基于新型有机—无机杂化材料的安培型生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器是一门新兴交叉学科,在环境监测、生物医学、食品分析、军事等领域有重要应用价值。生物传感器的性能优劣很大程度上取决于生物分子的固定化效果。在生物传感器所用的生物分子固定化材料中,基于溶胶-凝胶方法的有机-无机杂化材料由于具有一系列优点而成为一种理想的固定化材料。本文通过合成新型有机-无机杂化材料制备了葡萄糖氧化酶电极和硝酸还原酶电极,研究了其电化学性质,同时对葡萄糖氧化酶电极进行了一系列的改良。论文包括以下几个部分内容:
     通过酯化反应在聚乙烯醇高分子链上接枝上了部分巯基,得到了一种新型高分子接枝物,将此接枝物与二氧化硅溶胶-凝胶结合制备了一种新型的有机-无机杂化材料。由于杂化材料表面的巯基和金电极表面形成了配位键,此杂化材料薄膜在金电极表面上有很强的附着力。
     以此杂化材料作为固定化介质,在金电极上制备了葡萄糖氧化酶电极。此酶电极的响应电流为0.6μA/mM,响应速度只有1.8秒。在连续测量,酶电极的响应电流在11个小时以后只下降了10.3%。间隔使用的情况下,响应电流在两个月内没有明显的变化。
     以此杂化材料和铂电极结合制备了一种葡萄糖氧化酶电极,由于铂对过氧化氢的催化作用,此酶电极可以在0.05V下工作的,具有很强的抗干扰性。将普鲁士蓝电沉积到杂化材料的多孔结构中,制备了普鲁士蓝修饰电极。在此修饰电极上制备成了一种新型的葡萄糖氧化酶电极。此酶电极可以在-0.05V下进行葡萄糖的测定,间歇使用的情况下,22天后响应电流为初始值的92%,具有很好的稳定性。此酶电极的响应速度为4秒左右。
     研究了纳米银粒子和碳纳米管的掺入对葡萄糖氧化酶电极性能的影响。结果表面:纳米银粒子掺杂的酶电极的线性范围增大了4倍,达到了40mM,最大检测范围为140mM左右。碳纳米管则可以将酶电极的工作电位降到0.18V。同时两种酶电极的响应速度分别为3.4秒和3秒。
     硝酸盐是水体中的一项重要的污染质,快速准确地测定硝酸盐具有重要的意义。本文首次构建成功了一种基于有机-无机杂化材料的电流型硝酸还原酶电极,其工作电位为-0.68V,以甲基紫精为电子媒介体。此酶电极21天后响应电流的绝对增量为初始绝对增量的85.7%,具有较好的稳定性。
Biosensors are new analytical tools with the merits of selectivity, fast responding, low operation expense et al, and they have been applied into environment monitoring, clinical diagnosis, food quality control and military medicine. Sol-gel derived hybrid material have become one of the most appropriated enzymes immobilized matrix. In this thesis, a new sol-gel derived material has been composed and several glucose oxidase biosensors and a nitrate reductase biosensor have been fabricated. The electrochemistry characters of the biosensors have been studied, and lots of work has been done to enhance the performance of the glucose biosensors. The detailed work of this thesis has been set out as follows:
     A new graft polymer was composed by esterification reaction between Poly (vinyl alcohol) and mercaptoethylamine. Based on this graft polymer and sol-gel, a new organic-inorganic hybrid material had been obtained. The characters of the new graft polymer and hybrid material have been studied, and the parameters of hybrid material preparation have also been optimized.
     Based on this hybrid material, glucose oxidase was embedded and immobilized on surface of gold electrode to fabricate a new type of glucose biosensor. The enzymes embedded in the hybrid material showed high activity due to the great deal of hydroxide radical and hydrogen bonds of the hybrid material, The great deal mercapto group of the graft polymer can help the hybrid material membrane to be adsorbed onto gold surface tightly, so the biosensors based on this hybrid material have excellent stability. At the same time, the biosensor has many merits such as fast response, great response current and low detect limit.
     Based on this hybrid material and platinum electrode, a new type of glucose biosensor had been fabricated. This biosensor can work at a low potential (0.05V) so its antidisturbance performance was excellent.
     We have also fabricated a biosensor with the hybrid material and electrodeposited Prussian blue, this biosensor can work under–0.05V by reduction of the H2O2 produced by enzymes reaction. The low working potential can help to enhance the biosensor’s interference immunity, so the biosensors have good practical value. After 21 days interval use, the response current dropped to 92% of its initial value. The response time of the biosensor was about 4s.
     To enhance the performance of the biosensors, silver nanoparticles and carbonnanotubes were added into the hybrid material. The result showed that the silver nanoparticles can extend the linearity range by 4 times and the carbon nanotubes can reduce the operating potential from 0.65V to 0.18V (vs SCE). The response time of the two biosensor were about 3.4s and 3s.
     Nitrate is a very important contamination of water, so the detection of nitrate by a fast and accurate method is of great value. In this thesis, the first amperometric nitrate reductases biosensor based on sol-gel derived hybrid material was fabricated. The nitrate biosensor showed good stability by 85.7% response current retained after 21 days. To our knowledge, this is the first amperometric nitrate reductase biosensor based on sol-gel materials.
引文
[1]Stoytcheva, M., Nankov, N., and Sharkova, V., Analytical Characterization and Application of A P-Benzoquinone Mediated Amperometric Graphite Sensor With Covalently-Linked Glucoseoxidase [J], Anal. Chim. Acts., 1995, 315(1-2): 101-107
    [2]Turner, A. P. F., Karube, I., and Wilson, G. Biosensors: Fundamentals and Applications Mir, Moscow, 1992
    [3]Boguslavsky, L., Kalash, H., Xu, Z., Beckles, et al., Thin-Film Bienzyme Amperometric Biosensors Based on Polymeric Redox Mediators With Electrostatic Bipolar Protecting Layer [J], Anal. Chim. Acta., 1995, 311(1): 15-21
    [4]S. J. Updike, G. P. Hicks, The enzyme electrode [J], Nature, 1967, 214:986-988
    [5] Cass, A. E. G. (Ed) Biosensors. A practical Approach, IRL Press, 1990
    [6]Anon., Current-awareness in biosensors-and-bioelectronics, Biosensors & Bioelectronics, 1994, 9 (1): R25-R35
    [7]Guilbault, G.G., Analytical Uses of Immobilized Enzymes, Marcel Dekker, 1984
    [8]Caras, S. and Janata, Field effect transistor sensitive to penicillin [J], J. Anal. Chem., 1980, 52(12): 1935-1937
    [9]Bartlett, D. N. and Cooper, J. M. A review of the immobilization of enzymes in electropolymerized films [J], J. Electroanal. Chem., 1993, 362 (1-2): 1-12
    [10]Riklin A., Katz E., Winner L., et al., Improving Enzyme-Electrode Contacts By Redox Modification Of Cofactors [J], Nature, 1995, 376 (6542): 672-675
    [11]Willner I., Katz E., Wiliner, B., Electrical contact of redox enzyme layers associated with electrodes: Routes to amperometric biosensors [J], Electroanalysis, 1997, 9 (13): 965-977
    [12]Yabuki S, Mizutani F, Hirata Y, Preparation of a microperoxidase and ferrocene-immobilized polyion complex membrane for the detection of hydrogen peroxide [J], J. Electroanal. Chem., 1999, 468(1): 117-120
    [13]Yamamoto K, Ohgaru T, Torimura M. et al. Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry [J], Anal. Chim. Acta, 2000, 406(2): 201-207
    [14]Wang j, Park D S, Pamidi. P V, Tailoring the macroporosity and performance of sol-gel derived carbon composite glucose sensors [J], J. Electroanal Chem., 1997, 434(1-2): 185-189
    [15]张成如, 杨孔章, 新型α,β-不饱和羰基桥联双二茂铁衍生物的合成及其成膜性[J], 高等学校化学学报, 1996, 17(3):401-404
    [16]Tonmura H K, Yamamoto K, et al., Amperometric determination of NAD(P)H with peroxidase-based H2O2-sensing electrodes and its application to isocitrate dehydrogenase activity assay in serum [J], J. Electroanal. Chem., 1999, 478(1-2): 33-39
    [17]Wang B Q. Dong S J, Sol-gel-derived amperometric biosensor for hydrogen peroxide basedon methylene green incorporated in Nafion film [J], Talanta, 2000, 51(3): 565-572
    [18]Pereira A C, Fernando L F, Neto G Deo, et a1., Reagentless biosensor for isocitrate using one step modified Pt-Ir mi-croelectrode [J], Talanta, 2001, 53(4): 801-806
    [19]屠一锋, 陶春红, 亚甲蓝作为酶电极电子传递介体的性能研究[J], 分析科学学报, 1997, 13(3): 189-192
    [20]何亚明, 张维成, 王志茹, 测酚用的酪氨酸酶媒体玻碳电极的研制[J], 分析测试学报, 1999, 18(4): 76-78
    [21] Quan D, Shim JN, Kim JD, et al., Electrochemical determination of nitrate with nitrate reductase-immobilized electrodes under ambient air [J], Anal. Chem., 2005, 77 (14): 4467-4473
    [22]Glazier SA, Campbell ER, Campbell WH, Construction and characterization of nitrate reductase-based amperometric electrode and nitrate assay of fertilizers and drinking water [J], Anal. Chem., 1998, 70 (8): 1511-1515
    [23]Wang B Q, Li B, Deng Q, et a1., Amperometric Glucose Biosensor Based on Sol-Gel Organic-Inorganic Hybrid Material [J], Anal. Chem., 1998, 70(15): 3170-3l74
    [24]Junior L R. Nero G O, Femandes J R, et a1., Determination of salicylate in blood serum using an amperometric biosensor based on salicylate hydroxylase immobilized in a polypyrrole-glutaraldehyde matrix [J], Talanta, 2000, 51(3): 547-557
    [25]Bonfranceschi A, Cordoba AP, Keunchkarian S, et al., Transport across poly(o-aminophenol) modified electrodes in contact with media containing redox active couples. A study using rotating disc electrode voltammetry [J], J. Electroanal. Chem., 1999, 477 (5): 1-13
    [26]Dong S, Kuwana T, Cobalt Porphyrin Nafion Film on Carbon Microarray Electrode to Monitor Oxygen for Enzyme Analysis of Glucose [J], Electroanalysis, 1991, 3 (6): 485-491
    [27]Koide S, Yokoama K, Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer [J], J. Electroanal. Chem. 1999, 468 (2): 193-201
    [28]Niwa O, Kurita R, Lju Z M, et al., Subnanoliter Volume Wall-Jet Cells Combined with Interdigitated Microarray Electrode and Enzyme Modified Planar Microelectrode [J], Anal. Chem., 2000, 72(5): 949-995
    [29]Nalini B, Narayanan S S, Amperometric determination of ascorbic acid based on electrocatalytic oxidation using a ruthenium(III) diphenyldithiocarbamate-modified carbon paste electrode [J], Anal. Chim. Acta, 2000, 405(1-2): 93-97
    [30]Inagaki T, Lee H S, Hale P D, et al., Synthesis and electrochemical characterization of siloxane polymers containing hydroquinone and 1,4-naphthohydroquinone [J], Macromolecules, 1989, 22(12): 4641- 4643
    [31]Ehler, Timothy T., Walker, James W., Jurchen, John, et al. In situ surface plasmon study of the electropolymerization of Fe(vbpy)32+ onto a gold surface [J], Journal of Electroanalytical Chemistry, 2000, 480(1-2):94-100
    [32]Mao L Q. Yamamoto K, Glucose and choline on-line biosensors based on electropolymerized Meldola's blue [J], Talanta, 2000, 51(1): 187-195
    [33]Kim H, Pyo M, Electrochemical preparation and properties of composite films withpolypyrrole/poly (styrene sulfonate): polyviologen multilayers [J], Journal of Applied Electrochemistry[J],2000, 30 (1): 49-53
    [34]Cai C, Xue K, Electrocatalysis of NADH oxidation with electropolymerized films of azure I [J], J. Electroanal Chem, 1997, 427(1-2): 147-153
    [35]刘盛辉, 莫卫民, 陈帆, β-环糊精聚合物—二茂铁安培型葡萄糖氧化酶电极[J], 分析测试学报, 1999, 18 (4): 42-45
    [36]孟宪伟, 冉均国, 苟立等, 金属与非金属纳米颗粒增强葡萄糖生物传感器[J], 材料科学与工艺, 2004, 1(2): 163-166
    [37]江龙, 量子化尺寸纳米颗粒及其在生物体系中的作用[J], 无机化学学报, 2000, 16(2):185-194
    [38]Tang FQ, Meng XW, Chen D, et al., Glucose biosensor enhanced by nanoparticles [J], Science in China Series B-Chemistry, 2000, 43 (3): 268-274
    [39]吴宝艳, 杨钰, 宋昭, 纳米颗粒对葡萄糖生物传感器性能影响的研究[J], 高技术通讯, 2005, 15(6): 50-54
    [40]任湘菱, 唐芳琼, 纳米铜颗粒-酶-复合功能敏感膜生物传感器[J], 催化学报, 2000, 21(5):455-458
    [41]Iijima S., Helical microtubes of graphitic carbon [J], Nature, 1991, 354: 56-58
    [42]缪煜清, 刘仲明, 官建国, 纳米技术在生物传感器中的应用[J], 传感器技术, 2002, 21(11): 61-64
    [43]Musameh M, Wang J , Merkoci A , et al., Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes [J], Electrochemistry Communications, 4 (10): 743-746
    [44]Rubianes M D, Rivas Gustavo A., Carbon nanotubes paste electrode [J], electrochemistry communications, 2003, 5(8): 689 – 694
    [45]YuanDi Zhao, WeiDe Zhang, Hong Chen, et al., Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode [J], Sensors and Actuators B., 2002, 87(1): 168- 172
    [46]蔡称心, 陈静, 碳纳米管电极上辣根过氧化物酶的直接电化学[J], 化学学报, 2004, 62(3): 335-340
    [47]Anthony Guiseppi - Elie, Chenghong Lei, Ray H Baughman., Direct electron transfer of glucose oxidase on carbon nanotubes [J], Nanotechnology, 2002, 13(5): 559-564
    [48]Wang S G, Qing Zhang, Ruili Wang, et al., novel multi-walled carbon nanotube-based biosensor for glucose detection [J], Biochemical and Biophysical Research Communications, 2003, 311(3): 572-576
    [49] Xu JZ, Zhu JJ, Wu Q, et al. Direct electron transfer between glucose oxidase and multi-walled carbon nanotubes [J], Chinese Journal Of Chemistry, 2003, 21 (8): 1088-1091
    [50]Liu Ying, ,Wang Mingkui, Zhao Feng, et al., The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J], Biosensors and Bioelectronics, 2005, 21(6): 984-988
    [51]李彤, 姚子华, 普鲁士蓝修饰电极结合硅溶胶-凝胶技术制备高灵敏葡萄糖传感器[J],分析化学, 2004, 32(2): 237-240
    [52]A.A. Karyakin, Prussian Blue and its analogues: Electrochemistry and analytical applications, Electroanalysis, 2001, 13 (10): 813-819
    [53]A. Dostal, B. Meyer, F. Scholz, et al, Electrochemical study of microcrystalline solid prussian blue particles mechanically attached to graphite and gold electrodes - electrochemically induced lattice reconstruction [J], J. Phys. Chem., 1995, 99 (7): 2096-2103
    [54]De Mattos IL, Gorton L, Metal-hexacyanoferrate films: A tool in analytical chemistry [J], Quimica Nova, 2001, 24 (2): 200-205
    [55]A.A. Karyakin, E.E. Karyakina, L. Gorton, On the mechanism of H2O2 reduction at Prussian Blue modified electrodes [J], Electrochem. Commun., 1999, 1(2): 78-82
    [56]De Mattos IL., Gorton L., Ruzgas T., A.A. Karyakin, Sensor for hydrogen peroxide based on Prussian Blue modified electrode: Improvement of the operational stability [J], Anal. Sci., 2000, 16 (8): 795-798
    [57]Wang, J., Lu, F., Angnes, L., Liu, J., Remarkably selective metallized-carbon amperometric biosensors [J], Analytica Chimica Acta, 1995, 305 (1-3): 3-7
    [58]董绍俊,田敏,刘柏峰. 二茂铁—AQ 修饰碳纤维微葡萄糖传感器的研究[J] . 分析化学,1993 ,21(3) :255 - 258.
    [59]纪学锋,章咏华. 介体双酶 D—氨基酸传感器的制备[J] . 分析化学,1993 ,21(6) :625 - 629.
    [60]何亚明, 张维成, 王志茹, 测酚用的酪氨酸酶媒体玻碳电极的研制[J], 分析测试学报, 1999, 18(4): 76-78
    [61]Choi S H, Lrr S D, Shin J H, et a1., Amperometric biosensors employing an insoluble oxidant as an interference-removing agent [J], Analytica Chimica Acta, 2002, 461(2): 251-260
    [62]Gavalas, Vasilis G., Chaniotakis, Nikolas A. Polyelectrolyte stabilized oxidase based biosensors: effect of diethylaminoethyl-dextran on the stabilization of glucose and lactate oxidases into porous conductive carbon [J], Analytica Chimica Acta, 2000, 404(1):67-73
    [63]吴霞琴, 郭小明, 王荣, 等,普鲁士蓝修饰铂盘电极的胆固醇传感器的研制[J], 分析化学, 2001, 29(11): 1273-1275
    [64]吴辉煌, 吴宝璋, 环糊精聚合物的分子包合作用及在酶电极中的应用[J], 电化学, 1998, 4(2): 210-216
    [65]Reddy S M, Vadgama P. Entrapment of glucose oxidase in non-porous poly(vinyl chloride) [J]. Analytica Chimica Acta, 2002, 461(1): 57-64
    [66]Zheng H, Xue H G, Zhang Y F, A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst [J]. Biosensors and Bioelectronics, 2002, 17(6-7): 541-545
    [77]Tatsuma T, Ogawa Y, Sato R, et a1., Peroxidase-incorporated sulfonated polyaniline-polycation complexes for electrochemical sensing of H202 [J], J. of Electroanalytical Chemistry, 2001, 501(1-2): 180-185
    [68]Braun S, Rappoport S, Zusman R, et a1., Biochemically active sol-gel glasses: the trapping of enzymes [J], Mater Lett, 1990, 10(1-2): 1-5
    [69]Liu Z J, Liu Bh, Kong J L, et a1. Probing trace phenols based on mediator-free aluminasol-gel-derived tyrosinase biosensor [J]. Anlytical Chemistry, 2000, 72(19): 4707-4712
    [70]Liu Z J, Liu B H, Zhang M. Al2O3 sol-gel derived amperometric biosensor for glucose [J], Analytica Chimica Acta, 1999, 392(2-3): 135-141
    [71]Chex, Cheng G J, Dong S J. Amperometric tyrosinase biosensor based on a sol-gel derived titanium oxide-copolymer composite matrix for detection of phenolic compounds [J], Analyst, 2001, 126(10): 1728-1732
    [72]Ciucu, A.A., Negulescu, C., Baldwin, R.P., Detection of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system [J], Biosensors & Bioelectronics, 2003, 18(2)(3): 303-310
    [73]Songqin Liu, Jiuhong Yu, Huangxian Ju, Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode [J], Journal of Electroanalytical Chemistry, 2003, 540(2): 61-67
    [74]Wang H Y, Mu S L, Bioelectrochemical response of the polyaniline ascorbate oxidase electrode [J], J. of Electroanalytical Chemistry, 1997, 436(1-2): 43-48
    [75]Edelman, P.G. and Wang, J.(Eds), Biosensors and Chemical Sensors, ACS Symp. Ser. No 487, ACS, Washington, DC, 1992
    [76]Paul D. Hale, Leonid I. Boguslavsky, et al., Amperometric glucose biosensors based on redox polymer-mediated electron transfer [J], Anal. Chem. , 1991, 63(7): 677-682
    [77]Dumont J., Fortier G., Behavior of glucose oxidase immobilized in various electropolymerized thin films [J], Biotechnology and Bioengineering,1996, 49(5): 544-552
    [78]Cass, A. E. G. (Ed), Biosensors:A practical Approach, IRL Press, Oxford, 1990
    [79]马全红, 邓家祺, 苯醌介体修饰的葡萄糖生物传感器[J], 复旦学报, 2000, 39(4): 400-404
    [80]Junio L R, Neto G Oliverira, Fermande J R., Determination of salicylate in blood serum using an amperometric biosensor based on salicylate hydroxylase immobilized in a polypyrrole-glutaraldehyde matrix [J], Talanta, 2000, 51(3): 547-557
    [81]Piro B, Dang L A, Pham M C, A glucose biosensor based on modified-enzyme incorporated with electropolymerised poly(3,4-ethylene-dioxythiophene)-(PEDT)films [J], Journal of Electroanalytical Chemistry, 2001, 512(1-2):101-109
    [82]Sugawara K, Fukushi H, Hoshi S, Electrochemical sensing of glucose at a platinum electrode with a chitin/glucose oxidase Film [J], Analytical Sciences, 2000, 16(6): 1139-1142
    [83]钱江红, 刘永成, 刘海鹰, 再生丝素固定葡萄糖氧化酶及其传感器的应用[J].高等学校化学学报, 1996, 17(1): 52-54
    [84]Jacques Livage, Thibaud Coradin and Cecile Roux, Encapsulation of biomolecules in silica gels [J], J. Phys., Condens. Matter., 2001, 13(33): 673–691
    [85]Joseph Wang,Sol-gel materials for electrochemical biosensors [J], Analytica Chimica Acta, 1999, 399(1-2): 21–27
    [86]Brinker,C.J.,Scherer,G. W., Sol-gel Science: The Physics and chemistry sol-gel Processing, Acdamic Press, New York,1990
    [87]Licklider, M.,Kuhr,W.G., Online Microreactors/Capillary Electrophoresis/Mass Spectrometry for the Analysis of Proteins and Peptides [J], Anal.Chem.,1995, 67(22): 4170-4177
    [88]M.Tsionsky, J.Gun,V. Glezer, O.Lev, Sol-Gel-Derived Ceramic-Carbon Composite Electrodes: Introduction and Scope of Applications [J], Anal. Chem.,1994, 66(10): 1747-1753
    [89]B.C.Dave, B.Dunn, J.S.Valentine,J.I.Ziink, Sol-gel Encapsulation Methods for Biosensors [J], Analytical chemistry,1994, 66(22):1120A-1127A
    [90]D.Avnir, Organic-chemistry within ceramic matrices - doped sol-gel materials [J], Acc.Chem. Res.,1995, 28 (8): 328-334
    [91]C.J. Brinker,D.M. Smith, R. deshpande, sol-gel processing of controlled pore oxides [J], Catal.Today, 1992, 14 (2): 155-163 5
    [92]KIibanov, A.M., Enzymes that work in organic solvents [J], Chemtech, 1986,16:354-359
    [93]Hench, L.L.,West, J.K..The Sol-Gel process [J], Chemical Reviews, 1990,90(1): 33-72
    [94]Rottman, C. Ottolenghi, M.; Zusman, R.et al, Doped sol-gel glasses as pH sensors [J], Materials Letters, 1992, 13(6): 293-298
    [95]Uchida, N. (Nagaoka Univ of Technology), Ishiyama, N., Kato, Z., Uematsu, K. Chemical effects of DCCA to the sol-gel reaction process [J], Journal of Materials Science, 1994, 29(19): 5188-5192
    [96]Nikolic, Lj., Radonjic, Lj., Effect of drying control chemical additives in sol-gel-glass monolith processing [J], Ceramics International, 1994, 20(5): 309-313
    [97]谭学才, 翟海云, 李荫等,基于溶胶-凝胶壳聚糖/SiO2杂化材料的安培型葡萄糖生物传感器[J], 高等学校化学学报,2004, 259(9):1645-1647
    [98]Lev, O., Tsionsky, M., Rabinovich, L., et al, Organically modified sol-gel sensors [J], Analytical Chemistry, 1995, 67(1): 22A-30A
    [99]Shen, Chengyu, Kostic, Nenad M., Kinetics of photoinduced electron-transfer reaction within sol-gel silica glass doped with zinc cytochrome c. Study of electrostatic effects in confined liquids [J], Journal of the American Chemical Society, 1997,119(6): 1304
    [100]余桂郁,杨南如. 溶胶—凝胶法简介:第三讲 溶胶—凝胶法工艺过程[J], 硅酸盐通报,1993,12(6): 60-66
    [101] J. Wang, P.V.A. Pamidi, D.S. Park, Screen-printable sol-gel enzyme-containing carbon inks [J], Anal. Chem., 1996, 68(15): 2705-2708
    [102]Kauffmann, Carl, Mandelbaum, Raphi T., Entrapment of atrazine chlorohydrolase in sol-gel glass matrix [J], Journal of Biotechnology, 1998, 62(3): 69-176
    [103]O. Lev, Diagnostic application of organically doped Sol-gel porous glass [J], Analusis, 1992, 20: 543-553
    [104]V.Glezer, O.Lev, Sol-gel vanadium pentaoxide glucose biosensor [J], J. Am. Chem. Soc., 1993, 115(6): 2533-2534
    [105]Edmiston, Paul L., Wambolt, Carol L., Smith, Marianne K., Saavedra, S. Scott , Spectroscopic characterization of albumin and myoglobin entrapped in bulk sol-gel glasses [J], Journal of Colloid and Interface Science, 1994, 163(2): 395-406
    [106]Brennan, John D., Using intrinsic fluorescence to investigate proteins entrapped in sol-gel derived materials , Applied Spectroscopy [J], 1999, 53(3): 106A-121A
    [107]Collinson, Maryanne M., Zambrano, et al, Diffusion coefficients of redox probesencapsulated within sol-gel derived silica monoliths measured with ultramicroelectrodes [J], Langmuir, 1999, 15(3): 662-668
    [108]Brinker, C.J., Frye, G.C., Hurd, A.J.,et al , Fundamentals of sol-gel dip coating [J], Thin Solid Films, 1991, 201(1): 97-108
    [109]Brinker, C.J., Hurd, A.J., Schunk, P.R.,et al, Review of sol-gel thin film formation [J], Journal of Non-Crystalline Solids, 1992, 147(48): 424-436
    [110]Dislich,H. Thin films from the Sol-Gel process.In Sol-Gel Thchniology for Thin film fibers preforms electronics and Specialty Shapes,L.C. Klein,ed.(Park Ridge,New Jersey,Noyes Publications):50-79
    [111]Jenna Leigh Rickus, Solgel optical biosensors for gluctamatc,University of California, Doctral thesis,2003
    [112]王炳全,程广金,董绍俊, 溶胶-凝胶生物传感器, 分析化学, 1999,27(8): 982-988
    [113]I Pankrotov, O. Lev, Sol-Gel derived renewable surface biosensors [J], J. Electroanal. Chem., 1995, 393 (1-2): 35-41
    [114]M M. Collinson, C G. Rausch, A. Voigt. Electroactivity of redox probes encapsulated within sol-gel-derived silicate film [J]. Langmuir, 1997, 13(26): 7245-7251
    [115]S. Sampath, O. Lev, Inert metal-modified, composite ceramic-carbon, amperometric biosensors: renewable, controlled reactive layer [J]. Anal.Chem., 1996, 68(13): 2015-2021
    [116]J. Gun, O. Lev, Sol-gel derived, ferrocenyl-modified silicate-graphite composite electrode: Wiring of glucose oxidase [J]. Anal. Chim. Acta., 1996, 336(1-3): 95-106
    [117]Schubert U, Husing N, Lorenz A, Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides [J], Chem. Mater. 1995, 7 (11): 2010-2027
    [118]Leonard V. Interrante, Mark J. Hampden-Smith, Chemistry of Advanced Materials, An Overview, Wiley-VCH, 1997
    [119]Mercier L, Pinnavaia TJ, Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation [J], Adv. Mater., 1997, 9 (6): 500
    [120]Lim MH, Blanford CF, Stein A. Synthesis and characterization of a reactive vinyl-functionalized MCM-41: Probing the internal pore structure by a bromination reaction [J], J. Am. Chem. Soc., 1997, 119 (17): 4090-4091
    [121]Burkett, S.L;Sims, S. D.; Mann, S. Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors [J], Chem. Commun.1996, (11): 1367-1368
    [122]Sanchez C, In M, Molecular design of alkoxide precursors for the synthesis of hybrid organic inorganic gels [J], J. Non-Cryst. Solids, 1992,147: l-l2
    [123]Kusakabe K, Yoneshige S, Morooka S, Separation of benzene/cyclohexane mixtures using polyurethane-silica hybrid membranes [J], J. Membr. Sci.,1998, 149 (1): 29-37
    [124]Kim J H, Lee Y M., Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes [J], J. Membr. Sci., 2001, 193 (2): 209-225
    [125]Smaihi M, Schrotter JC, Lesimple C, et al., Gas separation properties of hybridimide-siloxane copolymers with various silica contents [J], J. Membr. Sci., 1999, 161 (1-2): 157-170
    [126]Gill I, Ballesteros A, Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: An efficient and generic approach [J], J. Am. Chem. Soc., 1998, 120 (34): 8587-8598
    [127]Zhang Z., Chen Y., D'souza, R., et al., Biocompatible macroporous silica monoliths with entrapped proteins, 7th World Biomaterials Congress, 2004, 1323
    [128]B. Wang, J. Zhang, G. Cheng, et al., Amperometric enzyme electrode for the determination of hydrogen peroxide based on sol-gel/hydrogel composite film [J], Anal. Chim. Acta, 2000, 40(1-2): 111-118
    [129]Gang Wang, Jing-Juan Xu, Hong-Yuan Chen, et al., Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix [J], Biosensors & Bioelectronics, 2003, 18(4): 335-343
    [130]Tan Xue-Cai, Tian Yuan-Xin, Cai Pei-Xiang, et al., Glucose biosensor based on glucose oxidase immobilized in sol-gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode [J], Analytical and Bioanalytical Chemistry, 2005, 381(2): 500-507
    [131]Tan Xue-cai, Wang Jian-wei, Xu Jian-jun, et al., Preparation and characterization of chitosan/silica hybrid film and its application in immobilization of glucose oxidase [J], Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43(4): 50-53
    [132]Falbe, J., Regitz, M., Chemie Lexikon, Bd. 6,9. Aufl 4993-4998. Thieme verlag, Stuttgart, New York: 1992
    [133]Benefield, L.D., Judikins, J.F., Weand, B.L., Process Chemistry for Water and Wastewater Treatment. Prentice Hall Inc, Englewood Cliffs: 1982a, 444
    [134]WHO, Guidelines for Drinking Water Quality, World Health Organisation, Geneva, 1993
    [135]EEC-European Economic Community, Council directive on the quality of water for human consumption (No-80/778 Off). J. EEC. 1980, 229, 11-29
    [136]Newborne, P.M., Nitrates and nitrites in food and in the biological system. In Newborne, P.M. (Ed.), Trace Substances and Health. A hand book Pt-2. Marcel Dekker, New York, 1982, 1-46
    [137]Chan, T.Y.K., Food borne nitrates and nitrites as a case of methaemoglo-binaemia. Southeast Asian. J. Trop. Pub. Health 27,1996, 189-192
    [138]Taras, H. J. Colorometric Determination of Nonmetals; Interscience Publishers: New York, 1958, 135-137
    [139]Fritz, J. S.; Gjerde, D. T.; Pohlandt, C. Ion Chromatography; Huthig, Heidelberg, 1982, 84
    [140]Davenport, R. J.; Johnson,D. C., Voltammetric determination of nitrate and nitrite ions using a rotating cadmium disk electrode [J], Anal. Chem., 1973,45:1979-1980
    [141]Hussein, W. R.; Guilbault, G. G. Nitrate And Ammonium Ion-Selective Electrodes As Sensors .2. Assay of Nitrate Ion And Nitrate And Nitrite Reductases In Stationary Solutions And Under Flow-Stream Conditions [J], Anal. Chim. Acta., 1975, 76 (1): 183-192
    [142]Takayama K, Biocatalyst electrode modified with whole-cells of P-denitrificans for the determination of nitrate, Bioelectrochemistry and Bioenergetics [J], 1998, 45 (1): 67-72
    [143]Mbeunkui F, Richaud C, Etienne AL, et al. Bioavailable nitrate detection in water by an immobilized luminescent cyanobacterial reporter strain [J], Appl. Microbiol. Biotechnol., 2002, 60 (3): 306-312
    [144]Kirstein D, Kirstein L, Scheller F, et al. Amperometric nitrate biosensors on the basis of Pseudomonas stutzeri nitrate reductase [J], Journal of Electroanalytical Chemistry, 1999, 474 (1): 43-51
    [145]Ferreyra NF, Solis VM, An amperometric nitrate reductase–phenosafranin electrode: kinetic aspects and analytical applications [J], Bioelectrochemistry, 2004, 64 (1): 61-70
    [146]Mori H, Direct determination of nitrate using nitrate reductase in a flow system [J], Journal Of Health Science, 2000, 46 (5): 385-388
    [147]Aiken AM, Peyton BM, Apel WA, et al. Heavy metal-induced inhibition of Aspergillus niger nitrate reductase: applications for rapid contaminant detection in aqueous samples [J], Analytica Chimica Acta, 2003, 480 (1): 131-142
    [148]Da Silva S, Shan D, Cosnier S, Improvement of biosensor performances for nitrate determination using a new hydrophilic poly (pyrrole-viologen) film [J], Sensors and Actuators B-Chemical, 2004, 103 (1-2): 397-402
    [149]Cosnier S, Galland B, Innocent C, New electropolymerizable amphiphilic viologens for the immobilization and electrical wiring of a nitrate reductase [J], Journal of Electroanalytical Chemistry, 1997, 433 (1-2): 113-119
    [150]Ramsay G, Wolpert SM, Utility of wiring nitrate reductase by alkylpyrroleviologen-based redox polymers for electrochemical biosensor and bioreactor applications [J], Anal. Chem., 1999, 71 (2): 504-506
    [151]Cosnier S, Innocent C, Jouanneau Y, Amperometric Detection of Nitrate via a Nitrate Reductase Immobilized and Electrically Wired at the Electrode Surface [J], Anal. Chem., 1994, 66 (19): 3198-3201
    [152]Moretto LM, Ugo P, Zanata M, et al. Nitrate biosensor based on the ultrathin-film composite membrane concept [J], Anal. Chem., 1998, 70 (10): 2163-2166
    [153]Dias JM, Than ME, Humm A et al., Crystal structure of a perplasmic nitrate reductase (NAP) from Desulfovibriodesulfuricans ATCC27774 at 1.75 ? resolution by MAD: a molybdopterin enzyme with a single Fe4S4 cluster [J]. Structure, 1999,7:65-79
    [154]Zumft WG, Cell biology and molecular basis of denitrification [J], Microbiol. Mol. Biol. Rev., 1997, 61(4):533-616
    [155]Berks BC, Richardson DJ, Reilly A et al, The NapEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha [J], Biochem. J., 1998, 309:983-992
    [156]Reyes F, Roldan MD, Klipp W et al, Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: Structural and functional differences among prokaryotic nitrate reductases [J], Mol Microbiol 1996, 19(6): 1307-1318
    [157]Bursakov SA, Liu MY, Payne WJ et al, Isolation and preliminary characterization of a soluble nitrate reductase from the sulfate reducing organism Desulfovibrio desulfuricans ATCC 27774[J], Anaerobe, 1995, 1(1): 55-60
    [158]Conrado Moreno-Vivián, Purificación Cabello, Manuel Martínez-Luque, et al. Prokaryotic Nitrate Reduction: Molecular Properties and Functional Distinction among Bacterial Nitrate Reductases [J], Journal of Bacteriology, 1999, 181(21) : 6573-6584
    [159]Hyde G.E., J.A. Wilberding, A.L. Meyer et al, Monoclonal antibody-based immunoaffinity chromatography for purifying corn and squash NADH:nitrate reductases. Evidence for aninterchain disulfide bond in nitrate reductase [J], Plant Mol. Biol., 1989,13(2):233-246
    [160]Aylott JW, Richardson DJ, Russell DA, Optical biosensing of nitrate ions using a sol-gel immobilized nitrate reductase [J], Analyst, 1997, 122 (1): 77-80
    [161]Strehlitz B, Grundig B, Vorlop Kd, et al. Artificial Electron-Donors for Nitrate and Nitrite Reductases Usable as Mediators in Aperometric Biosensors [J], Journal of Analytical Chemistry, 1994, 349 (8-9): 676-678
    [162]宋雅茹, 吴红, 邵会波, 硝酸还原酶在巯基自组装膜上的电化学性质[J], 电化学, 2002, 8(3): 333-336
    [163]Patolsky F, Katz E, Heleg-Shabtai V, et al. A Crosslinked Microperoxidase-11 and Nitrate Reductase Monolayer on a Gold Electrode: An Integrated Electrically Contacted Electrode for the Bioelectrocatalyzed Reduction of NO3- [J], Chemistry- A European Journal, 1998, 4 (6): 1068-1073
    [164]Mellor Robert B., Campbell Wilbur H., Diekmann, Reduction of nitrate and nitrite in water by immobilized enzymes [J], Nature, 1992, 355(6362): 717-719
    [165]Shu F R , Wilson G S. Rotating ring-disk enzyme electrode for surface catalysis studies[J] Analytical Chemistry, 1976, 48(12):1679~1686
    [166]Kiyoshi Hasebe, Janet osteryoung, differential pulse polarographic determination of some carcinogenic nitrosamines [J], Analytical Chemistry, 1975, 47(14):2142-2148
    [167]Mark A. Bryant, Susan L. Joa, and Jeanne E. Pemberton, Raman Scattering from Monolayer Films of Thiophenol and 4-Mercaptopyridine at Pt Surfaces [J], Langmuir, 1992,8,153-756
    [168]Stern, D. A.; Wellner, E.; Salaita, et al, Adsorbed thiophenol and related compounds studied at Pt(111) electrodes by EELS, Auger spectroscopy, and cyclic voltammetry [J], J. Am. Chem. SOC. ,1988, 110(20):4885~4893
    [169]Bravo, B. G.; Mebrahtu, T.; Soriaga, M. P. et al, Reversible redox of 2,5-dihydroxythiophenol chemisorbed on gold and platinum electrodes: evidence for substrate-mediated adsorbate-adsorbate interactions [J], Langmurr, 1987,3(4): 595-597
    [170]钱军民,李旭祥,介体型电流式酶传感器中电子媒介体的研究进展[J], 化工进展,2001,6:11-15
    [171]Mattos I L ,Gorton L , Ruzgas T,Karyakin A A. , Sensor for hydrogen peroxide based on Prussian Blue modified electrode: improvement of the operational stability [J], Analytical Sciences ,2000 ,16(8) :795~798
    [172]Cregg, B. A.; Heller, A. Electrical Communication between Redox Centers ofGlucoseOxidase and Electrodes via Electrostatically and Covalently Bound Redox Polymers [J],J. Am. Chem. Soc., 1989, 111:2357-2358
    [173]Kamin, R. A.; Wilson, N. J., Enzyme electrocatalysis at organic salt electrodes [J], J. Electroanal. Chem., 1980, 52:1198-1205
    [174]Wilbur H. Campbell, Nitrate reductase structure, function and regulation: bridging the Gap between Biochemistry and Physiology [J], Annual Review of Plant Physiology and Plant Molecular Biology,1999, 50:277-303
    [175]Berks S J, Ferguson S J, Moir J W B, Richardson D J, Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxianions [J], Biochem Biophys Acta,1995, 1232(3):97-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700