南盘江地区早、中三叠世牙形石生物地层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二叠纪-三叠纪之交的生物大灭绝事件以及之后生态环境的复苏是地球演化史上的一个重要时期,在此期间海洋生态系统发生了重大变革,并完成了古中生代生态类群的转变。二叠纪末生物大灭绝及之后的生态环境恢复一直以来都是国际上研究的热点问题之一,而南盘江区域多条剖面的系统研究为其提供了良好的研究背景,并取得了一系列成果。同样微体化石牙形石的研究可以为其提供很好的年代地层学方面的依据。本研究以早三叠世-中三叠世早期的牙形石生物地层为基础,结合事件地层学和碳、氧稳定同位素的分析来探讨生物与环境协同演化,为此我们选定了南盘江区域的5条早、中三叠世剖面,依次为台地相贵州贵阳改貌和花溪剖面、盆地边缘相贵州罗甸边阳剖面、盆地相广西田东作登剖面和广西凤山金牙湾头剖面。
     盆地边缘相边阳剖面位于南盘江盆地大贵州滩的西北缘,此次我们主要研究了该剖面从二叠纪末到中三叠世早期的这一段地层,其中对二叠-三叠纪之交至早-中三叠世之交的地层进行了牙形石样品的高精度采集和分析。通过分析,在边阳剖面晚二叠世晚期到早三叠世晚期识别出10个牙形石带,由老到新依次为:Clarkina yini带;Hindeodus changxingensis带;Hindeodus parvus带;Sweetospathodus kummeli带;Neospathodus dieneri带;Neospathodus cristagalli带;Discretella discreta带;Pachycladina-Parach irognathus组合带;Icriospathodus collinsoni带;Triassospathodus homeri带。在边阳Ⅱ剖面早、中三叠世之交识别出5个牙形石带,自下而上依次为:Triassospathodus homeri带,Triassospathodus brochus带,Chiosella timorensis带, Nicoraella germanicus带,Nicoraella kockeli带。依据精细牙形石序列的建立,在边阳剖面将二叠系-三叠系界线以Hindeodus parvus分子的首次出现确定于边阳剖面第6层的底部,同时认为在该剖面牙形石带H. changxingensis带的存在可能从一定程度上反映了大贵州滩甚至南盘江地区当时海平面的下降程度;将Induan-Olenekian界线通过Discretella discreta分子的首次出现确定于第1层之上94.4m的位置,并探讨了Discretella discreta和Novispathodus waageni分子两者之间在地层中的出现的先后关系;在边阳Ⅱ剖面将Olenekian-Anisian阶的界线以Chiosella timorensis分子的首现定于最底部之上15.9m的位置。
     在盆地相剖面作登剖面中,作登Ⅰ剖面前人的报道较为详细,因此我们对该剖面只进行了控制点牙形石样品的采集,在早三叠世地层中识别出6个牙形石带,从老到新依次为:Hindeodus parvus带,Hindeodus sosioensis带,Neospathodus dieneri带,Discretella discreta带,Icriospathodus collinsoni带,Triassospathodus homeri带;对作登Ⅱ剖面我们进行了大样品高精度牙形石序列的分析,在不到30m的地层中识别出从Dienerian到Spathian期的7个牙形石带,自下而上依次为:Neospathodus dieneri带,Novispathodus waageni带,Pachycladina-Parachirognathus组合带,Novispathodus pingdingshanensis带,Icriospathodus collinsoni带,Triassospathodus homeri带和Triassospathodus brochus带;在作登Ⅲ剖面中主要识别出了早、中三叠世之交的牙形石类型,比如Chiosella timorensis分子。依据高精度牙形石序列的研究,证实作登Ⅰ剖面和作登Ⅱ剖面存在着地层上的重复,并非之前报道的连续地层;在作登Ⅱ剖面将Dienerian-Smithian和Smithian-Spathian的界线分别以Novispathodus waageni和Novispathodus pingdingshanensis的首现定于最底部往上4.50m和11.08m的位置:在作登Ⅲ剖面将Olenekian-Anisian界线以Chiosella timorensis分子的首现确定于最底部地层往上2m的位置。
     在盆地相凤山金牙湾头剖面不到13m的地层中我们重点进行了早-中三叠世之交的高精度大样品牙形石生物地层的分析,总计在该剖面识别出3个牙形石带,从老到新依次为:Triassospathodus homeri带,Triassospathodus brochus带,Chiosella timorensis带,将Olenekian-Anisian的界线依据Chiosella timorensis分子的首次出现确定于该剖面底部之上8.22m的位置。此外,在盆地相凤山金牙拉仁剖面进行了Smithian-Spathian界线处牙形石序列的分析,并依据Novispathodus pingdingshanensis的首次出现将Smithian-Spathian界线确定于剖面底部往上10m的位置。
     在台地相剖面贵州贵阳花溪剖面和改貌剖面,牙形石材料主要来自于安顺组顶部和花溪组底部地层,岩性以白云岩为主,牙形石丰度较低。但从牙形石序列来看,在改貌剖面花溪组底部识别出的牙形石主要为:Icriospathodus? crassatus, Icriospathodus collinsoni, Novispathodus abruptus, Triassospathodus symmetricus和Triassospathodus homeri,其地层时代应当为Spathian中晚期;花溪剖面花溪组产出的牙形石主要为:Novispathodus abruptus, Triassospathodus symmetricus和Triassospathodus homeri,所采集样品的地层时代应当为Spathian晚期。这改变了传统认为的花溪组地层全部归属于中三叠世的观点。
     通过南盘江盆地沉积相不完全相同的五条剖面牙形石序列的研究,有利于我们对于不同沉积环境下的早三叠世牙形石序列进行对比和完善。此次研究在盆地边缘相贵州边阳剖面、盆地相广西作登Ⅱ剖面Smithian晚期以及斜坡相甲戎剖面的牙形石材料中均识别出Pachycladina和Parachirognathus这两个属,说明南盘江盆地在该时期均处于水深较浅的阶段;结合剖面材料及前人研究成果,本文在Spathian晚期新建立了牙形石带Triassospathodus brochus带,其首现点晚于Triassospathodus homeri,特征明显,在边阳Ⅱ剖面、作登Ⅱ和Ⅲ剖面以及凤山湾头剖面均可识别。
     不同的牙形石类型可以反映不同的生态环境,此次研究我们侧重于早三叠世生态环境波动时牙形石属种的变化。经分析,我们认为Eurygnathodus和Icriospathodus这两个属的出现往往出现在其后相对较冷的时期,同时对应着δ13Ccarb的相对正偏,因此我们认为这两个属的分子有可能是凉水型分子的代表,其出现往往伴随着生物多样性的增加;Novispathodus pingdingshanensis被提议作为划分Smithian-Spathian界线的标准分子,具有重要的地质意义,其分子延限范围处于Spathian期新属种还未全面出现的过渡期,首现点往往对应于δ13Ccarb负偏的高值、贫氧的极高值和古海洋温度的最大值,因此推断该分子是极端环境下的产物。
     针对近年来关于在南盘江区域早中三叠世之交广泛发育的绿豆岩的分布时间和Chiosella timorensis首现点之间的争论。通过我们牙形石材料的研究,证实绿豆岩和Chiosellatimorensis并不存在明显的地层上出现的先后关系,且在各个剖面绿豆岩的层数多少也有很大差异,而关于绿豆岩年龄值的时间跨度很大,因此我们认为在南盘江区域绿豆岩不适合作为事件层来划分下中三叠统的界限。此外,虽然被证实Chiosella timorensis分子可以出现在Spathian晚期的菊石Haugi带中,但综合考虑,仍然建议以Chiosella timorensis分子的首现作为划分早-中三叠世之交的标准化石,而且Chiosella timorensis分子的出现应当具有等时性。
The end-Permian mass extinction event and subsequent ecological environment recovery were one key period in the Earth history; meanwhile marine ecosystems had evolved from Paleozoic type to Mesozoic one. As a hot topic in scientific researching, the end-Permian mass extinction and its recovery in ecological environment had been under investigated for many years. The sections in the Nanpanjiang Basin could provide some important breakthroughs for a comprehensive recognition of the nature of the end-Permian mass extinction and the extraordinary nature of the Early Triassic world that followed. Marine microfossil, conodont, as a good index in biochronology, was used to subdivide the Early-Middle Triassic biostratigraphy, especially Olenekian Stage in this study. Meanwhile, event stratigraphy and Carbon stable isotope was combined to explain interrelationship between organism and environment. Five sections in the Early-middle Triassic were chosen in Nanpanjiang region, including platform facies Gaomao and Huaxi section (Guiyang, Guizhou province), basin margin facies Bianyang section (Luodian county, Guizhou province), basin facies Zuodeng section (Tiandong county, Guangxi province) and Wantou section (Fengshan county, Guangxi province).
     Bianyang section is located on the northwest flank of the Great Bank of Guizhou (GBG) in Nanpanjiang area. Strata from end-Permian and earlier Middle-Triassic were analysed through the high-resolution conodont biostratigraphy.10conodont zones was established in Bianyang section, in ascending order, they are:Clarkina yini Zone; Hindeodus changxingensis Zone; Hindeodus parvus Zone; Sweetospathodus kummeli Zone; Neospathodus dieneri Zone; Neospathodus cristagalli Zone; Discretella discreta Zone; Pachycladina-Parachirognathus assemblage zone; Icriospathodus collinsoni Zone and Triassospathodus homeri Zone, respectively. In Bianyang section II,5conodont zones were set up, in ascending order: Triassospathodus homeri Zone, Triassospathodus brochus Zone, Chiosella timorensis Zone, Nicoraella germanicus Zone and Nicoraella kockeli Zone. Based on the high-resolution conodont sequences, two conclusions were concluded:1) the Permian-Triassic boundary should be placed in the basal part of Bed6as the first appearance datum (FAD) of Hindeodus parvus. Whilst, we suggest the existence of H. changxingensis zone at this section represents the extent of sea level fall in the GBG and even the Nanpangjiang area.2) the Induan-Olenekian boundary was defined by the first occurrance of Discretella discreta and located at the94.4m higher than the basement of Bed1. Furthermore, the correlation of Discretella discrete and Novispathodus waageni was discussed. At the Bianyang section Ⅱ, Olenekian-Anisian boundary was defined at15.9m above the basal part of this section by the FAD of Chiosella timorensis.
     The previous study had demonstrated detailed conodont sequences at Zuodeng section Ⅰ. In this study, we just simply clarify conodont bioastratigrphy of the key strata through the controlled conodont samples collected. Six conodont zones are recognized, in ascending order:Hindeodus parvus Zone, Hindeodus sosioensis Zone, Neospathodus dieneri Zone, Discretella discreta Zone, Icriospathodus collinsoni Zone and Triassospathodus homeri Zone. Large samples were collected in the Zuodeng section Ⅱ,7conodont zones were recognized in the less than30m thickness strata, in ascending order, they are:Neospathodus dieneri Zone, Novispathodus waageni Zone, Pachycladina-Parachirognathus assemblage Zone, Novispathodus pingdingshanensis Zone, Icriospathodus collinsoni Zone, Triassospathodus homeri Zone and Triassospathodus brochus Zone. Some conodont elements were also identified in the Early-Middle Triassic boundary interval at Zuodeng section Ⅲ, such as Chiosella timorensis. According to the high resolution conodont sequences at Zuodeng section Ⅱ, Dienerian-Smithian boundary and Smithian-Spathian boundary can be defined at4.50m and11.08m above the base of Bed1by the FO of Novispathodus waageni and Novispathodus pingdingshanensis, respectively. The same situaiton is Olenekian-Anisian boundary can be placed at2m above the basal part by the FO of Chiosella timorensis at Zuodeng section Ⅲ. Comparing with previous study, the Permian-Triassic boundary is still defined at basal part of microbiolites. Additionally, conodont research reveals the existence of stratigraphic repetition between Zuodeng section Ⅰ and Zuodeng section Ⅱ, which is different from the earlier research.
     Large conodont samples were collected in the less than thickness13m strata in Wantou section. Three conodont zones were established as follows:Triassospathodus homeri Zone, Triassospathodus brochus Zone and Chiosella timorensis Zone. Moreover, the Olenekian-Anisian boundary was placed at8.22m higher than the base of Bed1according to the FAD of Chiosella timorensis. Meanwhile, conodont sequence was investigated in the Smithian-Spanthian boundary interval in the Laren section, Fengshan County. Then the Smithian-Spathian boundary was defined at the10m higher than the basal level by the FAD of Novispathodus pingdingshanensis.
     In platform facies Huaxi and Gaomao sections, Guiyang city, Guizhou province, Anshun Formation and Huaxi Formation mainly consist of dolomite, traditionally assigned to Middle Triassic strata. Whereas, conodont materials from the Gaomao section (comprising of Icriospathodus? crassatus, Icriospathodus collinsoni, Novispathodus abruptus, Triassospathodus symmetricus and Triassospathodus homeri) turned out that the lower part of Huaxi Formation in Gaomao section deposited in the mid-late Spathian period; conodont sequences from the Huaxi section (comprising of Novispathodus abruptus, Triassospathodus symmetricus and Triassospathodus homeri) revealed that the basal part of Huaxi Formation should correspond to the late-Spathian substage.
     Through the study of5sections from different sedimentary facies in the Nanpanjiang basin, it is in favor of better understanding of the Early Triassic conodont sequences in different facies. Two genera of Pachycladina and Parachirognathus can be found in the late-Spathian strata at Bianyang section (basin margin facies), Zuodeng section (basin facies) and Jiarong section (ramp facies). Therefore, we conclude that the sea level would be shallower in Nanpanjiang basin in this period. Based on the new and abundant conodont materials in the study, Triassospathodus brochus Zone was proposed to as one new conodont Zone to be established in the late-Spathian strata, the FAD of which is later than Triassospathodus homeri. This Zone can also be distinguished in Bianyang section II, Zuodeng section Ⅱ, Wantou section and other regions of the world.
     Different ecological condition could be reflected by different conodont genera. In this study the research focuses on the change of conodont genera and species in the episode of environment fluctuation in Early Triassic. Through analysis, Eurygnathodus and Icriospathodus appear usually in cooler climate period, corresponding to the positive fluctuation of δ13Ccarb. Therefore the two genera were suggested as the representative of cooler water elements and the biodiversity increasing was accompanied in this period. In this study, although Novispathodus pingdingshanensis had been confirmed to exist in ammoniod Xenocelites Zone in the latest-Smithian strata, it was still proposed as an index fossil to define Smithian-Spathian Boundary, because the species Novispathodus pingdingshanensis have the typical geological significance. The FAD of Novispathodus pingdingshanensis generally matched ralativly negative δ13Ccarb values, the highest values in the anoxic period and the hottest palaeo-ocean temperature value. Moreover, the range of Novispathodus pingdingshanensis was in the transitional phase. Afterwards, some new Spathian species had appeared.
     "Green Bean Rock" beds were widely recongnized in Nanpangjian basin in Early-Middle Triassic boundary interval. For better understanding of this dispute on the correlation of "Green Bean Rock" and the FAD of Chiosella timorensis, conodont research was made in this interval. It convinces us that there is no exact temporal relationship between those two. Moreover, the numbers of "Green Bean Rock" beds were different in. the different regions and the range of the age was very longer than the former study. In the study, we tend to think the first appearance datum of Chiosella timorensis is contemporaneous in the different areas. Overall consideration, the FAD of Chiosella timorensis is more suitbale to define the early-middle Triassic Boundary, although it was identified that Chiosella timorensis could appear in the Haugi Zone in the latest-Spathian strata.
引文
[1]Yin H F, Zhang K X, Tong J N, et al. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic boundary. Episodes,2001,24:102-114.
    [2]赵来时,童金南,Orchard M J等.安徽巢湖地区下三叠统牙形石生物地层分带及其全球对比.中国地质大学学报,2005,30(5):623-634.
    [3]Zhao L S, Orchard M J, Tong J N, et al. Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007,252:24-38.
    [4]Zhao L S, Tong J N, Sun Z M, et al. A detailed Lower Triassic conodont biostratigraphy and its implications for the GSSP candidate of the Induan-Olenekian boundary in Chaohu, Anhui Province. Progress in Natural Science,2008,18:79-90.
    [5]Krystyn L. A revised Lower Triassic intercalibrated ammonoid-conodont time scale of the eastern Tethys Realm based on Himalayan data. Albertiana,2005,33 (2):53-54.
    [6]Orchard M J. Report on 2007 conodont collections from Mud, Spiti. Albertiana,2007,36, 46-49.
    [7]GrSdinaru E, Kozur H W, Nicora A, et al. The Chiosella timorensis lineage and correlation of the ammonoids and conodonts around the base of the Anisian in the GSSP candidate at Desli Caira (North Dobrogea, Romania). Albertiana,2006,34:34-38.
    [8]GrSdinaru E, Orchard M J, Nicora A, et al. The Global Boundary Stratotype Section and Point (GSSP) for the base of the Anisian Stage:Desli Caira Hill, North Dobrogea, Romania. Albertiana,2007,36:54-71.
    [9]Orchard M J, Lehrmann D J, Wei J Y, et al. Conodonts from the Olenekian-Anisian boundary beds, Guandao, Guizhou Province, China. New Mexico Museum of Natural History and Science.2007, Bulletin 41:347-354.
    [10]杨守仁,郝维城,江大勇.三叠纪牙形石的古环境与古地理意义.古地理学报,2001,3(1):78-84.
    [11]夏凤生,张放.牙形类.见:沙金庚,王启飞,卢辉南等.羌塘盆地微体古生物.北京:科学出版社.2005.p.172-229.
    [12]Orchard M J. Multielement conoont apparatuses of Triassic Gondolelloides. Palaeontology, 2005,73:73-101.
    [13]Goudemand N, Orchard M J, Tafforeau P, et al. Early Triassic conodont clusters from South China:revision of the architecture of the 15 element apparatuses of the superfamily Gondolelloidea. Palaeontology,2012,55(5):1021-1034.
    [14]Mosher L C. Triassic conodonts from western North America and Europe and their correlation. J. Paleontology,1968,42:895-946.
    [15]McTavish R A. Triassic conodont faunas from Western Australia. Neues Jahrbuch flir Mineralogie, Geologie und Palaontologie, Abhandlungen,1973,143(3):275-303.
    [16]Solien M A. Conodont Biostratigraphy of the Lower Triassic Thaynes Formation, Utah. Journal of Paleontology,1979,53:276-306.
    [17]Orchard M J. Taxonomy and correlation of Lower Triassic(Spathian) segminate conodonts from Oman and revision of some species of Neospathodus. Journal Paleontology,1995,69: 110-122.
    [18]Orchard M J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1-2):93-117.
    [19]Jiang H S, Aldridge R J, Lai X L, et al. Phylogeny of the conodont genera Hindeodus across the Permian-Triassic boundary. Lethaia,2011,44:374-382.
    [20]Epstein A G, Epstein J B, Harris L D. Conodont Color Alteration an Index to Organic Metamorphism. Geological Survey Professional Paper,1977,995:27.
    [21]Buggisch W, Joachimski M M, Sevastopulo G, et al. Mississippian delta C-13(carb) and conodont apatite delta 0-18 records-Their relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology,2008,268(3-4):273-292.
    [22]Joachimski M M, Lai X L, Shen S Z, et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology,2012,40(3):195-198.
    [23]Sun Y D, Joachimski M M, Wignall P B, et al. Lethally Hot Temperatures during Early Triassic Greenhouse:Science,2012,388:366-370.
    [24]Girarda C, Albarede F. Trace elements in conodont phosphates from the Frasnian/Famennian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology,1996,126 (1-2):195-209.
    [25]L^cuyer C, Reynard B, Grandjean P. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites. Chemical Geology,2004,204 (1-2):63-102.
    [26]陈剑波,赵来时,陈中强,等.浙江煤山牙形石微区原位REE组成及古环境意义.地球科学-中国地质大学学报,2012,37(1):25-34.
    [27]Payne J L, Turchyn A V, Paytan A, et al. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of the United States of America,2010, 107(19):8543-8548.
    [28]Hinojosa J L, Brown S T, Chen J, et al. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology,2012,40(8):743-746.
    [29]Jiang H, Aldridge R J, Lai X, et al. Observations on the surface microreticulation of platform elements of Neogondolella (Conodonta) from the Upper Permian, Meishan, China. Lethaia, 2008,41:263-274.
    [30]Liang D, Tong J N, Zhao L S. Lower Triassic Smithian-Spathian Boundary at West Pingdingshan Section in Chaohu, Anhui Province:Science China-Earth Sciences,2011,54: 372-379.
    [31]Orchard M J, Zonneveld J P. The Lower Triassic Sulphur Mountain Formation in the Wapiti Lake area:lithostratigraphy, conodont biostratigraphy, and a new biozonation for the lower Olenekian (Smithian). Canadian Journal of Earth Sciences,2009,46:757-790.
    [32]Richoz S, Krystyn L, Horacek M, et al. Carbon isotope record of the Induan-Olenekian candidate GSSP Mud-comparison with other sections. Albertiana,2007,35:35-40.
    [33]Bowring S A, Erwin D H, Jin Y G, et al. U/Pb Zircon Geochronology and Tempo of the End-Permian Mass Extinction. Science.1998,280 (15):1039-1045.
    [34]Shen S, Crowley J L, Wang Y, et al. Calibrating the End-Permian Mass Extinction. Science, 2011,334(6061):1367-1372.
    [35]Bucher H, Hochuli P A, Schaltegger U, et al. Timing of recovery from the end-Permian extinction:Geochronologic and biostratigraphic constraints from south China:COMMENT AND REPLY. Geological Society of America,2007, p.135.
    [36]Ovtcharova M, Bucher H, Goudemand N, et al. New U/Pb ages from Nanpanjiang Basin (South China):implications for the age and definition of the Early-Middle Triassic boundary. Geophysical Research Abstracts,2010,12:12505.
    [37]Lehrmann D J, Payne J L, Felix S V, et al. Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, south China:Implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios,2003, 18:138-152.
    [38]贵州省贵阳市幅区域地质调查报告1:5万,贵州:贵州省地矿局区域地质调查大队,1990,p.92-95.
    [39]时国.贵阳花溪地区下三叠统大冶组遗迹化石及沉积环境研究:[硕士论文].贵州:贵州大学,2007.
    [40]王尚彦.贵阳市花溪地区下三叠统大冶组中遗迹化石及沉积环境[J].贵州地质,1987,(4):301-310.
    [41]罗茂,时国,龚一鸣.贵阳花溪早三叠世遗迹化石及其对二叠纪末生物大灭绝事件后生物复苏的启示.古地理学报,2007,9(5):519-532.
    [42]Yang B, Lai X L, Wignall P, et al. A newly discovered earliest Triassic chert at Gaimao section, Guizhou, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012,344-345:69-77.
    [43]苟汉成.滇黔桂地区中、上三要统浊积岩形成的构造背景及物源区的初步探讨.沉积学报,1985,3(4):95-107.
    [44]贺自爱.黔、桂中三叠世浊流沉积的形成环境.石油与天然气地质,1986,7(3):207-217.
    [45]周传明,夏邦栋,吕洪波,等.贵州罗甸中三叠统边阳组风暴沉积的发现.地质科学,1996,31(2):193-195.
    [46]童金南.黔中一黔南中三叠世环境地层学.地球科学一中国地质大学学报,1992,p.318.
    [47]蒋武.贵州边阳地区下、中三叠统牙形刺及其环境分析—兼论有机质变质作用的新指标,石油勘探与开发,1980,(1):23-30.
    [48]Song H J, Wignall P B, Chen Z Q, et al. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology,2011,39:739-742.
    [49]Meyer K M, Yu M, Jost A B, et al.δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters,2011,302: 378-384.
    [50]杨守仁,王新平,郝维城.广西田东县下三叠统的新认识.北京地质大学学报(自然科学),1986,(4):105-117.
    [51]Tong J N, Zuo J X, Chen Z Q. Early Triassic carbon isotope excursions from South China:for devastation and restoration of marine ecosystems following end-Permian mass extinction. Geological Journal,2007,42:371-389.
    [52]Galfetti T, Bucher H, Brayard A, et al. Late Early Triassic climate change:insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,243:394-411.
    [53]Galfetti T, Bucher H, Martini R, et al. Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery. Sedimentary Geology,2008,204:36-60.
    [54]张舜新.桂西下三叠统牙形石序列的新认识.现代地质,1990,4(2):1-17.
    [55]Ovtcharova M, Bucher H, Schaltegger U. Calibration of the early Triassic biotic recovery. new U/Pb zircon ages from South China,2005.
    [56]Brayard A, Escarguel G, Bucher H. The biogeography of Early Triassic ammonoid faunas: Clusters, gradients, and networks. Geobios,2007,40:749-765.
    [57]江海水,罗根明,赖旭龙.牙形石的分离方法简介[J].地质科技情报,2004,23(4):109-112.
    [58]Jiang H S, Lai X L, Luo G M, et al. Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Global and Planetary Change, 2007,55:39-55.
    [59]Song H, Tong J N, Chen Z Q, et al. End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, South China. Journal of Paleontology,2009,83:718-738.
    [60]Song H J, Wignall P B, Tong J N, et al. Two pulses of extinction during the Permian-Triassic crisis. Nature Geoscience,2013,6 (1):52-56.
    [61]Payne J L, Lehrmann D J, Follett D, et al. Erosional truncation of uppermost Permian shallow marine carbonates and implications for Permian-Triassic boundary events. Geological Society of America Bulletin,2007,119:771-784.
    [62]Wignall P B, Kershaw S, Collin P Y, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events:Comment. Geological Society of America Bulletin,2009,121:954-956.
    [63]Krull E S, Lehrmann D J, Drake D, et al. Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeography, Palaeoclimatology, Palaeoecology,2004,204:297-315.
    [64]Lehrmann D J, Enos P, Payne J L, et al. Permian and Triassic depositional history of the Yangtze platform and Great Bank of Guizhou in the Nanpanjiang basin of Guizhou and Guangxi, south China. Albertiana,2005,33:149-168.
    [65]Lehrmann D J, Wan Y, Wei J Y, et al. Lower Triassic peritidal cyclic limestone:an example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2001, 173:103-123.
    [66]刘建波,江崎洋一,杨守仁,等.贵州罗甸二叠纪末生物大灭绝事件后沉积的微生物岩时代和沉积学特征.古地理学报,2007,9(5):473-486.
    [67]Chen J, Beatty T W, Henderson C M, et al. Conodont biostratigraphy across the Permian-Triassic boundary at the Dawen section, Great Bank of Guizhou, Guizhou Province, South China:Implications for the Late Permian extinction and correlation with Meishan. Journal of Asian Earth Sciences,2009,36:442-458.
    [68]Yang H, Chen Z Q, Wang Y B, et al. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,308:111-128.
    [69]Lehrmann D J, Payne J L, Enos P. Field Excursion 2:Permian-triassic boundary and a Lower-Middle triassic boundary sequence on the Great bank of Guizhou, Nanpanjiang basin, southern Guizhou Province. Albertiana,2005,33:169-186.
    [70]王红梅,王兴理,李荣西,等.贵州罗甸边阳镇关刀剖面三叠纪牙形石序列及阶的划分.古生物学报,2005,44(4):611-626.
    [71]王志浩,钟端.滇东、黔西和桂北不同相区的三叠纪牙形刺生物地层[J].地层学杂志,1990,14(1):15-35.
    [72]Mei S L, Zhang K X, Wardlaw B R. A refined zonation of Changhsingian and Griesbachian neogondolellid conodonts from the Meishan Section, candidate of the global stratotype section and point of the Permian-Triassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology,1998,143:213-226.
    [73]Jiang H S, Lai X L, Yan C B, et al. Revised conodont zonation and conodont evolution across the Permian-Triassic boundary at the Shangsi section, Guangyuan, Sichuan, South China. Global and Planetary Change,2011,77:103-115.
    [74]王成源.二叠-三叠系界线层的牙形刺与生物地层界线.古生物学报,1995,34(2):129-154.
    [75]Metcalfe Ⅰ, Nicoll R S, Wardlaw B R. Conodont index fossil Hindeodus changxingensis Wang fingers greatest mass extinction event. Palaeoworld,2007,16:202-207.
    [76]Sweet W C. Uppermost Permian and Lower Triassic conodonts of the Salt Range and Trans-Indus Ranges, West Pakistan. In:Kummel B, Teichert C, eds. Stratigraphic Boundary Problems:Permian and Triassic of West Pakistan. University of Kansas, Department of Geology Special Publications,1970,4:207-275.
    [77]Paull R K. Conodont biostratigraphy of Lower Triassic rocks, Terrace Mountains, northwestern Utah. In Dennis, L.N., ed., The overthrust belt of Utah. Utah Geological Association Publication Utah Geological Association Publication,1982,10:235-249.
    [78]Matsuda T. Late Permian to Early Triassic conodont paleobiogeography in the "Tethys Realm". In:Nakazawa K, Dickins J M, eds. The Tethys, her paleogeography and paleobiostratigraphy from Paleozoic to Mesozoic. Tokai University Press, Tokyo,1985, p. 157-170.
    [79]Paull R K, Paull R A, Laudon T S. Conodont biostratigraphy of the Lower Triassic Mackenzie Dolomite Lentil, Sulphur Mountain Formation in the Cadomin area, Alberta. Bulletin of Canadian Petroleum Geology,1997,45:708-714.
    [80]Zhang K X, Tong J N, Shi G R, et al. Early Triassic conodont-palynological biostfatigraphy of the Meishan D Section in Changxing, Zhejiang Province, South China Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252:4-23.
    [81]赵来时,童金南,左景勋.安徽巢湖平顶山下三叠统牙形石生物地层序列.地球科学,2003,28(4):414-418.
    [82]Ji W T, Tong J N, Zhao L S, et al. Lower-Middle Triassic conodont biostratigraphy of the Qingyan section, Guizhou Province, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,308:213-223.
    [83]王成源,王志浩.珠穆朗玛峰地区三叠纪牙形刺.见:中国科学院西藏科学考察队编.珠穆朗玛峰地区科学考察报告(1966-1968),古生物第二分册.北京:科学出版社,1976.页码:387-416.
    [84]杨守仁,王新平,郝维城.广西西部早、中三叠世牙形石序列.北京大学学报(自然科学版),1986,(4):90-106.
    [85]蒋武,罗玉琼,陆廷清.四川盆地下三叠统牙形刺及其油气意义.微体古生物学报,2000.17(1):99-109.
    [86]Goel R K. Triassic Conodonts from Spiti (Himachal Pradesh), India. Journal of Paleontology, 1977,51:1085-1101.
    [87]Orchard M J, Krystyn L. Conodonts from the Induan-Olenekian boundary interval at Mud, Spiti. Albertiana,2007,35:30-34.
    [88]Matsuda T. Early Triassic conodonts from Kashmir, India. Part 2:Neospathodus 1. Journal of Geosciences, Osaka City University,1982,25:87-102.
    [89]Paull R K.Distribution pattern of Lower Triassic (Scythian) conodonts in the western United States:documentation of the Pakistan connection. Palaios,1988,3:598-605.
    [90]Orchard M J. Lower Triassic conodonts from the Canadian Arctic, their intercalibration with ammonoid-based stages and a comparison with other North American Olenekian faunas. Polar Research,2008,27:393-412.
    [91]Matsuda T. Early Triassic Conodonts from Kashmir, India. Part 3:Neospathodus 2. Journal of Geosciences, Osaka City University,1983,26:87-110.
    [92]Lai X L, Mei S L. On zonation and evolution of Permian and Triassic conodonts. In:Yin H F, Dickins J M, Shi G R, et al. Permian-Triassic Evolution of Tethys and Western Circum-Pacific. Elsevier Science B. V,2000, p.371-392.
    [93]Yin H F. Triassic Biostratigraphy of China. In:Zhang, W.T., Chen, P.J., and Palmer, A.R., eds.. Biostratigraphy of China:Science Press, Beijing,2003, p.379-422.
    [94]王志浩,曹延岳.湖北利川早三叠世牙形刺.古生物学报,1981,20(4):363-378.
    [95]赖旭龙.牙形石.见:殷鸿福,杨逢清,黄其胜,等.秦岭及邻区三叠系.武汉:中国地质大学出版社,1992.p.66-68;p.166-169.
    [96]Perri M C, Andraghetti M. Permian-Triassic boundary and Early Triassic conodonts from the Southern Alps, Italy. Rivista Italiana di Paleontologia e Stratigrafia,1987,93:291-328.
    [97]Aljinovic D, Kolar-Jurkovsek T, Jurkovsek B, et al. Conodont dating of the Lower Triassic sedimentary rocks in the External Dinarides (Croatia and Bosnia and Herzegovina). Rivista Italiana di Paleontologia e Stratigrafia,2011,117(1):135-148.
    [98]Koike T. Morphological variation in Spathian conodont Spathoicriodus collinsoni (Solien) from the Taho Limestone, Japan. Centenary of Japanese Micropaleontology,1992, p. 355-364.
    [99]Orchard M J, Tozer E T. Triassic conodont biochronology, its calibration with the ammonoid standard, and a biostratigraphic summary for the Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology,1997,45:675-692.
    [100]杨守仁,郝伟城,江大勇.广西凌云县罗楼地区早三叠世牙形石.古生物学报,2001,40(1):86-92.
    [101]武桂春,姚建新,纪占胜.西藏刚底斯西段措勤地区三叠纪牙形石生物地层特征.地质通报,2007,26(8):938-946.
    [102]Chhabra N L, Sahni A. Late Lower Triassic and Early Triassic conodont faunas from Kashmir and Kumaun sequences in Himalaya. Journal of Paleontology Society of India,1981, 25:135-147.
    [103]Belka Z, Wiedmann J. Conodont stratigraphy of the Lower Triassic in the Thakhola region (eastern Himalaya, Nepal). Newsletters on Stratigraphy,1996,33 (1):1-14.
    [104]Nogami Y. Trias-Conodonten von Timor, Malaysion trod Japan (Palaeontological Study of Portuguese Timor,5). Memoires of Faculty of Sciences, Kyoto University (Geology and Mineralogy),1968,34(2):115-136.
    [105]田传荣.西藏聂拉木县土隆村三叠纪牙形石[A].见青藏高原地质文集(7).北京:科学出版社,1982,页码:153-165.
    [106]Yao J X., Ji Z S, Wang L T, et al. Conodont Biostratigraphy and Age Determination of the Lower-Middle Triassic Boundary in South Guizhou Province, China. Acta Geological Sinica, 2011,85 (2):408-420.
    [107]Orchard M J, Bucher H. Conodont-ammonoid intercalibration around the Lower-Middle Triassic boundary:Nevadan clocks help tell British Columbian time. Current Research, part E; Geological Survey of Canada, Paper 92-1E,1992, p.133-140.
    [108]Kozur H. Die conodontengattung Metapolygnathus Hayashi 1968 und ihr stratigraphischer wert. Geologisch-Palaonotologische Mitteilungen Innsbruck,1972,2(11):1-37.
    [109]王志浩,戴进业.四川江油、北川地区三叠纪牙形刺.古生物学报,1981,20(2):138-152.
    [110]Sun Z, Sun Y, Hao W, et al. Conodont evidence for the age of the Panxian fauna, Guizhou, China. Acta Geologica Sinica (English edition),2006,80 (5):621-630.
    [111]Zhang Q, Zhou C Y, Lu T, et al. A conodont-based Middle Triassic age assignment for the Luoping Biota of Yunnan, China. Science in China Series D:Earth Sciences,2009,52 (10): 1673-1678.
    [112]Budurov K. Conodont stratigraphy of the Balkanide Triassic. Rivista Italiana Paleontoligia e Stratigrata,1980,85 (3-4):767-780.
    [113]Sadeddin W. Conodont-biostratigraphy and paleogeography of the Triassic in Jordan. PalaeontographicaAbt.A,1998,248:119-224.
    [114]Tatge U. Conodonten aus dem germanischen Muschelkalk. Palaontologische Zeitschrifl, Teil 1,1956,30 (3-4):129-147.
    [115]Pisa G, Perri C, Veneri P. Upper Anisian conodonts from Dont and M. Bivera formations, southern Alps(Italy). Paleont,1980,85:807-828.
    [116]Mirauta E, Gheorghian D. Etude microfaunique des formations Triasiques (Transylvaines, Bucoviniennes et G6tiques) des Carpates Orientales. Dari de Seama ale Sedintelor,1978,64 (3):109-162.
    [117]Koike T. Triassic Conodont Biostratigraphy in Kedah, West Malaysia. Geol Paleont Southeast Asia.1982,23:9-51.
    [118]张克信,赖旭龙,童金南等.全球界线层型华南浙江长兴煤山剖面牙形石序列研究进展.古生物学报,2009,48(3),474-486.
    [119]Chen Z Q, Tong J, Zhang K, et al. Environmental and biotic turnover across the Permian-Triassic boundary on a shallow carbonate platform in western Zhejiang, South China. Australian Journal of Earth Sciences,2009,56 (6):775-797.
    [120]Chen Z Q, Tong J, Liao Z, et al. Structural changes of marine communities over the Permian-Triassic transition:Ecologically assessing the end-Permian mass extinction and its aftermath. Global and Planetary Change,2010,73 (1-2):123-140.
    [121]Zakharov Y D, Shigeta Y, Igo Y. Correlation of the Induan-Olenekian boundary beds in the Tethys and Boreal realm:evidence from conodont and ammonoid fossils. Albertiana,2009,37: 20-27.
    [122]Lehrmann D J, Ramezani J, Bowring S A, et al. Timing of recovery from the end-Permian extinction:Geochronologic and biostratigraphic constraints from south China. Geology,2006, 34(12):1053-1056.
    [123]Orchard M J, Gradinaru E, Nicora A. A summary of the conodont succession around the Olenekian-Anisian boundary at Desli Caira, Dobrogea, Romania. New Mexico Museum of Natural History and Science Bulletin 41,2007, p.341-346.
    [124]Hounslow M W, Szurlies M, Muttoni G, et al. The magnetostratigraphy of the Olenekian-Anisian boundary and a proposal to define the base of the Anisian using a magnetozone datum. Albertiana,2007,36:72-77.
    [125]Goudemand N, Orchard M J, Bucher H, et al. The elusive origin of Chiosella timorensis (Conodont Triassic). Geobios,2012,45:199-207.
    [126]杨浩.华南二叠纪-三叠纪之交的钙质微生物岩及古环境分析:[博士论文].武汉:中国地质大学(武汉),2009.
    [127]Luo G M, Wang Y B, Yang H. et al. Stepwise and large-magnitude negative shift in delta C-13(carb) preceded the main marine mass extinction of the Permian-Triassic crisis interval. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,299 (1-2):70-82.
    [128]Luo G M, Wang Y B, Algeo T J, et al. Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction. Geology,2011,39:647-650.
    [129]王念忠,杨守仁,金帆等.中国海相早三叠世弓鲛鱼类(软骨鱼类)的首次报道.古脊椎动物学报,2001,39(4):237-251.
    [130]Kozur H. The Conodonts Hindeodus, Isarcicella and Sweetohindeodus in the Uppermost Permian and Lowermost Triassic. Geol Croat,1996,49 (1):81-115.
    [131]Kozur H. Some aspects of the Permian-Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary. Palaeogeography, Palaeoclimatology, Palaeoecology,1998,143:227-272.
    [132]Igo H. Conodont succession. In:Shigeta Y, and Zakharov Y D, et al. The Lower Triassic System in the Abrek Bay area, South Primorye, Russia. National Museum of Nature and Science, Tokyo.2009, p.27-29.
    [133]Galfetti T, Bucher H, Ovtcharova M, et al. Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth and Planetary Science Letters,2007,258:593-604.
    [134]Erwin D H. The Permo-Triassic extinction. Nature,1994,367:231-236.
    [135]Zhao L S, Tong J N, Orchard M J. Study on the Lower Triassic Conodont Sequence and the Induan-Olenekian Boundary in Chaohu, Anhui Province. Wuhan:China University of Geosciences Press,2005, p.58-80.
    [136]Klets T V. Paleogeographic Regionalization of Triassic Seas Based on Conodontophorids. Stratigraphy and Geological Correlation,2008,16 (5):467-489.
    [137]Sweet W C, Mosher L C, Clark D L, et al. Conodont Biostratigraphy of the Triassic. In: Sweet W C, Bergstrom S M, et al. eds. Symposium on Conodont Biostratigraphy. GSA Memoir,1971,127:441-465.
    [138]Markevich P V, Zakharov Y D. Triassic and Jurassic of the Sikhote-Alin, Book 1: Terrigenous assemblage. Dalnauka, Vladivostok,2004, p.420 (In Russian with English summary).
    [139]王志浩,钟端.滇东,黔西和桂北不同相区的三叠纪牙形刺.微体古生物学报,1994,11(4):379-412.
    [140]Koike T. Lower Triassic conodonts Platyvillosus from the Taho Limestone in Japan. Koike T, 1988. Sci. Repts. Yokohama Natl. Univ., Sec Ⅱ,1988,35:61-79.
    [141]Zhao L S, Tong J N, Orchard M J. Morphological Variation of Conodonts Platyvillosus from Yinkeng Formation in Chaohu, Anhui Province, China. Journal of China University of Geosciences,2003,14 (4):306-313.
    [142]Zakharov Y D. New information on biostratigraphy of the Mud section, Spiti, Himalayas. Albertiana,2010,38:4.
    [143]Romano C, Goudemand N, Vennemann T W, et al. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience,2013,6:57-60.
    [144]Brayard A, Bucher H, Escarguel G, et al. The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,239:374-395.
    [145]Bruhwiler T, Bucher H, Brayard A, et al. High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery:The Smithian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,297,491-501.
    [146]Hallam A, Wignall P B. Mass Extinction and Their Aftermath. Oxford:Oxford University Press,1997.1-307.
    [147]Embry A F. Global sequence boundaries of the Triassic and their identification in the western Canada Sedimentary Basin. Bull Canad Petrol Geol,1997,45:415-433.
    [148]Bruhwiler T, Bucher H, Goudemand N, et al. Smithian (Early Triassic) ammonoid successions of the Tethys:new preliminary results from Tibet, India, Pakistan and Oman.New Mexico Museum of Natural History and Science Bulletin.2007,41:25-26.
    [149]Bruhwiler T, Bucher H, Roohi G, et al. A new early Smithian ammonoid fauna from the Salt Range (Pakistan). Swiss J Palaeontol,2011,130:187-201.
    [150]Paton M T, Ivanovb A V, Fiorentinia M L, et al. Late Permian and Early Triassic magmatic pulses in the Angara-Taseeva syncline, Southern Siberian Traps and their possible influence on the environment. Russian Geology and Geophysics,2010,51 (9):1012-1020.
    [151]Hermann E, Hochulia P A, Mehayb S, et al. Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery:The Salt Range and Surghar Range records. Sedimentary Geology,2011,234 (1-4):19-41.
    [152]Payne J L, Lehrmann D J, Wei J Y, et al. Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction. Science,2004,305:506-509.
    [153]Payne J L, Lehrmann D J, Christensen S, et al. Environmental and Biological Controls on the initiation and growth of a middle Triassic (Anisian) reef Complexon the Great Bank Of Guizhou, Guizhou Province, China. Palaios,2006,21 (4):325-343.
    [154]殷鸿福,童金南.关于中国的海相三叠系建阶及下三叠统分阶界线.地球科学—中国地质大学学报,2002,27(5):490-497.
    [155]关建哲,戴克琳,杜其良.峨眉山绿豆岩的应用及其成因探索.成都地质学院学报,1990,17(2):37-43.
    [156]王彦斌,刘敦一,姚建新,等.黔西南下—中三叠统界线年龄.地质学报,2004,78(5):586-591.
    [157]姚建新,纪占胜,王立亭等.贵州南部地区中三叠统青岩阶底界附近牙形石生物地层学研究.地质学报,2004,78(5):576-585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700