three-phase and single-phase non-linear loads. IEEE Trans. on Industry Applications,1992,28(4):555-562
    [63]龚春英,熊宇,郦鸣,陈新,严仰光.四桥臂三相逆变电源的三维空间矢量控制技术研究.电工技术学报,2004,19(12):29-36
    [64]李登莹.静止坐标系下四桥臂逆变器3-D SVM调制方法研究.[燕山大学工学硕士论文].,2006
    [65]吴睿.基于空间矢量控制的三相四桥臂逆变电源研究.[南京航天航空大学硕士学位论文],2006
    [66]程辉.基于DSP的三相四桥臂3-D SVM逆变器的研究.[燕山大学工学硕士论文].2005:10-35
    [67]A. Tarkiainen, R. Pollanen, M.Niemela,J.Pyrhonen,"DC-link voltage effects on properties of a shunt active filter", Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual Volume 4,2004 Page(s):3169-3175 Vol.4.
    [68]Guopeng Zhao, Jinjun Liu, Xin Yang and Zhaoan Wang. Analysis and specification of DC side voltage in parallel active power filter regarding compensation characteristics of generators. Power Electronics Specialists Conference,2008. PESC 2008. IEEE, 15-19 June 2008 Page(s):3495-3499
    [69]Xinming Huang; Jinjun Liu; Hui Zhang. A simplified shunt APF model based on instantaneous energy equilibrium and its application in DC voltage control. Power Electronics Specialists Conference,2008. PESC 2008. IEEE.15-19 June 2008 Page(s):2235-2241
    [70]Chaoui, A.; Gaubert, J.-P.; Krim, F.; Rambault, L.;. On the design of shunt active filter for improving power quality [J]. Industrial Electronics,2008. ISIE 2008. IEEE International Symposium on June 30 2008-July 2 2008 Page(s):31-37
    [71]杨君,王兆安,邱关源.并联型电力有源滤波器直流侧电压的控制[J].电力电子技术,1996,(4):48-50.
    [72]S. J. Chiang, J.M. Chang, "Design and Implementation of the parallelable active power filtre," Proc.30th Annual IEEE Power Electr. Specialists Conf. (PESC 99), vol.1, June/July 1999, pp.406-411.
    [73]S. Ponnaluri, A. Brickwedde, "Generalized System Design of Active filters," Power Electronics Specialists Conference,2001. PESC.2001 IEEE 32nd Annual, Volume 3,17-21 June 2001 Page(s):1414-1419 vol.3
    [74]F. Dong Tan, Jeff L. Vollin and Slobodan M. Cuk, "A Practical Approach for Magnetic Core-Loss Characterization," IEEE Transactions on Power Electronics, Vol. 10, No.2, March 1995
    [75]Naseem O, Erickson R W, Carlin P. Prediction of switching loss variations by averaged switch modeling. Applied Power Electronics Conference and Exposition, 2000. APEC 2000. Fifteenth Annual IEEE, Volume 1,6-10 Feb.2000 Page(s):242-248 vol.1
    [76]KOLAR, J.W., ERTL, H., and ZACH, F.C.:'Influence of the modulation method on the conduction and switchmg losses of a PWM converter system'. IEEE Trans.,1991, 1A-27, (6). pp.1063-1075
    [77]D. E. Rice, A detailed analysis of six-pulse converter harmonic currents" Industry Applications, IEEE Transactions on Volume 30, Issue 2, March-April 1994 Page(s):294-304.
    [78]H. Akagi, Y. Kanazawa, and A. Nabae, "Instantaneous reactive power compensators comprising switching devices without energy storage components," IEEE Transaction on Industry Applications, Vol. IA-20, No.3, May/June 1984, pp.625-631.
    [79]Vasco Soares, Pedro Verdelho and Gil Marques, "Active Power Filter Control Circuit based on the Instantaneous Active and Reactive Current iq-id method," Power Electronics Specialists Conference,1997, PESC'97 Record,28th annual EEE Vol.2, 22-27 June 1997,pp.1096-1101.
    [80]Annam'aria R. V'arkonyi-K'oczy, "A recursive fast Fourier transformation algorithm,"IEEE Trans. Circuits Syst. II, vol.42, no.9, Sept.1995, pp.614-616.
    [81]Sunt Srianthumrong and Somboon Sangwong-Wanich, "An active power filter with harmonic detection method based on recursive DFT," in Proc.8th Int. Conf. Harmonics and Quality of Power, vol.1, Oct.1998, pp.127-132.
    [82]M. D"olen and R.D. Lorenz, "An industrially useful means for decomposition and differentiation of harmonic components of periodic waveforms," in Proc. IEEE Ind. Applicat. Soc. Ann. Meeting, vol.2, Oct.8-12,2000, pp.1016-1023.
    [83]B. Zhang, "The method based on a generalized dqk coordinate transform for current detection of an active power filter and power system," in Proc. IEEE Power Electronics Specialists Conf.,1999, vol.1, pp:242-248.
    [84]Rechka S., Ngandui E., Jianhong Xu, Sicard P., "Analysis of harmonic detection algorithms and their application to active power filters for harmonics compensation and resonance damping," Electrical and Computer Engineering, Canadian Journal of,Volume 28, Issue 1, January 2003 Page(s):41-51
    [85]Asiminoaei, L.; Blaabjerg, F.; Hansen, S.; "Detection is key-Harmonic detection methods for active power filter applications," Industry Applications Magazine, IEEE, Volume 13, Issue 4, July-Aug.2007 Page(s):22-33
    [86]Mariethoz, A. Rufer. Open loop and closed loop Spectral Frequency Active Filtering[J]. IEEE Transactions on Power Electronics, Vol.17, No 4, July 2002.
    [87]Chudamani, R.; Vasudevan, K.; Ramalingam, C.S.;. Comparative Evaluation of Harmonic Extraction Techniques for Three-Phase Three-Wire Active Power Filter [J]. Power Electronics and Drive Systems,2007. PEDS '07.7th International Conference on 27-30 Nov.2007 Page(s):1700-1706
    [88]Xie Bin; Dai Ke; Xiang Dong; Fang Xin; Kang Yong;. Application of Moving Average Algorithm for Shunt Active Power Filter [J]. Industrial Technology,2006. ICIT 2006. IEEE International Conference on 15-17 Dec.2006 Page(s):1043-1047
    [89]谢斌,戴珂,方昕等.移动平均在并联有源电力滤波器中的应用.电力电子技术.2007年1月第41卷第1期,PP.39-41.
    [90]K. P. Sozanski. Sliding DFT Control Algorithm for Three-Phase Active Power Filter. Applied Power Electronics Conference and Exposition,2006. APEC'06. Twenty-First Annual IEEE.
    [91]E. Jacobsen, R. Lyons. The Sliding DFT. Signal Processing Magazine. IEEE. Vol 20. No 2. March 2003.
    [92]Bin, Xie; Ke, Dai; Liang, Wei Xue; Yong, Kang, Flexible compensate arithmetic of the three-phase four-wire active power filter,2008 IEEE Vehicle Power and Propulsion Conference, VPPC 2008, pp.1-4, Sept.2008
    [93]Xie, Bin; Dai, Ke; Kang, Yong; DC Voltage Control for the Three-Phase Four-Wire Shunt Split-capacitor Active Power Filter,2009 IEEE International Electric Machines and Drives Conference, IEMDC 2009, pp.1669-1673, May 2009
    [94]Wei XL, Dai K, Fang X, et al. Performance Analysis and Improvement of Output Current Controller for Three-Phase Shunt Active Power Filter [C]. Proc. Of IEEE IECON'06, Paris, France,2006:1757-1762
    [95]Wei XL, Dai K, Peng HL, et al.Research on Control Strategy for Three-Phase Three-Wire Shunt Active Power Filter under Unbalanced Loads [C]. Proc. Of IEEE EUROCON'07, Warsaw, Poland,2007:
    [96]H. Akagi, A. Nabae and S. Atoh. Control strategy of active power filters using voltage source PWM converters[J], IEEE Trans. Industry Appl.1986,22:460-481.
    [97]Paolo Mattavelli, Fernando Pinhabel Marafao. Repetitive-Based Control for Selective Harmonic Compensation in Active Power Filters [J], IEEE Trans. on Industral Electronics,2004,51(5):722-729.
    [98]D. N. Zmood, D. G. Holmes, and G.H. Bode. Frequency-domain analysis of three-phase linear current regulators [J]. IEEE Trans. Ind. Applicat,2001,37: 601-610.
    [99]R. I. Bojoi, G. Griva, V. Bostan, M. Guerriero, F. Farina, and F. Profumo. Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame[J]. IEEE Trans. Power Electron,2005,20(6): 1402-1412.
    [100]Liserre, M, Teodorescu, R., and Blaabjerg. Double harmonic control for three-phase systems with the use of resonant current controllers in a rotating frame[J]. IEE Trans. Power Electron,2006,21:836-841.
    [101]T. W. Rowan and R. J. Kekman. A new synchronous current regulator and an analysis of current regulated PWM inverters[J], IEEE Trans. Industry Appl.1986,22:678-690.
    [102]刘开培,陈艳慧,张俊敏.基于p-q-r法的电力系统谐波检测方法.中国电机工程 学报.2005.7第25卷第14期,PP.25-29.
    [103]X. Yuan, W. Merk, H. Stemmler. Stationary frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions[J], IEEE Trans. Ind. Appl,2002,38(2):523-532.
    [104]孙驰,魏光辉,毕增军.基于同步坐标变换的三相不对称系统的无功与谐波电流的检测方法[J].中国电机工程学报,2003,23(12):43-48.
    [105]Sun Chi, Wei Guanghui, Bi Zengjun. Detection for reactive and harmonic currents of unbalanced three-phase systems based on synchronous reference frame transformation[J]. Proceedings of the CSEE,2003,23(12):43-48.
    [106]Yand Liu, Liu Huijin, Chen Yunping. A New Algorithm For Random Harmonic Current Detection In Three Phase Four Wire System.[J]. Proceedings of the CSEE,2005,25(13):41-44. (in Chinese)
    [107]郭希铮,韩强, 杨耕,等:可选择谐波型有源电力滤波器的闭环控制和实现[J].电工技术学报,2006,21(9):51-56.
    [108]Wei Xueliang, Dai Ke, Fang Xin, et al. Performance analysis and improvement of output current controller for t hree-phase shunt active power filter [C]. IEEE Indust rial Elect ronics,IECON 2006 2 32nd Annual Conference on Nov. Paris, France:[s. n.],2006:175721762.
    [109]姚为正,王群,刘进军,等.有源电力滤波器对不同类型谐波源的补偿特性[J].电工技术学报,2000,15(6):40-45.
    [110]Sensarma P S, Padiyar K R, Ramanarayanan V. A comparative study of harmonic filtering strategies for a shunt active filter[C]. IEEE Industry Applications Conference, Rome, Italy,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700