骨髓瘤细胞诱导的骨髓间充质干细胞Cx43表达变化及其在多发性骨髓瘤发病中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多发性骨髓瘤(MM)是浆细胞在骨髓中异常增生的恶性肿瘤,这些异常增生的浆细胞与骨髓基质细胞密切相关。MM细胞与骨髓微环境可通过直接接触及分泌细胞因子的方式间接相互作用。在MM的发展过程中,骨髓微环境逐渐表现出支持MM细胞生存和增殖的特征。骨髓间充质干细胞(BMSCs)参与构建骨髓微环境,参与促进MM细胞的生长及骨破坏的发生;同时,MM细胞对骨髓微环境重塑使其成为适合MM细胞生存和增殖场所。目前,此过程中涉及的具体机制尚未完全阐明。
     间隙连接是普遍存在的一种细胞间连接方式,相邻细胞间通过间隙连接介导的细胞间隙连接通讯(GJIC)进行着信息和能量物质的交换,对细胞增殖、分化等生理过程起着重要的调控作用。间隙连接蛋白43(Cx43)是在人体表达最高的一种间隙连接物质,可在包括造血干细胞、基质细胞等多种细胞表达,参与造血调控。Cx43表达及功能异常在多种肿瘤的发生、发展中发挥重要作用。那么在MM的发生、发展中,MM细胞及BMSCs如何相互作用,是否发生间隙连接的表达或功能改变,其改变又有怎样的生物学效应?我们通过建立MM细胞与BMSCs的共培养体系,研究MM细胞对BMSCs Cx43表达及功能的影响以及此过程中MM细胞及BMSCs的生物学行为的变化,从而进一步探讨MM的发病机制。
     本课题为国家自然科学基金项目(NO81071934/H1616)“接头蛋白Cx43在多发性骨髓瘤成骨细胞巢重塑中的作用”的重要研究内容,该实验完成为此项目的结题、文章发表及延伸课题的申报奠定基础。
     第一部分Cx43在骨髓瘤细胞和骨髓间充质干细胞的表达及生物学功能
     目的:检测人MM细胞及BMSCs的Cx43表达,探讨间隙连接在BMSCs诱导的MM细胞的迁移、粘附中的作用及其对BMSCs的基质细胞衍生因子-1α(SDF-1α)分泌的影响。
     方法:贴壁培养法分离培养人BMSCs,CD138磁珠及midi MACs分选原代MM细胞,流式细胞仪测定BMSCs及原代MM细胞的免疫表型。Westernblot及免疫荧光检测Cx43在BMSCs的表达。CCK-8法检测间隙连接阻断剂18α-甘草次酸(18α-GA)对MM细胞及BMSCs增殖的作用;微孔隔离实验检测18α-GA对BMSCs诱导的MM细胞迁移、粘附能力的影响。ELISA检测BMSCs SDF-1α分泌水平。
     结果:1)MM细胞系RPMI8226、U266及1例原代MM细胞中、低度表达Cx43,XG-4、XG-7细胞不表达Cx43。BMSCs高表达Cx43。初诊MM患者的BMSCs(MM-MSC)Cx43表达高于正常供者的BMSCs(ND-MSC)。2)18α-GA对RPMI8226细胞和BMSCs的增殖无明显影响。3)18α-GA抑制BMSCs的SDF-1α分泌,其作用前后SDF-1α浓度分别为(237.84±9.23)pg/ml、(94.31±6.44)pg/ml(P<0.01)。4)18α-GA可抑制BMSCs诱导的MM细胞迁移,BMSCs经其作用前后RPMI8226细胞迁移率分别为(8.0±0.673)%及(4.82±0.186)%(P<0.01),XG-7的细胞迁移率分别为(0.88±0.036)%、(0.58±0.020)%(P<0.05)。5)18α-GA可抑制MM细胞在BMSCs的粘附,其作用前后RPMI8226细胞粘附率分别为(16.967±1.55)%、(11.1±0.819)%(P<0.05),XG-7的细胞粘附率分别为(9.5±1.323)%、(6.63±0.551)%(P<0.05)。
     结论:BMSCs及部分MM细胞表达Cx43, MM-MSC Cx43表达高于ND-MSC。阻断间隙连接可抑制BMSCs诱导的MM细胞的迁移和粘附,并可抑制BMSCs的SDF-1α分泌。
     第二部分三维BMSCs细胞球的建立及其特点观察
     目的:建立BMSCs的三维培养方法以模拟骨髓微环境,并观察MM细胞在三维
     培养的BMSCs细胞球中的迁移。
     方法:在琼脂糖包被的圆底培养板中进行BMSCs的三维培养,倒置显微镜、HE
     染色及电镜下观察三维培养的BMSCs(3D-BMSCs)的形态特点,RT-PCR检测3D-BMSCs和普通二维培养的BMSCs(2D-BMSCs)的Cx43mRNA、SDF-1α mRNA的表达。免疫荧光检测18α-GA对RPMI8226细胞在3D-BMSCs细胞球中迁移的影响。
     结果:BMSCs在琼脂糖包被的圆底培养板中可呈球形生长,4天后细胞球直径约450μm。细胞球石蜡切片HE染色示,细胞球外层多为长梭形细胞,内部为多角形、不规则细胞。扫描电镜示,BMSCs细胞及其胞外丝状突起、基质样物质形成细胞球的外层结构,外层BMSCs仍为长梭形。与2D-BMSCs相比,3D-BMSCs的SDF-1αmRNA表达明显升高,Cx43mRNA表达无明显差别;18α-GA可抑制RPMI8226细胞在3D-BMSCs细胞球中的迁移。
     结论:3D-BMSCs细胞球在一定程度上可模拟骨髓微环境,其SDF-1α mRNA表达较2D-BMSCs明显升高,并且其Cx43表达对诱导MM细胞的迁移有重要作用。
     第三部分MM细胞与BMSCs共培养体系中Cx43表达变化及其生物学效应
     目的:观察MM细胞与BMSCs共培养体系中Cx43表达水平的变化及其对MM细胞及BMSCs生物学行为的影响。
     方法:建立RPMI8226细胞和BMSCs的间接及直接共培养体系,用CD138磁珠分离直接共培养的RPMI8226细胞及BMSCs。实时定量PCR、Western blot检测共培养前后BMSCs的Cx43表达,免疫荧光法检测Cx43分布;划痕实验检测共培养后BMSCs间隙连接通讯(GJIC)的变化;ELISA检测共培养前后BMSCsSDF-1α分泌水平变化。Western blot检测共培养前后BMSCs的beclin、LAMP、LC3表达及自噬抑制剂3-甲基腺嘌呤(3-MA)对共培养体系中BMSCs LC3及Cx43表达的影响。Vonkossa染色检测RPMI8226细胞和3-MA对BMSCs成骨分化的影响。
     结果:1)直接或间接共培养后BMSCs的Cx43mRNA相对表达量明显提高,分别是单独培养时的1.36倍和2.1倍。2)Western blot检测示共培养后BMSCs Cx43蛋白表达水平也上调,免疫荧光示增高的Cx43主要分布在胞质。3)划痕实验显示在BMSCs与RPMI8226直接共培养后荧光染料在细胞间扩散距离增加。4)与BMSCs直接共培养后,RPMI8226细胞Cx43表达降低,间接共培养后Cx43表达无明显变化。5)在BMSCs与RPMI8226细胞直接和间接共培养体系中,BMSCs培养上清SDF-1α水平分别为(373.02±10.11)和(309.71±10.71)pg/ml,均高于共培养前(237.84±9.23)pg/ml(P<0.01,P<0.05)。经18α-GA作用后,直接和间接共培养体系中SDF-1α分别降为(126.01±4.80)(P<0.001)和(106.99±3.39)pg/ml(P<0.01)。6)RPMI8226与BMSCs共培养48h后, BMSCs的自噬相关蛋白LC3-Ⅱ、beclin均较对照组升高,溶酶体相关蛋白LAMP1也升高。3-MA抑制共培养体系中BMSCs的自噬水平,同时BMSCs的Cx43水平较前升高。RPMI8226细胞可抑制BMSCs的成骨分化,3-MA可减轻该抑制作用。
     结论:MM细胞可通过上调BMSCs Cx43的表达并增强BMSCs的GJIC,从而促进BMSCs SDF-1α的分泌。MM细胞可通过上调BMSCs的自噬水平抑制BMSCs的成骨分化。
Multiple myeloma (MM) is a neoplasm characterized by the clonal expansion ofmalignant plasma cells that accumulate mainly in the bone marrow (BM) and are closelyrelated to the surrounding stromal microenvironment. The interaction of MM cells with theBM microenvironment, either directly via adhesion molecules or indirectly via thestimulation of autocrine/paracrine production of cytokines, activates a broad range ofproliferative and anti-apoptotic signaling pathways.It has been found that alterations in thelocal microenvironment are not only supportive of tumor growth but also required fortumorigenesis. During the process of MM development, BM stromal cells graduallydevelop special characteristics that support MM cells. For example, BM mesenchymalstem cells(BMSCs) can increase MM cell adhesion to BM, protecting the cells fromchemotherapy and aiding their accumulation within the BM. Meanwhile, during theprocess of MM cell migration and homing to the BM, MM cells remodel the BMmicroenvironment and make it a place that is suitable for the survival and proliferation ofMM cells. At present, the detailed mechanisms involved in this process have not beencompletely elucidated.
     The gap junction (GJ) is a common type of cell-cell junction and is involved in theregulation of many physiological process, such as cell proliferation and differentiation. Theexchange of information and energy between adjacent cells occurs via GJ-mediatedintercellular communication(GJIC). Connexin-43(Cx43) is the major component of GJs inhuman tissue, and it is expressed in many cell types, including hematopoietic cells andstromal cells. Dysregulation of Cx43expression and dysfunction of GJIC are related touncontrolled proliferation and malignant phenotypes and may be two of the genetic eventsinvolved in tumorigenesis. GJs and connexins may be new therapeutic targets in cancer.
     The aim of this study was to assess the alteration of Cx43expression in BMSCs,evaluate the interactions between BMSCs and MM cells in coculture systems. We alsoaimed to determine the effects of altered Cx43expression on the migration and adhesion ofMM cells.
     Part1Cx43Expression In Myeloma Cells And Bone MarrowMesenchymal Stem Cells And Its Biological Function
     Objective To analyse Cx43expression in multiple myeloma (MM) cells and bonemarrow mesenchymal stem cells (BMSCs) and investigate the role of gap junction playedin the process of BMSCs induced MM cells migration and adhesion and SDF-1α secretionof BMSCs.
     Methods BMSCs were isolated and cultured with adherent culture method. CD138magnetic beads and midi MACs system were employed to isolate primary MM cells. Theimmunophenotye of BMSCs and primary MM cells were detected by Flowcytometry.Cx43expression in MM cells and BMSCs were analysed by westernblot andimmunofluorescence. The influence of GJ inhibitor18α-GA on MM cells and BMSCsproliferation was determined by CCK-8. Transwell was applied to study the effect of18α-glycyrrhetinic acid(18α-GA)on MM cells transmigrion induced by BMSCs. SDF-1αsecretion was detected by ELISA.
     Results1) MM cell lines RPMI8266、U266and one of three primary MM cellsexpressed Cx43at moderate and low levels. Cx43was not expressed in XG-4、XG-7celllines but highly expressed in BMSCs. Cx43expression in BMSCs from patients newlydiagnosed with MM was stronger than that in BMSCs from healthy donors.2)18α-GA hadlittle effects on the proliferation of RPMI8226cells or BMSCs.3) SDF-1α concentrationin the supernatant of BMSCs cultured alone was237.84±9.23pg/ml, which decreased to94.31±6.44pg/mL(P<0.01)when the cells were incubated with18α-GA.4)18α-GAinhibited the migration of MM cells induced by BMSCs. The migration rate of ofRPMI8226and XG-7cells were (8.0±0.673)%、(0.88±0.036)%, respectively, whichdecreased to (4.82±0.186)%(P<0.01)、(0.58±0.020)%(P<0.05)after BMSCs were incubated with18α-GA.5)18α-GA inhibited MM cells adhesion to BMSCs. The adhesionrates of RPMI8226and XG-7cells were16.967±1.55%and9.5±1.323%, respectively,which decreased to11.1±0.819%(P<0.05)and6.63±0.551%(P<0.05)after incubationwith18α-GA.
     Conclusions BMSCs and proportion of MM cells express CX43. GJ inhibitor candownregulate SDF-1α secretion of BMSCs and inhibit the migration and adhesion of MMcells induced by BMSCs.
     Part2Construction Of three Dimentional Cultured Bone MarrowMesenchymal Stem Cells Spheroids And Investigation Of TheirCharacteristics
     Objective To establish the method of three dimentional culture of BMSCs,andinvestigate the characteristics of BMSCs spheroids,and observe MM cells migration in theBMSCs spheroids.
     Methods Three dimentional cultured BMSCs spheroids (3D-BMSCs) werecultured in the agarose coated96well round bottom plates. The apperance of BMSCsspheroids were examined under an inverted microscope and HE staining and ScanningElectronic Microscopy. Cx43mRNA、SDF-1α mRNA expression of3D-BMSCs andcommon2dimentional cultured BMSCs (2D-BMSCs) were analysed with reversetranscription polymerase chain reaction (RT-PCR). The effects of18α-GA on themigration of MM cells in3D-BMSCs spheroids were detected by immunofluorescence.
     Results After4days, BMSC formed spheroid structures of approximately450mmdiameters in the agarose coated96well round bottom plates. Scanning electronicmicroscopy showed that cells with numerous filopodia-like projections contactedneighboring cells and formed a complex three-dimensional network.3D-BMSCs expressedhigher SDF-1α mRNA compared to2D-BMSCs. Cx43mRNA in3D-BMSCs and 2D-BMSCs had no difference.18α-GA inhibited MM cells migrated into BMSCsspheroid.
     Conclusion3D-BMSCs spheroid can mimic BM microenvionment, and its Cx43expression plays an important role in MM cells migration.
     Part3Alteration Of Cx43Expression And Its Biological Effects in TheCoculture Systems Of MM cells And BMSCs
     Objective To investigate the interplay of MM cells and BMSCs and alteration ofCx43expression in coculture systems.
     Methods Westernblot、qRT-PCR and immunofluorescence were employed todetect the alteration of Cx43expression and distribution in BMSCs directly and indirectlycocultured with myeloma cells. Lucifer yellow dye spread was utilised to evaluate GJICbetween BMSCs. SDF-1α secretion was detected by ELISA. Westernblot were employedto detect beclin、LAMP、LC3expression in BMSCs after cocultured with RPMI8226withor without autophgy inhibitor3-MA. Vonkossa staining were used to determine osteogenicdifferentiation of BMSCs.
     Results1) The expression of Cx43mRNA in BMSCs were both upregulated aftercoculture directly and indirectly with RPMI8226,1.36and2.1times that of BMSCscultured alone respectively.2) Westernblot analysis showed that Cx43protein expressionin BMSCs was also upregulated after coculture with RPMI8226, and the increased Cx43was mainly distributed in cytoplasm.3) Lucifer yellow dye spread showed that GJIC wasupregulated in BMSCs cocultured with RPMI8226.4) Cx43expression in RPMI8226cellswas downregulated after directly coculture with BMSCs and had no marked alteration afterindirectly coculture with BMSCs.5) SDF-1α concentration in supernant of BMSCsdirectly and indirectly cocultured with RPMI8226were(373.02±10.11)pg/ml and(309.71±10.71)pg/ml respectively, which were both higher than that of BMSCs cultured alone (237.84±9.23)pg/ml(P<0.01, P<0.05), and could be inhibited by18α-GA to(126.01±4.80)and(106.99±3.39)pg/ml, respectively(P<0.001, P<0.01).6) Autophagyassociated protein beclin、LAMP、LC3expression in BMSCs were upregulated aftercoculture with RPMI8226, which could be inhibited by3-MA.7) Vonkossa stainingshowed that RPMI8226inhibited osteogenic differentiation of BMSCs, which could beimproved by3-MA.
     Conclusion The Cx43expression in BMSCs is upregulated after directly andindirectly coculture with MM cells, which can improve SDF-1α secretion of BMSCs. MMcells can inhibit osteogenic differentiation of BMSCs via upregulating the autophgy ofBMSCs.
引文
1. Raab MS, Podar K, Breitkreutz I, Richardson PG, and Anderson KC. Multiplemyeloma. Lancet.2009,374:324-39.
    2. Laubach J, Richardson P, and Anderson K. Multiple myeloma. Annu Rev Med.2011,62:249-64.
    3. Sounni NE, Noel A. Targeting the Tumor Microenvironment for Cancer Therapy.Clin Chem.2013,59:85-93.
    4. Friedl P and Alexander S. Cancer invasion and the microenvironment: plasticity andreciprocity. Cell.2011,147:992-1009.
    5. Chatterjee M, Honemann D, Lentzsch S, et al. In the presense of bone marrow stromalcells human multiple myeloma cells become independent of the IL-6/gp130/STAT3pathway. Blood.2002,100:3311-18.
    6. XU S, Menu E, De Becker A, et al. Bone Marrow Derived Mesenchymal StromalCells are Attracted by Multiple Myeloma Cell-Produced Chemokine CCL25andFavor Myeloma Cell Growth In Vitro and In Vivo. Stem Cells.2012,30:266-79.
    7. Abe M. Targeting the interplay between myeloma cells and the bone marrowmicroenvironment in myeloma. Int J Hematol.2011,94:334-43.
    8. Frisch BJ, Porter RL, and Calvi LM. Hematopoietic niche and bone meet. Curr OpinSupport Palliat Care.2008,2:211-7.
    9. Lane SW, Scadden DT, and Gilliland DG. The leukemic stem cell niche: currentconcepts and therapeutic opportunities. Blood.2009,114:1150-57.
    10. Arnulf B, Lecourt S, Soulier J, et al. Phenotypic and functional characterization ofbone marrow mesenchymal stem cells derived from patients with multiple myeloma.Leukemia.2007,21:158-63.
    11. Wallace SR, Oken MM, Lunetta KL, et al. Abnormalities of bone marrowmesenchymal cells in multiple myeloma patients. Cancer.2001,91:1219-1230.
    12. Hao M, Zhang L, An G, et al. Bone marrow stromal cells protect myeloma cells frombortezomib induced apoptosisby suppressing microRNA-15a expression. LeukLymphoma.2011,52:1787-94.
    13. Tancred TM, Belch AR, Reiman T, et al. Altered expression of fibronectin andcollagens I and IV in multiple myeloma and monoclonal gammopathy ofundetermined significance. J Histochem Cytochem.2009,57:239-47.
    14. Zdzisińska B, Bojarska-Junak A, Dmoszyńska A, et al. Abnormal cytokine productionby bone marrow stromal cells of multiple myeloma patients in response to RPMI8226myeloma cells. Arch Immunol Ther Exp.2008,56:207-21.
    15. Li B, Shi M, Li J, et al. Elevated tumor necrosis factor-alpha suppresses TAZexpression and impairs osteogenic potential of Flk-1+mesenchymal stem cells inpatients with multiple myeloma. Stem cells and Dev.2007,16:921-30.
    16. Pennisi A, Ling W, Li X, Khan S, Shaughnessy JD, Barlogie B, et al. TheephrinB2/EphB4axis is dysregulated in osteoprogenitors from myeloma patients andits activation affects myeloma bone disease and tumor growth. Blood.2009,114:1803-12
    17. Garderet L, Mazurier C, Chapel A, et al. Mesenchymal stem cell abnormalities inpatients with multiple myeloma. Leuk Lymphoma.2007,48:2032-41.
    18. Corre J, Mahtouk K, Attal M, et al. Bone marrow mesenchymal stem cells areabnormal in multiple myeloma. Leukemia.2007.21:1079-88.
    19. Todoerti K, Lisignoli G, Storti P, Agnelli L, Novara F, Manferdini C, et al. Distincttranscriptional profiles characterize bone microenvironment mesenchymal cells ratherthan osteoblasts in relationship with multiple myeloma bone disease. Experimentalhematology.2010,38:141-53.
    20. Lokhorst HM, Lamme T, Smet M, et al. Primary tumor cells of myeloma patientsinduce interleukin-6secretion in long-term bone marrow cultures. Blood.1994,84:2269-77.
    21. Li B, Fu J, Chen P, Zhuang W. Impairment in immunomodulatory function ofmesenchymal stem cells from multiple myeloma patients. Archives of medicalresearch.2010,41:623-33.
    22. Podar K, Chauhan D, Anderson KC. Bone marrow microenvironment and theidentification of new targets for myeloma therapy. Leukemia.2009,23:10-24.
    23. Peacock CD, Wang Q, Gesell GS, et al. Hedgehog signaling maintains a tumor stemcell compartment in multiple myeloma. PNAS.2007,104:4048–53.
    24. Basak GW, Srivastava AS, Malhotra R, et al. Multiple myeloma bone marrow niche.Curr Pharm Biot.2009,10:335-46.
    25. Yaccoby S, Wezeman MJ, Zangari M, Walker R, Cottler-Fox M, Gaddy D, et al.Inhibitory effects of osteoblasts and increased bone formationon myeloma in novelculture systems and a myelomatous mousemodel. Haematologica.2006,91:192–9.
    26. Giuliani N, Mangoni M and Rizzoli V. Osteogenic differentiation of mesenchymalstem cells in multiple myeloma: Identification of potential therapeutic targets. ExpHemat.2009,37:879–886.
    27. Silvertris F, Ciavarella S, Matteo MD, et al. Bone-Resorbing Cells in MultipleMyeloma: Osteoclasts, Myeloma Cell Polykaryons, or Both? The Oncologist.2009,14:264–275.
    28. Mangieri D, Nico B, Benagianod V, et al. Angiogenic activity of multiple myelomaendothelial cells in vivo in the chick embryo chorioallantoic membrane assay isassociated to a down-regulation in the expression of endogenous endostatin. J CellMol Med.2008,12:1023-1028.
    29. Chen H, Gordon MS, Campbell RA, et al. Pleiotrophin is highly expressed bymyeloma cells and promotes myeloma tumor growth. Blood.2007,110:287-295.
    30. Noll JE, Sharon A. Williams L, Christine M. Tong CM. Myeloma plasma cells alterthe bone marrow microenvironment by stimulating the proliferation of mesenchymalstromal cells. Haematologica.2014,99:163-71.
    31. Monica H, Ulrike H,Martin K, et al. Osteoblasts promote migration and invasion ofmyeloma cells through upregulation of matrix metalloproteinasea,urokinaseplasminogen activator, hepatocyte growth factor and activation of p38MAPK. BrHaematol.2007,1365-2141.
    32. Feng Y, Wen J, Mike P, Choi DS, Eshoa C, Shi Z-Z, et al. Bone marrow stromal cellsfrom myeloma patients support the growth of myeloma stem cells. Stem Cells Dev.2010,19:1289–96.
    33. Fuhler GM, Baanstra M, Chesik D, Somasundaram R, Seckinger A,Hose D, et al.Bone marrow stromal cell interaction reduces syndecan-1expression and induceskinomic changes in myeloma cells. Exp Cell Res.2010,316:1816–28.
    34. Otsu K, Das S, Houser SD. Concentration-dependent inhibition of angiogenesis bymesenchymal stem cells. Blood.2009,113:4197-4205.
    35. Azab AK, Runnels JM, Pitsillides C, Moreau A-S, Azab F, Leleu X, et al.CxCR4inhibitor AMD3100disrupts the interaction of multiple myeloma cells with the bonemarrow microenvironment and enhances their sensitivity to therapy. Blood.2009,113:4341–51.
    36. Musil LS, Goodenough DA. Multisubunit assembly of an integral plasma membranechannel protein, gap junction connexin43, occurs after exit from the ER. Cell.1993,74:1065-77.
    37. Braet K, Vandamme W, Martin PE, et al. Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptidegap26. Cell Calcium.2003,33:37-48.
    38. Bruzzone S,Franco L, Guida L, et al. A self restricted CD38connexin43cross-talkaffects NAD+and cyclic ADP-ribose metabolism and regulates int racellular calciumin3T3fibroblasts. J Biol Chem.2001,276:48300-8.
    39. Saez JC, Retamal MA, Basilio D, et al. Connexin-based gap junction hemichannels:gating mechanisms. Biochim Biophys Acta.2005,1711:215-24.
    40. Crow DS, Beyer EC, Paul DL, et al. Phosphorylation of connexin43gap junctionprotein in uninfected and Rous sarcoma virus-transformed mammalian fibroblast s.Mol Cell Biol,1990,10:1754-63.
    41. Musil LS, Cunningham BA, Edelman GM, et al. Differential phosphorylation of gapjunction protein connexin43in junctional communication-competent and-deficientcell lines [J]. J Cell Biol.1990,111:2077-88.
    42. Lau AF, Kanemitsu MY, Kurata WE, et al. Chronic effects of endothelin1andangiotensin II on gap junctions and intercellular communication in cardiac cells.FASEB J.2002,16:87–89.
    43. Cameron SJ, Malik S, Akaike M, et al. Regulation of epidermal growthfactor-induced connexin43gap junction communication by big mitogen-activatedprotein kinase1/ERK5but not ERK1/2kinase activation. J Biol Chem.2003,278:18682-8
    44. Martinez AD, Hayrapetyan V, Moreno AP, et al. A carboxyl terminal domain ofconnexin43is critical for gap junction plaque formation but not for homo-orhetero-oligomerization. Cell Commun Adhes.2003,10:323-8.
    45. Cooper CD, Lampe PD. Casein kinase1regulates connexin43gapjunction assembly.J Biol Chem.2002,277:44962–68.
    46. Petrich BG., Gong X, Lerner DL, et al. C-Jun N-terminal kinase activation mediatesdownregulation of connexin43in cardiomyocytes. Circ Res.2002,91:640–7.
    47. Solan JL and Lampe PD. Connexin43phosphorylation: structural changes andbiological effects. Biochem. J.2009,419:261–272.
    48. Giepmans BN. Gap junctions and connexin-interacting proteins. CardiovascRes,2004,62:233-45
    49. Kobielak A,Fuchs E. A lpha-catenin: at the junction of intercellular adhesion andactin dynam ics. Nat Rev Mol Cell Biol,2004,5:614-25.
    50. Giepmans BN,Moolenaar WH.The gap junction protein connexin43interacts w ith thesecond PD Z dom ain of the zona occludens-1protein. Curr Bio.1998,8:931-4.
    51. Prosley CA, Lee AW, Kastl B, et al. Bone marrow connexin-43expression is criticalfor hematopoietic regeneration after chemotherapy. Cell communication and adhesion.2005,12:307-17.
    52. Cancela JA, Koevoet WLM, Koning AE, et al. Connxin43gapjunctions are involvedin multiconnexin-expressing stromal support of hemopoietic progenitors and stemcells.Blood,2000,96:498-505.
    53. Gonzalez-Nieto D, Li L, Kohler A, et al. Connexin-43in the osteogenic BM nicheregulates its cellular composition and the bidirectional traffic of hematopoietic stemcells and progenitors. Blood,2012,119:5144-54.
    54. Rivedal E, Witz G. Metabolites of benzene is potent inhibitors of gap-junctionintercellular communication. Arch Toxicol.2005,10:213-7.
    55. Paraguassu-Braga FH, Borojevic R, Bouzas1LF, et al. Cell Death and Differentiation.2003,10:1101-8.
    56. Foss B, Hervig T, and Bruserud O. Connexins are active participants of hematopoieticstem cell regulation. Stem Cells Dev.2009,18:807-12.
    57. Rosendaal M, Green CR, Rahman A, Morgan D. Up-regulation of the connexin43+gap junction network in haemopoietic tissue before the growth of stem cells. J CellSci.1994;107:29-37.
    58. Zhang X, Liu Y, Si YJ, et al. Effect of Cx43gene-modified leukemic bone marrowstromal cells on the regulation of Jurkat cell line in vitro. Leuk Res.2012,36:198-204.
    59. Liu Y, Zhang X, Li ZJ, et al. Up-regulation of Cx43expression and GJIC function inacute leukemia bone marrow stromal cells post-chemotherapy. Leuk Res.2010,34:631-40.
    60. Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K. Heterogeneity for stemcell-related markers according to tumor subtype and histologic stage in breast cancer.Clin Cancer Res.2010,16:876-87.
    61. Li Z, Zhou Z, Donahue HJ. Alterations in Cx43and OB-cadherin affect breast cancercell metastatic potential. Clin&Exp Metastasis.2008,25:265-72.
    62. Daniel-Wojcik A,Misztal K,Bechyne I,et al. Cell motility affects the intensity of gapjunctional coupling in prostate carcinoma and melanoma cell populations. Intl J Oncol.2008,33:309-15.
    63. Tang B, Peng ZH, Yu PW,et al. Aberrant expression of Cx43is associated with theperitoneal metastasis of gastric cancer and Cx43-mediated gap junction enhancesgastric cancer cell diapedesis from peritoneal mesothelium. PLoS One.2013,8:e74527.
    64. Fernstrom MJ, Cesen Cummings K, Malkinson AM, et a1. Frequent reduction of gapiunctional intercellular communication and connexin43expression in human andmouse lung carcinoma cells. Carcinogenesis.1998,19:61-67
    65. Albright CD, Kuo J, Jeong S. cAMP enhances Cx43gap junction formation andfunction and reverses choline deficiency apoptosis. Exp Mol Pathol.2001,71:34-39.
    66. Huang RP, Hossain MZ, Huang R, et al. Connexin43(Cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. Int J Cancer.2001,92:130-8.
    67. Muramatsu A, Iwai M, Morikawa T, et al. Influence of transduction with connexin26gene on malignant potential of human hepatoma cells. Carcinogenesis.2002,23:351-8.
    68. Su YA, Bittner ML, Chen Y, et a1. Identification of tumor suppessor genes usinghuman melanoma cell lines UACC903, UACC903(+6) and SRS3by comparison ofexpression Profiles. Mol Carcinog.2000,28:119-27.
    69. Lonta M, Ferreira RA, Pfister SC, et a1. Exogenous Cx43expression decrease cellproliferation rate in rat hepatocarcinoma cells independently of functional gapjunction. Cancer Cell Int.2009,9:13-22.
    1. Abe M. Targeting the interplay between myeloma cells and the bone marrowmicroenvironment in myeloma. Int J Hematol.2011,94:334-43.
    2. Giuliani N, Rizzoli V, and Roodman GD. Multiple myeloma bone disease:pathophysiology of osteoblast inhibition. Blood.2006;108:3992-96.
    3. Chevallier D, Carette D, Gilleron J, Segretain D, Pointis G. The emerging role ofconnexin43in testis pathogenesis. Curr Mol Med.2013,13:1331-44.
    4. Ableser MJ, Penuela S, Lee J, Shao Q, Laird DW. Connexin43reduces melanomagrowth within a keratinocyte microenvironment and during tumorigenesis in vivo. JBiol Chem.2014,289:1592-603.
    5. Sugiyama T, Kohara, H, Noda M, Nagasawa T. Maintenance of the hematopoietic stemcell pool by CxCL12-CxCR4chemokine signaling in bone marrow stromal cell niches.Immunity2006,25:977-88.
    6. Cancela JA, Koevoet WLM, Koning AE, and et a1. Connxin43gap junctions areinvolved in multiconnexin-expressing stromal support of hemopoietic progenitors andstem cells.Blood.2000,96:498-505.
    7. Rosendaal M, Green CR, Rahman A, Morgan D. Up-regulation of the connexin43+gapjunction network in haemopoietic tissue before the growth of stem cells. J Cell Sci.1994,107:29-37
    8. Kardami E, Dang X, Iacobas DA, et al. The role of connexins in controlling cellgrowth and gene expression. Prog. Biophys. Mol. Biol.2007,94:245-64
    9. Cheng A, Tang H, Cai J,et al. Gap junctional communication is required to maintainmouse cortical neural progenitor cells in a proliferative state. Dev Biol.2004,272:203-16.
    10. Shao Q, Wang H, McLachlan E, et al.Down-regulation of Cx43by retroviral deliveryof small interfering RNA promotes an aggressive breast cancer cell phenotype. CancerRes.2005:65,2705-11.
    11. Zhang X, Liu Y, Si YJ, et al.Effect of Cx43gene-modified leukemic bone marrowstromal cells on the regulation of Jurkat cell line in vitro. Leuk Res.2012,36:198-204.
    12. Liu Y, Zhang X, Li ZJ,et al. Up-regulation of Cx43expression and GJIC function inacute leukemia bone marrow stromal cells post-chemotherapy. Leuk Res.2010,34:631-40.
    13. Machtaler S, Dang-Lawson M, Choi K, et al. The gap junction protein Cx43regulatesB-lymphocyte spreading and adhesion.J Cell Sci.2011,124:2611-21.
    14. Montecino-Rodriguez E, Dorshkind K. Regulation of hematopoiesis by gapjunction-mediated intercellular communication. J Leukoc Biol.2001,70:341-7
    15. Fairfax KA, Kallies A, Nutt SL, and et al. Plasma cell development: from B-cellsubsets to long-term survival niches. Semin Immunol.2008,20:49-58.
    16. Harwood NE and Batista FD.New insights into the early molecular events underlyingB cell activation. Immunity.2008,28:609-19
    17. Albright CD, Kuo J, Jeong S. cAMP enhances Cx43gap junction formation andfunction and reverses choline deficiency apoptosis. Exp Mol Pathol.2001.71:34-9.
    18. Huang RP, Hossain Mz, Huang R, et al. Connexin43(Cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. Int J Cancer.2001,92:130-8.
    19. Muramatsu A,Iwai M,Morikawa T,et al.Influence of transduction with connexin26gene on malignant potential of human hepatoma cells. Carcinogenesis.2002,23:351-8.
    20. Daniel-Wojcik A,Misztal K,Bechyne I,et al. Cell motility affects the intensity of gapjunctional coupling in prostate carcinoma and melanoma cell populations. Intl J Oncol.2008,33:309-15
    21. Li Z, Zhou Z, Donahue HJ. Alterations in Cx43and OB-cadherin affect breast cancercell metastatic potential. Clin&Exp Metastasis.2008,25:265-72
    22. Huang RP, Fan Y, Hossain MZ, Peng A, Zeng ZL, Boynton AL. Reversion of theneoplastic phenotype of human glioblastoma cells by connexin43(cx43). Cancer Res.1998,58:5089-96
    23. Qin H, Shao Q, Curtis H, Galipeau J, Belliveau DJ,WangT, et al. Retroviral delivery ofconnexin genes to human breast tumor cells inhibits in vivo tumor growth by amechanism that is independent of significant gap junctional intercellular communication. JBiol Chem.2002,277:29132-8.
    24. Falk L, Dang-Lawson M, Vega JL, and etal. Mutations of Cx43that affect B cellspreading in response to BCR signaling. Biol Open.2014Feb17.[Epub ahead of print]
    25. Machtaler S, Choi K, Dang-Lawson M,and et al.The role of the gap junction proteinconnexin43in B lymphocyte motility and migration. FEBS Lett.2014Jan28.[Epubahead of print]
    26.张晓慧,傅晋翔,张建华,张阳敏.基质细胞衍生因子在多发性骨髓瘤细胞迁移和黏附中生物学作用的研究。中华血液学杂志.2006,27:240-3
    27. Roccaro AM, Sacco A, Ungari M,etal.In Vivo Targeting of Stromal-Derived Factor-1As a Strategy to Prevent Myeloma Cell Dissemination to Distant Bone MarrowNiches.Blood (ASH Annual Meeting Abstracts).2012,120:440.
    28. Schajnovitz A, Itkin T, D'Uva G, etal.CxCL12secretion by bone marrow stromal cellsis dependent on cell contact and mediated by connexin-43and connexin-45gapjunctions. Nat Immunol.2011,12:391-8.
    1. Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro–agrowing case for three-dimensional (3D) culture systems. Semin Cancer Biol.2005,15:405-412.
    2. Wang W, Itaka K, Ohba S, et al.3D spheroid culture system on micropatternedsubstrates for improved differentiation efficiency of multipotent mesenchymal stemcells. Biomaterials.2009,30:2705-15.
    3. Bartosh TJ, Yl stalo JH, Mohammadipoor A, et al. Aggregation of humanmesenchymal stromal cells (MSCs) into3D spheroids enhances theirantiinflammatory properties. Proc Natl Acad Sci USA.2010,3;107:13724-9.
    4. Potapova IA, Brink PR, Cohen IS, Doronin SV. Culturing of human mesenchymalstem cells as three-dimensional aggregates induces functional expression of CXCR4that regulates adhesion to endothelial cells. J Biol Chem.2008,283:13100-7.
    5. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combineand control stem cells. Science.2009,324:1673-77.
    6. Barbone D, Yang TM, Morgan JR, Gaudino G, Broaddus VC. Mammalian target ofrapamycin contributes to the acquired apoptotic resistance of human mesotheliomamulticellular spheroids. J Biol Chem.2008,283:13021-30.
    7. Wartenberg M, D nmez F, Ling FC, et al. Tumor-induced angiogenesis studied inconfrontation cultures of multicellular tumor spheroids and embryoid bodies grownfrom pluripotent embryonic stem cells. FASEB J.2001,15:995-1005.
    8. Yang TM, Barbone D, Fennell DA, Broaddus VC. Bcl-2family proteins contribute toapoptotic resistance in lung cancer multicellular spheroids. Am J Respir Cell Mol Biol.2009,41:14-23.
    9. Barros AP, Takiya CM, Garzoni LR, et al. Osteoblasts and bone marrow mesenchymalstromal cells control hematopoietic stem cell migration and proliferation in3D invitro model. PLoS One.2010,5: e9093.
    10. Bug G, Rossmanith T, Henschler R, et al. Rhofamily small GTPases control migrationof hematopoietic progenitor cells into multicellular spheroidsof bone marrow stromacells. J Leukoc Biol.2002,72:837-45.
    11. Burns JS, Rasmussen PL, Larsen KH, Schroder HD, Kassem M. Parameters inthree-dimensional osteospheroids of telomerized human mesenchymal (stromal) stemcells grown on osteoconductive scaffolds that predict in vivo bone-formingpotential.Tissue Eng Part A.2010,16:2331-42.
    12. Kirshner J, Thulien KJ, Martin LD, Debes Marun C, Reiman T, Belch AR,et al. Aunique three-dimensional model for evaluating the impact of therapy on multiplemyeloma. Blood.2008,112:2935-45.
    13. Niemeyer P, Krause U, Fellenberg J, et al. Evaluation of mineralized collagen andalpha-tricalcium phosphate as scaffolds for tissue engineering of bone using humanmesenchymal stem cells. Cells Tissues Organs.2004,177:68-78.
    14. Calimeri T, Battista E, Conforti F, Neri P, Di Martino MT, Rossi M, et al.A uniquethree-dimensional SCID-polymeric scaffold (SCID-synth-hu) model for in vivoexpansion of human primary multiple myeloma cells. Leukemia.2011,25:707–11.
    15. Zdzisin′ska B, Rolin′ski J, Piersiak T, Kandefer-Szerszen′M. A comparisonofcytokine production in2-dimensional and3-dimensional cultures of bone marrowstromal cells of multiple myeloma patients inresponse to RPMI8226myeloma cells.Folia Histochem Cytobiol.2009,47:69-74
    16. Schajnovitz A, Itkin T, D'Uva G, etal.CxCL12secretion by bone marrow stromal cellsis dependent on cell contact and mediated by connexin-43and connexin-45gapjunctions. Nat Immunol.2011,12:391-8.
    1. Basak GW, Srivastava AS, Malhotra R, et al. Multiple myeloma bone marrow niche.Curr Pharm Biot.2009,10:345-6.
    2. Meads MB, Hazlehurst LA, and Dalton WS. The Bone Marrow Microenvironment asa Tumor Sanctuary and Contributor to Drug Resistance. Clin Cancer Res.2008;14:2519-26.
    3. Shain KH, Yarde DN, Meads MB, et al. β1Integrin Adhesion EnhancesIL-6–Mediated STAT3Signaling in Myeloma Cells: Implications forMicroenvironment Influence on Tumor Survival and Proliferation. Cancer Res.2009;69:1009-15.
    4. Qiang YW, Chen Y, Stephens O, et al. Myeloma-derived Dickkopf-1disruptsWnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potentialmechanism underlying osteolytic bone lesions in multiple myeloma. Blood.2008,112:196-207.
    5. Oshima T, Abe M, Asano J,et al.Myeloma cells suppress bone formation by secreting asoluble Wnt inhibitor, sFRP-2. Blood.2005,106:3160-5.
    6. Monica H, Ulrike H,Martin K, et al. Osteoblasts promote migration and invasion ofmyeloma cells through upregulation of matrix metalloproteinasea,urokinaseplasminogen activator, hepatocyte growth factor and activation of p38MAPK. BrHaematol.2007,138:446-58.
    7. Arnulf B, Lecourt S, Soulier J, et al. Phenotypic and functional characterization ofbone marrow mesenchymal stem cells derived from patients with multiple myeloma.Leukemia.2007,21:158-63.
    8. Alsayed Y, Ngo H, Runnels J, et al. Mechanisms of regulation of CXCR4/SDF-1(CXCL12)-dependent migration and homing in multiple myeloma. Blood.2007,109:2708-17.
    9. Chatterjee M, Honemann D, Lentzsch S, et al. In the presense of bone marrow stromalcells human multiple myeloma cells become independent of the IL-6/gp130/STAT3pathway. Blood.2002,100:3311-18.
    10. Xu S, Menu E, De Becker A, et al. Bone Marrow Derived Mesenchymal Stromal Cellsare Attracted by Multiple Myeloma Cell-Produced Chemokine CCL25and FavorMyeloma Cell Growth In Vitro and In Vivo. Stem Cells.2012,30:266-79.
    11. Abe M. Targeting the interplay between myeloma cells and the bone marrowmicroenvironment in myeloma. Int J Hematol.2011,94:334-43.
    12. Wallace SR, Oken MM, Lunetta KL, et al. Abnormalities of bone marrowmesenchymal cells in multiple myeloma patients. Cancer.2001,91:1219-30.
    13. Zdzisińska B, Bojarska-Junak A, Dmoszyńska A, et al. Abnormal cytokine productionby bone marrow stromal cells of multiple myeloma patients in response to RPMI8226myeloma cells. Arch Immunol Ther Exp.2008,56:207-21.
    14. Todoerti K, Lisiqnoli G, Storti P, et al. Distinct transcriptional profiles characterizebone microenvironment mesenchymal cells rather than osteoblasts in relationship withmultiple myeloma bone disease. Exp Hematol.2010,38:141-53.
    15. Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT, et al. Adherence ofmultiple myeloma cells to bone marrow stromal cells upregulates vascular endothelialgrowth factor secretion: therapeutic applications. Leukemia.2001,15:1950-61.
    16. Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K. Heterogeneity for stemcell-related markers according to tumor subtype and histologic stage in breast cancer.Clin Cancer Res.2010,16:876-87.
    17. Daniel-Wojcik A,Misztal K,Bechyne I,et al. Cell motility affects the intensity of gapjunctional coupling in prostate carcinoma and melanoma cell populations. Intl J Oncol.2008,33:309-15.
    18. Tang B, Peng ZH, Yu PW,et al. Aberrant expression of Cx43is associated with theperitoneal metastasis of gastric cancer and Cx43-mediated gap junction enhancesgastric cancer cell diapedesis from peritoneal mesothelium. PLoS One.2013,8:e74527.
    19. Fernstrom MJ, Cesen Cummings K, Malkinson AM, et a1. Frequent reduction of gapiunctional intercellular communication and connexin43expression in human andmouse lung carcinoma cells. Carcinogenesis.1998,19:61-67
    20. Zhang YW, Morita I, Ikeda M, et al. Connexin43suppresses proliferation ofosteosarcoma U20S cells through post-transcriptional regulation of p27. Oncogene.2001,20:4138-49.
    21. Huang RP, Hossain MZ, Huang R, et al. Connexin43(Cx43) enhanceschemotherapy-induced apoptosis in human glioblastoma cells. Int J Cancer.2001,92:130-8.
    22. Dang X, Jeyaraman M, Kardami E. Regulation of connexin-43-mediated growthinhibition by a phosphorylatable amino-acid is independent of gap junction-formingability. Mol Cell Biochem.2006,289:201–7.
    23. Trosko JE, Ruch RJ. Cell–cell communication in carcinogenesis. Front Biosci.1998,3:d208–d236.
    24. Roccaro AM, Sacco A, Ungari M,etal. In Vivo Targeting of Stromal-Derived Factor-1As a Strategy to Prevent Myeloma Cell Dissemination to Distant Bone MarrowNiches.Blood (ASH Annual Meeting Abstracts).2012,120:440.
    25. Corre J, Mahtouk K, Attal M, et al. Bone marrow mesenchymal stem cells areabnormal in multiple myeloma. Leukemia.2007,21:1079-88.
    26. Schajnovitz A, Itkin T, D'Uva G, et al. CxCL12secretion by bone marrow stromal cellsis dependent on cell contact and mediated by connexin-43and connexin-45gapjunctions. Nat Immunol.2011,12:391-8.
    27. Ding WX, Ni HM, Gao W, et al. Differential effects of endoplasmic reticulumstress-induced autophagy on cell survival. J Biol Chem.2007,282,4702-9.
    28. Kessel D, Reiners JJ, J R, et al. The role of autophagy in the death of L1210leukemiacells initiated by the new antitumor agents, XK469, SH80. Mol Cancer ther.2007,6:370-9.
    29. Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cellscauses neurodegenerative disease in mice. Nature.2006,441:885-9.
    30. Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous systemcauses neurodegeneration in mice. Nature.2006,441:880-4.
    31. Singh R, Xiang Y, Wang Y, et al. Autophagy regulates adipose mass and differentiationin mice. J Clin Invest.2009,119:3329-39.
    32. Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. Adipose-specific deletionof autophagy-related gene7(atg7) in mice reveals a role in adipogenesis. Proc NatlAcad Sci USA.2009,106:19860-5.
    33. Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes inthe basal stateand in response to hemodynamic stress. Nat Med.2007,13:619-24.
    1. Ribatti D, Nico B, Vacca A. Importance of the bone marrow microenvironment ininducing the angiogenic response in multiple myeloma. Oncogene.2006,25:4257-66.
    2. Yang HH, Ma MH, Vescio RA, Berenson JR. Overcoming drug resistance in multiplemyeloma: the emergence of therapeutic approaches to induce apoptosis. J Clin Oncol.2003,21:4239–47.
    3. Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM. Bone marrowmicroenvironment in multiple myeloma progression. J Biomed Biotechnol.2012,2012:157496.
    4. Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associate fibroblasts incancer pathogenesis. Semin Cell Dev Biol.2010,21:33–9.
    5. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediateddrug resistance (CAM-DR): role of integrins and resistance to apoptosis in humanmyeloma cell lines. Blood.1999,93:1658-67.
    6. Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS. Adhesion tofibronectin via beta1integrin regulates p27kip1levels and contributes to celladhesion mediated drug resistance (CAM-DR). Oncogene.2000,19:4319-27.
    7. Hazlehurst LA, Enkemann SA, Beam CA, et al. Genotypic and phenotypiccomparisons of de novo and acquired melphalan resistance in an isogenic multiplemyeloma cell line model. Cancer Res.2003,63:7900-6.
    8. Hideshima T, Podar K, Chauhan D, Anderson HC. Cytokines and signal transduction.Best Pract Res Clin Haematol.2005,18:509-24.
    9. Hideshima T, Nakamura N, Chauhan D, Anderson HC. The role of tumor necrosisfactor alpha in the pathophysiology of human multiple myeloma: therapeuticapplications. Oncogene.2001,20:5991-6000.
    10. Vacca A, Ribatti D, Presta M, et al. Bone marrow neovascularization, plasma cellangiogenic potential, and matrix metalloproteinase-2secretion parallel progression ofhuman multiple myeloma. Blood.1999,93:3064-73.
    11. Borset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A. Hepatocyte growth factorand its receptor c-met in multiple myeloma. Blood.1996,88:3998-4004.
    12. Lentzsch S, Gries M, Janz M, Bargou R, D rken B, Mapara MY.Macrophageinflammatory protein1-alpha (MIP-1alpha) triggers migration and signaling cascadesmediating survival and proliferation in multiple myeloma (MM) cells. Blood.2003,101:3568–73.
    13. Ferlin M, Noraz N, Hertogh C, Brochier J, Taylor N, Klein B. Insulin-like growthfactor induces the survival and proliferation of myeloma cells through aninterleukin-6independent transduction pathway. Br J Haematol.2000,111:626-34.
    14. Gupta D, Treon SP, Shima Y, et al. Adherence of multiple myeloma cells to bonemarrow stromal cells upregulates vascular endothelial growth factor secretion:therapeutic applications. Leukemia.2001,15:1950-61.
    15. Dankbar B, Padro T, Leo R, et al. Vascular endothelial growth factor andinterleukin-6in paracrine tumorstromal cell interactions in multiple myeloma. Blood.2000,95:2630-6.
    16. Fowler JA, Mundy GR, Lwin ST, Edwards CM. Bone marrow stromal cells create apermissive microenvironment for myeloma development: a new stromal role for Wntinhibitor Dkk1. Cancer Res.2012,72:2183–9.
    17. Xu G, Liu K, Anderson J, et al. Expression of XBP1s in bone marrow stromal cells iscritical for myeloma cell growth and osteoclast formation. Blood.2012,119:4205–14.
    18. Storti P, Bolzoni M, Donofrio G, et al. Hypoxia-inducible factor (HIF)-1a suppressionin myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bonedestruction. Leukemia.2013,27:1697–706.
    19. Giuliani N, Storti P, Bolzoni M, et al.Angiogenesis and multiple myeloma.CancerMicroenviron.2011,4:325-37.
    20. Ria R, Todoerti K, Berardi S, et al. Gene expression profiling of bone marrowendothelial cells in patients with multiple myeloma. Clin Cancer Res.2009,15:5369-78.
    21. Vacca A, Ria R, Semeraro F, et al. Endothelial cells in the bone marrow of patientswith multiple myeloma. Blood.2003,102:3340-8.
    22. Pellegrino A, Ria R, Di Pietro G, et al. Bone marrow endothelial cells in multiplemyeloma secrete CXC-chemokines that mediates interactions with plasma cells. Br JHaematol.2005,129:248-56.
    23. Coluccia AML, Cirulli T, Neri P, et al. Validation of PDGFR a nd c-Src tyrosinekinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacyof the novel, orally available inhibitor dasatinib. Blood.2008,12:1346-56.
    24. Kocemba KA, van Andel H, de Haan-Kramer A, et al. The hypoxia targetadrenomedullin is aberrantly expressed in multiple myeloma and promotesangiogenesis. Leukemia.2013,27:1729-37.
    25. Zhang H, Vakil V, Braunstein M, et al. Circulating endothelial progenitor cells inmultiple myeloma: implications and significance. Blood.2005,3286-94.
    26. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al.AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood.1997,90:5002-12.
    27. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression ofVEGFR-2and AC133by circulating human CD34(+) cells identifies a population offunctional endothelial precursors. Blood.2000,95:952-8.
    28. Ria R, Piccoli C, Cirulli T, Falzetti F, Mangialardi G, Guidolin D, et al. Endothelialdifferentiation of hematopoietic stem and progenitor cells from patients with multiplemyeloma. Clin Cancer Res.2008,14:1678-85.
    29. Yaccoby S, Wezeman MJ, Henderson A et al. Cancer and the microenvironment:Myeloma-osteoclast interactions as a model. Cancer Res.2004,64:2016-23.
    30. Valentin-Opran A, Charhon SA, Meunier PJ et al. Quantitative histology ofmyeloma-induced bone changes. Br J Haematol.1982,52:601-10.
    31. Hecht M, von Metzler I, Sack K et al. Interactions of myeloma cells with osteoclastspromote tumour expansion and bone degradation through activation of a complexsignalling network and upregulation of cathepsin K, matrix metalloproteinases(MMPs) and urokinase plasminogen activator (uPA). Exp Cell Res.2008,314:1082-93.
    32. Giuliani N, Mangoni M and Rizzoli V. Osteogenic differentiation of mesenchymalstem cells in multiple myeloma: Identification of potential therapeutic targets. ExpHemat.2009,37:879-86.
    33. Silvertris F, Ciavarella S, Matteo MD, et al. Bone-Resorbing Cells in MultipleMyeloma: Osteoclasts, Myeloma Cell Polykaryons, or Both? The Oncologist.2009,14:264-75.
    34. Mangieri D, Nico B, Benagianod V, et al. Angiogenic activity of multiple myelomaendothelial cells in vivo in the chick embryo chorioallantoic membrane assay isassociated to a down-regulation in the expression of endogenous endostatin. J CellMol Med.2008,12:1023-28.
    35. Chen H, Gordon MS, Campbell RA, et al. Pleiotrophin is highly expressed bymyeloma cells and promotes myeloma tumor growth. Blood.2007,110:287-95.
    36. Giuliani N, Colla S, Lazzaretti M, et al.Proangiogenic properties of human myelomacells: production of angiopoietin-1and its potential relationship to myeloma-inducedangiogenesis. Blood.2003,102:638-45.
    37. Tanaka Y, Abe M, Hiasa M, et al. Myeloma cell-osteoclasts interaction enhancesangiogenesis together with bone resorption: a role for vascular endothelial cell growthfactor and osteopontin. Clin Cancer Res.2007,13:816-23.
    38. Cackowski FC, Anderson JL, Patrene KD, et al. Osteoclasts are important for boneangiogenesis. Blood.2009,115:140-9.
    39. Scavelli C, Nico B, Cirulli T, Ria R, Di Pietro G, Mangieri D, et al. Vasculogenicmimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene2008;27:663-74.
    40. Chen H, Campbell RA, Chang Y, et al. Pleiotrophin produced by multiple myelomainduces transdifferentiation of monocytes into vascular endothelial cells: a novelmechanism of tumor-induced vasculogenesis. Blood.2008,113:1992-2002.
    41. Ribatti D, Vacca A, Nico B, et al. Bone marrow angiogenesis and mast cell densityincrease simultaneously with progression of human multiple myeloma. Br J Cancer.1999,79:451-5.
    42. Nico B, Mangieri D, Crivellato E, Vacca A, Ribatti D. Mast cells contribute tovasculogenic mimicry in multiple myeloma. Stem Cells Dev.2008,17:19-22.
    43. Cirri P, Chiarugi P. Cancer-associated fibroblasts and tumor cells: a diabolic liasondriwing cancer progression. Cancer Metastasis Rev.2012,31:195-208.
    44. Frassanito MA, Rao L, Moschetta M, et al. Bone marrow fibroblasts in patients withmultiple myeloma. Leukemia2014[in press].
    45. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAMfamilyreceptors distinguish hematopoietic stem and progenitor cells and reveal endothelialniches for stem cells. Cell.2005,121:1109-21.
    46. Xie Y, Yin T, Wiegraebe W, et al. Detection of functional haematopoietic stem cellniche using real-time imaging. Nature.2009,457:97-101.
    47. Alsayed Y, Ngo H, Runnels J, et al. Mechanisms of regulation of CXCR4/SDF-1(CXCL12)-dependent migration and homing in multiple myeloma. Blood.2007,109:2708-17.
    48. Martínez-Jaramillo G, Vela-Ojeda J, Flores-Guzm P, Mayani H. In vitro growth ofhematopoietic progenitors and stromal bone marrow cells from patients with multiplemyeloma. Leuk Res.2011,35:250-5.
    49. Jung Y, Song J, Shiozawa Y, et al. Hematopoietic stem cells regulate mesenchymalstromal cell induction into osteoblasts thereby participating in the formation of thestem cell niche. Stem Cell.2008,26:2042-51.
    50. Giuliani N, Colla S, Sala R, et al. Human myeloma cells stimulate the receptoractivator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potentialrole in multiple myeloma bone disease. Blood.2002,100:4615-21.
    51. Noonan K, Marchionni L, Anderson J, Pardoll D, Roodman GD, Borrello I. A novelrole of IL-17-producing lymphocytes in mediating lytic bone disease in multiplemyeloma. Blood.2010,116:3554-63.
    52. Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation ofosteoclastogenesis by signalling crosstalk between RANKL and IFN-gamma. Nature.2000,408:600-5.
    53. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, et al.Bcells and T cells arecritical for the preservation of bone homeostasis and attainment of peak bone mass invivo. Blood.2007,109:3839-48
    54. Van Valckenborgh E, Schouppe E, Movahedi K, De Bruyne E, Menu E, De BaetselierP, et al. Multiple myeloma induces the immunosuppressive capacity of distinctmyeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia.2012,26:2424-8.
    55. Zhuang J, Zhang J, Lwin ST, et al. Osteoclasts in multiple myeloma are derived fromGr-1+CD11b+myeloid-derived suppressor cells. PLoS ONE.2012,7:e48871.
    56. Kukreja A, Radfar S, Sun BH, Insogna K, Dhodapkar MV. Dominant role ofCD47-thrombospondin-1interactions in myeloma-induced fusion of human dendriticcells: implications for bone disease. Blood.2009,114:3413–21
    57. Ribatti D, Vacca A. Therapeutic renaissance of thalidomide in the treatment ofhaematological malignancies. Leukemia.2005,19:1525-31.
    58. Davies FE, Raje N, Hideshima T, et al.Thalidomide and immunomodulatoryderivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood.2001,98:210-6.
    59. Mitsiades N, Mitsiades CS, Poulaki V, et al. Apoptotic signaling induced byimmunomodulatory thalidomide analogs in human multiple myeloma cells:therapeutic implications. Blood.2002,99:4525-30.
    60. Kenyon KM, Browne F, D’Amato RJ. Effects of thalidomide and related metabolitesin a mouse corneal model of neovascularization. Exp Eye Res.1997,64:971–8.
    61. Geitz AH, Handta S, Zwingenberger K. Thalidomide selectively modulates thedensity of cell surface molecules involved in the adhesion cascade.Immunopharmacology.1996,31:213–21.
    62. Lu L, Payvandi F, Wu L, et al. The anti-cancer drug lenalidomide inhibitsangiogenesis and metastasis via multiple inhibitory effects on endothelial cell functionin normoxic and hypoxic conditions. Microvasc Res.2009,77:78-86.
    63. Dredge K, Horsfall R, Robinson SP, et al. Orally administered lenalidomide(CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Aktphosphorylation in vitro. Microvasc Res.2005,69:56-63.
    64. Chang DH, Liu N, Klimek V, Hassoun H, Mazumder A, Nimer SD, et al.Enhancement of ligand-dependent activation of human natural killer T cells bylenalidomide: therapeutic implications. Blood.2006,108:618-21.
    65. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understandingmultiple myeloma pathogenesis in the bone marrow toidentify new therapeutic targets.Nat Rev Cancer.2007,8:585-98.
    66. G rgün G, Calabrese E, Soydan E, et al. Immunomodulatory effects of lenalidomideand pomalidomide on interaction of tumor and bone marrow accessory cells inmultiple myeloma. Blood.2010,116:3227-37.
    67. Wang M, Dimopoulos MA, Chen C, et al. Lenalidomide plus dexamethasone is moreeffective than dexamethasone alone in patients with relapsed or refractory multiplemyeloma regardless of prior thalidomide exposure. Blood.2008,112:4445-51.
    68. Dimopoulos M, Spencer A, Attal M, et al. Lenalidomide plus dexamethasone forrelapsed or refractory multiple myeloma. N Engl J Med.2007,357:2123-32.
    69. Weber DM, Chen C, Niesvizky R, et al. Lenalidomide plus dexamethasone forrelapsed multiple myeloma in North America. N Engl J Med.2007,357:2133-42.
    70. Dimopoulos MA, Kastritis E, Christoulas D, et al. Treatment of patients withrelpased/refractory multiple myeloma with lenalidomide and dexamethasone with orwithout bortezomib: prospective evaluation of the impact of cytogenic abnormalitiesand of previous therapies. Leukemia.2010,24:1769-78.
    71. Barosi G, Merlini G, Billio A, et al. SIE, SIES, GIT MO evidence-based guidelines onnovel agents (thalidomide, bortezomib, and lenalidomide) in the treatment of multiplemyeloma. Ann Hematol.2012,91:875-88.
    72. Palumbo A, Hajek R, Delforge M et al. Continuous lenalidomide treatment for newlydiagnosed multiple myeloma. N Engl J Med.2012,366:1759-69.
    73. Adams J. The proteasome: structure, function, and role in the cell. Cancer Treat Rev.2003,29:3-9.
    74. Voorhees PM, Dees EC, O’Neil B, Orlowski RZ. The proteasome as a target forcancer therapy. Clin Cancer Res.2003,9:6316-25.
    75. Fahy BN, Schlieman MG, Mortenson MM, Virudachalam S, Bold RJ. TargetingBCL-2overexpression in various human malignancies through NF-kappaB inhibitionby the proteasome inhibitor bortezomib. Cancer Chemother Pharmacol.2005,56:46-54.
    76. Roccaro AM, Hideshima T, Raje N, et al. Bortezomib mediates antiangiogenesis inmultiple myeloma via direct and indirect effects on endothelial cells. Cancer Res.2006,66:184-91.
    77. Hideshima T, Chauhan D, Hayashi T, et al. Proteasome inhibitor PS-341abrogatesIL-6triggered signaling cascades via caspase-dependent downregulation of gp130inmultiple myeloma. Oncogene.2003,22:8386-93.
    78. Giuliani N, Morandi F, Tagliaferri S et al. The proteasome inhibitor bortezomibaffects osteoblast differentiation in vitro and in vivo in multiple myeloma patients.Blood.2007,110:334-8.
    79. Qiang Y, Hu B, Chen Y et al. Bortezomib induces osteoclast differentiation viaWnt-independent activation of beta-catenin/TCF signaling. Blood.2009;113:4319-30.
    80. Mukhejee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN, et al.Pharmacologic targeting of a stem/progenitor population in vivo is associated withenhanced bone regeneration in mice. J Clin Invest.2008,118:491-504.
    81. Mateos MV, Hernández JM, Hernández MT et al. Bortezomib plus melphalan andprednisone in elderly untreated patients with multiple myeloma: results of amulticenter phase1/2study. Blood.2006,108:2165-72.
    82. Corso A, Ferretti E, Lunghi M et al. Zoledronic acid downregulates adhesionmolecules of bone marrow stromal cells in multiple myeloma: a possible mechanismfor its antitumor effect. Cancer.2005,104:118-25.
    83. Moschetta M, Di Pietro G, Ria R, et al. Bortezomib and zoledronic acid on angiogenicand vasculogenic activities of bone marrow macrophages in patients with multiplemyeloma. Eur J Cancer.2010,46:420-9.
    84. Scavelli C, Di Pietro G, Cirulli T, Coluccia M, Boccarelli A, Giannini T, et al.Zoledronic acid affects over-angiogenic phenotype of endothelial cells in patientswith multiple myeloma. Mol Cancer Ther.2007,6:3256-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700