RNAi沉默TGF-β1对抗大鼠移植肾纤维化机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     目的建立大鼠移植肾纤维化加快模型并转染,观察shRNA-TGF-β1质粒(转化生长因子β1干扰质粒)对大鼠移植肾炎性细胞浸润及纤维化的影响。
     方法采用强化供肾冷缺血的方法,建立SD大鼠为供体,Wistar大鼠为受体的移植肾纤维化加快模型,将受体分为四组:T组为质粒组,受者注射RNAi质粒;H组为空质粒组,受者注射空质粒;Y组为移植组,受者仅行肾移植,不注射任何质粒;J组为假手术组,只打开腹腔切除左肾,不进行肾移植。并利用流体力学为基础的肾脏基因转染技术进行相应质粒的转染。HE染色评估各组移植肾炎性细胞浸润及纤维化程度。
     结果成功建立大鼠移植肾纤维化加快模型,移植组肾大鼠较短时间肾脏即纤维化缩小;HE染色示移植肾间质大量淋巴细胞浸润,细胞外充满大量的嗜伊红色细胞外基质,纤维化程度较重;相反质粒组的大鼠移植肾炎性细胞细胞浸润少,纤维化程度较轻。
     结论强化冷缺血能加快移植肾纤维化;以流体力学为基础的肾脏基因转染技术具有可行性;shRNA-TGF-β1质粒可减轻移植肾炎性细胞浸润及纤维化。
     第二部分
     目的:观察shRNA-TGF-β1质粒对大鼠移植肾TGF-β1及ECM(细胞外基质)表达的影响。
     方法:移植术后1、2、3个月时收集肾脏标本; RT-PCR及Western blot检测TGF-β1,Masson染色观察移植肾细胞外基质的沉积。
     结果:质粒组TGF-β1表达受到抑制,明显低于移植组及空质粒组(P<0.01 or P<0.05);质粒组移植肾细胞外基质沉积少于移植组及空质粒组。
     结论:shRNA-TGF-β1质粒能抑制移植肾TGF-β1的表达,减少细胞外基质的生成,一定程度上预防移植肾纤维化。
     第三部分
     目的:探讨shRNA-TGF-β1质粒对抗大鼠移植肾纤维化作用机制。
     方法:RT-PCR及Western blot检测各组移植肾p-Smad3(磷酸化-Smad3)、p-Smad7(磷酸化-Smad7)、E-cadherin、Ⅰ型胶原的mRNA及蛋白表达;E-cadherin及α肌动蛋白(α-SMA)免疫组化染色分别标记肾小管上皮细胞及成纤维母细胞,观察移植肾上皮细胞及成纤维母细胞变化的情况。
     结果:质粒组p-Smad3表达受到抑制,低于移植组及空质粒组(P﹤0.01 or P <0.05);质粒组p-Smad7表达上调,高于移植组及空质粒组(P﹤0.01 or P < 0.05);质粒组Ⅰ型胶原表达受到抑制,明显低于移植组及空质粒组(P<0.01 or P<0.05);质粒组E-cadherin表达高于H、Y组(P﹤0.01 or P < 0.05);质粒组E-cadherin标记的肾小管上皮细胞多于对照组,α-SMA标记的成纤维母细胞少于对照组,发生上皮-间质转分化的细胞较少。
     结论: shRNA-TGF-β1质粒对抗移植肾纤维化的机制可能是下调信号蛋白p-Smad3的表达、上调p-Smad7的表达,维持E-cadherin的表达,进而抑制了上皮-间质转分化,减少了包括Ⅰ型胶原在内的细胞外基质的生成。
PART ONE
     Objective: To construct rat Transplant Kidney-sclerosis accelerated model and transfected with the plasmid shRNA- TGF-β1, and to observe the inflammatory cells infiltration and fibrosis extent of shRNA-TGF-β1 plasmid on renal allograft.
     Methods: Adopot the enhanced ischemia reperfusion injury method, and the SD to Wistar rat Transplant Kidney-sclerosis accelerated model was constructed. The receptors were divided into four groups: Group T (plasmid group) injected with shRNA-TGF-β1; Group H (vacant plasmid group) injected with vacant plasmid; Group Y (transplantation group) injected with no plasmid; Group J (sham-operated group) only removed the right kidney with no transplantation. Transfected with the plasmid based on the hydromechanics. The pathological changes and infiltrated inflammatory cells were assessed by HE staining.
     Results: Rat Transplant Kidney-sclerosis accelerated model was constructed successfully, and they presented fibrosis in a short time. There were large amount of inflammatory cells infiltration and severe deposition of ECM displayed HE staining. There were also less infiltrated chronic inflammatory cells and extracellular matrix deposition in the plasmid group.
     Conclusion: Rat Transplant Kidney-sclerosis accelerated model could be constructed via enhanced ischemia reperfusion injury. Renal gene transfection technology based on hydromechanics is feasible. The plasmid could inhibit the fibrosis of rat renal allograft.
     PART TWO
     Objective: To investigate the inhibitory effcts of shRNA-TGF-β1 plasmid on the expression of TGF-β1 and ECM in rat renal allograft.
     Methods: Transplanted renals were collected at the first, second and third months after transplantation. The gene transcriptional level of TGF-β1 by RT-PCR and the protein variation was examined by western blot, and the ECM deposition was assessed by Masson staining.
     Results: In group T, the expression of TGF-β1 was inhibited by the plasmid, and it was significantly lower than group H/Y (P﹤0.01 or P<0.05). The ECM depositon of Group T was much less than Group H/Y.
     Conclusion: The shRNA- TGF-β1 plasmid could inhibit the expression of TGF-β1 and reduce the synthesis of extracellular matrix, which could prevent fibrosis of renal allograft at some extent.
     PART THREE
     Objective: To explore the possible mechanism on the inhibition of rat renal allograft fibrosis by shRNA-TGF-β1 plasmid.
     Methods: RT-PCR and Western blot were used to detect the expression of phosphorylated Smad3/7 (p-Smad3/7), type I collagen and E-cadherin. Immunohistochemical stainings of E-cadherin andα-SMA were used to label tubular epithelial cells and fibroblast respectively in order to assess the cells’change.
     Results: In the plasmid group, the signal proteins of p-Smad3 was down-regulated and p-Smad7 was up-regulated(P﹤0.01 or P<0.05); Type I collagen was also inhibited and its expression was lower than Group H/Y (P﹤0.01 or P<0.05); the expression of E-cadherin was higher than Group H/Y(P<0.01 or P<0.05). Epithelial cells were much more and fibroblast was much less than that of control groups, and there was less occurrence of EMT.
     Conclusion: Our results suggest that shRNA- TGF-β1 plasmid could prevent the fibrosis of renal allograft. The mechanism may be associated with its effects of down-regulating p-Smad3, and up-regulating p-Smad7, maintaining the expression of E-cadherin, leading to the suppression of epithelial-myofibroblast transdiferentiation and extracellular matrix synthesis.
引文
[1] Yoshida K, Endo T, Saito T, et al. Cadaveric renal transplantation from non-heart-beating donors with graft survival for more than 10 years. Transplantation Proceedings, 2002, 34(7): 2604~2607.
    [2] TA Wynn.Cellular and molecular mechanisms of fibrosis. J Pathol 2008, 214: 199–210.
    [3] Misseri R, Rink R.C., Meldrum D.R, et al. Inflammatory mediators and growth factors in obstructive renal injury. J. Surg. Res 2004. 119: 149–159.
    [4] Campistol JM, I?igo P, Larios S, et al. Role of transplantation.Transforming growth factor-β1 in the progression of Chronic allograft nephropathy. Nephrol Dial Transplant. 2001, 16 suppl: 114-6.
    [5] Kanzler, Stephan, Ansgar W Lohse, Andrea Keil, et al. TGF-b1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol Gastrointest Liver Physiol, 1999, 276: 1059-1068.
    [6] Bhogal RK, Stoica CM, McGaha TL, et al. Molecular Aspects of Regulation of Collagen Gene Expression in Fibrosis. J Clin Immunol. 2005, 25(6): 592-603.
    [7] Michael Zeisberg, Raghu Kalluri. The role of epithelial-to- mesenchymal transition in renal fibrosis. J Mol Med, 2004, 82: 175–181.
    [8] Huijun W, Long C, Zhigang Z, et al. Ex vivo transfer of the decorin gene into rat glomerulus via a mesangial cell vector suppressed extracellular matrix accumulation in experimental glomerulonephritis. Exp.Mol. Pathol. 2005, 78: 17-24.
    [9] Guangchao Sui, Christina Soohoo, El Bachir Affar, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. PNAS, 2002, 99(8): 5515-5520.
    [10] Yu J Y, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNA in mammalian cells[J]. Proc Natl AcadSci USA, 2002, 9(10): 6047-6052.
    [11] Sijpkens YW, Doxiadis II, Mallat MJ, et a1. Early versus late acute rejection episodes in renal transplantation[J]. Transplantation, 2003, 75(2): 204-208.
    [12]辛宇鹏,卢一平,张秀辉等。大鼠原位异体肾移植硬化加快模型的建立。四川大学学报(医学版)2004,35(2):267-270。
    [13]辛宇鹏,袁光亚,卢一平等。缺血再灌注损伤致慢性移植肾肾病的发病机理及药物干预的实验研究。四川大学学报(医学版) 2007,38(6):9l8-923。
    [14] Hiroki Maruyama1, Noboru Higuchi1, Shigemi Kameda1, et al. Sustained Transgene Expression in Rat Kidney with Naked Plasmid DNA and PCR-Amplified DNA Fragments. J. Biochem, 2005, 137: 373-380.
    [15]辛宇鹏,袁光亚,卢一平,等。缺血再灌注损伤致慢性移植肾肾病的发病机理及药物干预的实验研究。四川大学学报(医学版),2007,38(6):9l8-923。
    [16]尹志康,吴小候,罗春丽,等。基因特异性短发卡RNA抑制缺氧再给氧人脐静脉内皮细胞的转化生长因子β1过表达。中华实验外科杂志,2009,26(5):573-575。
    [17] Van Linthout S, Seeland U, Riad A, et al. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol, 2008, 103(4): 319-27.
    [18] Alexis Dixon and Christine Maric. 17β-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-βprotein expression and signaling. Am J Physiol Renal Physiol, 2007, 293: 1678-1690.
    [19] Michael Zeisberg, Raghu Kalluri. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med, 2004, 82(3): 175-181.
    [20] J. Qiu, Z. Tu, Y. Shi, et al. Interference of Cyclosporine on Glucose Metabolism: Potential Role in Chronic Transplantation Kidney Fibrosis. Transplantation Proceedings, 2006, 38: 2065-2068.
    [21] Dong C, Zhu S, Wang T et al. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc. Natl Acad. Sci. USA 2002, 99: 3908-13.
    [22] Hamajima H, Ozaki I, Zhang H,et al. Modulation of the transforming growth factor-beta1-induced Smad phosphorylation by the extracellular matrix receptor beta1-integrin. Int J Oncol. 2009, 35(6): 1441-7.
    [23] Li JH, Zhu HJ, Huang XR, et al. Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells by blocking Smad2 activation.J Am Soc Nephrol, 2002, 13: 1464-1472.
    [24] Alexis Dixon and Christine Maric. 17β-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-βprotein expression and signaling. Am J Physiol Renal Physiol, 2007, 293: 1678-1690.
    [25] Hwang M, Kim HJ, Noh HJ, et al. TGF-β1 siRNA suppresses the tubulointerstitial fibrosis in the kidney of ureteral obstruction. Exp Mol Pathol, 2006, 81(1): 48-54.
    [26]张爱青,甘卫华,潘晓勤,等。外源性结缔组织生长因子对人肾小管上皮细胞转分化及细胞外基质合成的作用。第四军医大学学报,2007,28(12):1108-1111。
    [27] Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003, 112(12): 1776-1784.
    [28]刘冠贤,邓安国,余学清,等。狼疮肾炎病人尿蛋白刺激肾小管上皮细胞发生表型改变和I型胶原的表达上调。中华医学杂志,2007,87(48):3429-3432。
    [1] Yoshida K, Endo T, Saito T, et al. Cadaveric renal transplantation from non-heart-beating donors with graft survival for more than 10 years. Transplantation Proceedings, 2002, 34(7): 2604-2607.
    [2] Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol, 2008, 214(2): 199-210.
    [3] Campistol JM, I?igo P, Larios S,et al.Role of transplantation. Transforming growth factor-β1 in the progression of Chronic allograft nephropathy. Nephrol Dial Transplant. 2001, 16 suppl: 114-6.
    [4] Kanzler, Stephan, Ansgar W Lohse, Andrea Keil, et al. TGF-b1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol Gastrointest Liver Physiol, 1999, 276:1059-1068.
    [5]辛宇鹏,卢一平,高锐,张秀辉,李幼平,吴大蓉,王坤杰。益生注射液延缓大鼠慢性移植肾肾病的进程。中华器官移植杂志;2005,26(3):171-174。
    [6]辛宇鹏,袁光亚,卢一平,等。缺血再灌注损伤致慢性移植肾肾病的发病机理及药物干预的实验研究。四川大学学报(医学版),2007,38(6):9l8-923。
    [7] Ramaswamy G,Slack FJ. SiRNA-A guide for RNA silencing[J]。ChemBiol,2001,9(10):1053-1055。
    [8] Massague, J. TGF-βsignal transduction. Annu. Rev. Biochem. 1998, 67: 753-791.
    [9] Derynck R, Feng X H. TGF-βreceptor signaling. Biochim, Biophys, Acta, 1997, 1333: 105-150.
    [10] Wrana J L, Attisano L, Wieser R, et al. Mechanism of activation of the TGF receptor. Nature, 1994, 370: 341-347.
    [11] J Qiu, Z Tu, Y Shi, et al. Interference of Cyclosporine on Glucose Metabolism: Potential Role in Chronic Transplantation Kidney Fibrosis. Transplantation Proceedings, 2006, 38: 2065-2068.
    [12] Dong C, Zhu S, Wang T et al. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc. Natl Acad. Sci. USA 2002, 99: 3908-13.
    [13] Correia JJ, Chacko BM, Lam SS, et al. Sedimentation studies reveal a direct role of phosphorylation in Smad3: Smad4 homoand hetero-trimerization. Biochemistry, 2001, 40: 1473-1482.
    [14] Kawabata M, Inoue H, Hanyu A, et al. Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J, 1998, 17: 4056-4065.
    [15] Iwano M, Plieth D, Danoff TM, et,al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest, 2002, 110: 341-350.
    [16] Michael Zeisberg, Raghu Kalluri. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med, 2004, 82(3): 175-181.
    [17] Junwei Yang and Youhua Liu. Dissection of Key Events in Tubular Epithelial to Myofibroblast Transition and Its Implications in Renal Interstitial Fibrosis, 2001, 159(4): 1465-75.
    [18] Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003, 112(12): 1776-84.
    [19] Rastaldi MP. Epithelial-mesenchymal transition and its implications for thedevelopment of renal tubulointerstitial fibrosis. J Nephrol, 2006, 19(4): 407-12.
    [20] Van Linthout S, Seeland U, Riad A, et al. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol, 2008, 103(4): 319-327.
    [21] Alexis Dixon and Christine Maric. 17β-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-βprotein expression and signaling. Am J Physiol Renal Physiol, 2007, 293: 1678-1690.
    [22] Hills CE, Squires PE. TGF-beta1-Induced Epithelial-to-Mesenchymal Transition and Therapeutic Intervention in Diabetic Nephropathy. Am J Nephrol, 2009, 31(1): 68-74.
    [23] Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol, 2003, 14: 1358-1373.
    [24] McLennan SV, Kelly DJ, Cox AJ, et al. Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. Diabetologia, 2002, 45: 268-275.
    [25] McLennan SV, Kelly DJ, Cox AJ, et al. Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. Diabetologia, 2002, 45: 268-275.
    [26] Nangaku M. Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med, 2004, 43: 9–17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700