锂钒氧化物Li_(1+x)V_3O_8的合成与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Li_(1+x)V_3O_8具有比能量高,锂嵌入量大等优点,是一种非常有发展前途的锂离子电池的正极材料。但其电化学性能受合成工艺影响大,且循环寿命不佳。为此,本文采用三种固相烧结法合成了Li_(1+x)V_3O_8。第一种固相烧结法是在480至680℃利用直接固相烧结法制样;第二种固相烧结法是用微波辐照合成样品;第三种固相烧结法是在第二种固相烧结法的基础上进一步掺杂TiO_2制备的掺杂样品。通过XRD、FTIR、TEM等研究了样品的电化学性能与合成条件的关系。
     研究表明:直接固相烧结法得到的样品呈现棒状结构。480℃样品的第一循环的放电容量为218mAh/g,在40个循环的充放电中放电容量衰减率为27%。680℃样品的第一循环的放电容量为128mAh/g,在40个循环的充放电中放电容量衰减率为3%。微波烧结法得到的样品呈现圆球状结构,粒径在150-300nm范围内。微波处理导致样品的XRD衍射线有明显的宽化现象。微波烧结样的第一循环的放电容量为210mAh/g,第40循环的放电容量为202mAh/g,循环性能较其它烧结样更为优秀,且存放性能也更好。掺杂TiO_2的Li_(1+x)V_3O_8微波烧结样进一步改善了电化学性能。测试了样品的一些光谱性能。
Li1+xV3O8 is regarded as a promising cathode material in Li ions battery, for its high capacity and special electrochemical performance. Past studies show that the electrochemical performance of Li1+xV3O8 remarkably depends on synthesis methods . In this paper three kinds of solid phase sintering methods were employed to synthesize Li1+xV3O8 samples, in which the first included the solid phase sintering process in the temperature range 480 to 680C ;the second included the microwave sintering process ; the third included the simultaneity doped process on the basis of second microwave sintering method .The connection between electrochemical performance and synthesis conditions studied by the modern experimental techniques , such as XRD, FT-IR, TEM, Cyclic voltammetry , charge-discharge experiment, storage experiment etc.
    Experiments indicate that the samples synthesized by pure solid phase sintering method hold stick-shape. The discharge capacity of 480C sample is 218mAh/g at the first cycle and the declined rate of discharge capacity is 27% in 40 cycles. The discharge capacity of 680C sample is 128mAh/g at the first cycle , nevertheless its declined rate is only 3%.The sample synthesized by the microwave sintering has a kind of sphere-shape with a particle sizes about 150-300nm. XRD diffraction peaks of samples of microwave sintering is obviously expanded . The discharge capacity of sample synthesized by microwave sintering have 210mAh/g discharge capacity at first cycle , while have 202mAh/g capacity after 40 cycles, which show better cycle and stored performance than other samples. TiO2 doped further improved the electrochemical performance . Several special spectrum characters are measured .
引文
[1] Scrosati B. Lithium rocking chair batteries and old concept[J] .J Electrochem Soc 1992,139(10):2776-2781.
    [2] Nagaura T, Tozawa K. Lithium ion rechargeable battery[J] .Prog Batteries Sol Cells, 1990, (9):209-217.
    [3] 吴宇平,万春荣,姜长印等著.锂离子二次电池,化学工业出版社,2002:9.
    [4] Whittingham M S. Science, 1976,192:1126.
    [5] 刘建睿,王猛,尹大川,黄卫东.锂离子蓄电池正极材料锂钒氧化物的研究进展[J] .电源技术,2001,25(4):308-311.
    [6] 李春鸿.锂离子二次电池[J] .电池,1996,26(6):288-290.
    [7] 徐俊峰.锂离子电池的研究.复旦大学硕士论文,2001.
    [8] 刘汉三.锂离子电池正极材料锂镍系列化合物的合成、结构和性能研究.厦门大学理学博士学位论文,2003.
    [9] 文衍宣.锂离子电池正极材料LiCo_(0.5)Ni_(0.5)O_2的合成机理研究.中国地质科学院博士后论文,2002.
    [10] 张卫民.锂离子正极材料LiCo02的制备研究.山东大学硕士论文,2001.
    [11] Jeong E D, Won M S, Shim Y B. Cathodic properties of lithium-ion secondary battery using LiCoO_2 prepared by complex formation reaction. J Power Sources, 1998,70(1):70-77.
    [12] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J] .Nature, 2001,414:359-367.
    [13] 吴宇平,万春荣,姜长印,李建军,李阳兴.用溶胶—凝胶法制备锂离子蓄电池材料[J] .电源技术,2000,24(2):112-115.
    [14] 吴宇平,万春荣,姜长印等编著.锂离子二次电池,化学工业出版社,2002:17-18.
    [15] Ohzuku T, Veda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO_2(R3m) for 4V on secondary lithium cells[J] .J Electrochem
    
    Soc, 1996,140(7):1862-1869.
    [16] Peres J P, Weill F, Delmas C. Lithium/vacancy ordering in the monclinic Li_xNiO_2 (0.50<= x<= 0.75) solid solution [J] .Solid State Ionics, 1999,116:19-27.
    [17] Arai H, Okada S, Sakurai Y, et al. Thermal behavior of Li_(1-y)NiO_2 and the decomposition mechanism[J] .Solid State Ionics 1998,109:295-302.
    [18] Schoonman J, Tuller H L, Kelder E M. Defect chemical aspects of lithium-ion battery cathodes[J] .J Power Sources, 1999,81-82:44-48.
    [19] 刘汉三,杨勇,张忠如,林祖赓.锂离子电池正极材料锂镍氧化物的研究新进展[J] .电化学,2001,7(2):145-154.
    [20] Delmas C, Menetrier M, Croguennec L, et al. An overview of the Li(Ni, Mn)O_2 systems:syntheses, structure and properties[J] .Electrochimica Acta, 1999,45:243-253.
    [21] Ceder G, Chiang Y M, Sadoway R, et al. Identification of cathode materials for lithium batteries guided by first principles caculations [J] .Nature, 1998,392:694-696.
    [22] Ayclinol M K, Kohan A F, Ceder G, et al. Abinition study of lithium inercalation in metal oxides and dichalcogenides[J] .Phys Rev B, 1997,56(3):1354-1365.
    [23] 詹晖,周运鸿.锂离子电池正极材料的发展[J] .电源技术,1998,23:102-105.
    [24] Thackeray M M. Manganese oxides for lithium batteries[J] .Solid State Chem, 1997,25:1-71.
    [25] Barker J, Pynenburg R, Koksbang R. Determination of thermodynamic, kinetic and interfacial propertiles for the Li/Li_xMn_2O_4 system by electrochemical techniques[J] .J Power Sources, 1994,52:185-192.
    [26] Yamada A, Tanaka M, et al. Jahn-Teller structural phase transition around
    
    280 K in LiMn_2O_4[J] .Res Bull,1995,30:715-721.
    [27] Xia Y, Masaki Y. Optimization of spinel Li_(1+x)Mn_(2-y)O_4 as a 4V li-cell cathode in terms of a Li-Mn-O phase diagram. J Electrochem Soc, 1997,144(12):186-194.
    [28] Yamada A,Miura K, Hinokuma K, et al. Synthesis and Structural Aspects of LiMn_2O_4+/-delta as a Cathode for Rechargeable Lithium Batteries. J Electrochem Soc, 1995,142:2149-2155.
    [29] Antonini A, Bellitto C, Pasqua] i M, et al. Factors affecting the stabilization of Mn spinel capacity upon storing and cycling at high temperatures. J Electrochem Soc, 1998,145(8):2726-2732.
    [30] Gummow R J, Kock De A, Thackeray M M. Improved capacity retention in rechargeable 4V lithium manganese oxide(spinel) cells[J] . Solid State Ionics, 1994,69:59-67.
    [31] Aurbach D, Levi M D, Amulski K, et al. Capacity fading of Li_xMn_2O_4 spinel electrodes studied by XRD and electroanalytical techniques [J] .J Power Sources, 1999,81-82:472-479.
    [32] Guyomard D, Tarascon J M. The carbon Li_(1+x)Mn_2O_4 system[J] .Solid State Ionics, 1994,69:222-237.
    [33] Armstrong A R, Bruce P G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J] .Nature, 1996,381:499-500.
    [34] Gopukumar S, Kyung Yoon Chung,Kwang Bum Kim. Novel synthesis of layered LiNi_(1/2)Mn_(1/2)O_2 as cathode material for lithium rechargeable cells[J] . Electrochimica Acta, 2004,49(5):803-810.
    [35] Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides[J] .Adv Mater, 2001,13:594.
    [36] 刘建睿,王猛,尹大川,黄卫东.锂离子蓄电池正极材料锂钒氧化物的研究进展[J] .电源技术,2001,25(4):308-311.
    
    
    [37] Anna S A, Beata K, Lennart H, et al. Lithium extraction/insertion in LiFePO_4:an X-ray diffraction and Mssbauer spectroscopy study[J] . Solid State Ionics, 2000,130(1-2):41-52.
    [38] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO_4[J] .J Power Sources, 2001,97-98:498-502.
    [39] Ravet N, Chouinard Y, Magan J F. Electroactivity of natural and synthetic triphylite[J] .J Power Sources, 2001,97-98:503-507.
    [40] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates[J] .J Electrochem Soc, 1998,144(5):1609-1613.
    [41] Yang S, Song Y, Zavalij P Y, et al. Reactivity, stability and electrochemical behaviour of lithium iron phosphates[J] .Electrochemistry Communications, 2002,4(3):239-244.
    [42] 任俊霞,阎杰,王小建,高学平.锂离子电池正极材料LiFePO_4的研究进展[J] .电池,2004,34(2):53-55.
    [43] Delmas C, Menetrier M, Croguennec L, et al. Lithium batteries:a new tool in solid state chemistry[J] .International Journal of Inorganic materials, 1999,1(1):11-19.
    [44] 周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J] .化学进展,1998,10(1):85-94.
    [45] 任旭梅,吴川,何国蓉,李汉军,吴锋,王国庆,陈实.锂离子电池正负极材料研究进展[J] .化学研究与应用,2000,13(4):360-364.
    [46] Winter B M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries[J] .Advanced Materials ,1998,10(I0):725-763.
    [47] PicciottoL A,Thackeray M M, David W, Bruce P G, Goodenough J B.
    
    Structural characterization of delithiated LiVO_2.Mater Res Bull,1984, (19):1497-1506.
    [48] Picciotto de L A, Thackeray M M, David W, Bruce P G, Goodenough J B. Structural refinement of delithiated LiVO_2 by neutro diffraction. J Solid State Chem, 1987,67:285-290.
    [49] 吴宇平,万春荣,姜长印等著.锂离子二次电池,化学工业出版社,2002:47
    [50] 刘景,温兆银,吴梅梅,樊增钊,林祖攘.锂离子电池正极材料的研究进展[J] .无机材料学报,2002,17(1):1-7.
    [51] Thackeray M M. Structural considerations of layered and spinel lithiated oxides for lithium ion batteries[J] .Electrochem Soc, 1995,142:2558-2563.
    [52] Picciotto L A, Thackeray M M, Pictoia G. An electrochemical study of the lithium vanadate system Li_(1+x)V_2O_4 and Li_(1-x)VO_2[J] .Solid State Ionics, 1988,30:1364-1370.
    [53] West K, Zachhau-christiansen B, Ostergard M J, et al. Vanadium oxides as electrode materials for rechargeable lithium ion cells[J] . J Power Sources, 1987,20:165-172.
    [54] Pistoia G, Pasquali M, Picciotto L A, et al. Further electrochemical studies on Li/LiV_2O_4 secondary cells[J] . J Power Sources, 1991, 34: 199-200.
    [55] 刘国强,徐宁,曾潮流,杨柯.锂离子蓄电池钒系正极材料的研究进展[J] .电源技术,2002,26(2):114-118.
    [56] Lu C H, Liou S J. Hydrothermal synthesis of LiNiVO_4 cathode materials for lithium ion batteries[J] .Mater Sci Lett, 1998,17(9):733-735.
    [57] Geoge T K F, Feygt K, Li W, Dahn J R. LiNiVO_4:a 4.8-volt electrode material for lithium cells[J] .Electrochem Soc, 1994,141:2279-2282.
    
    
    [58] Luch, Lee W C, Liou S J, et al. Hydrothermal synthesis of LiNiVO_4 cathode material for lithium ion batteries[J] .J Power Sources, 1999, 81-82:696-699.
    [59] Dai J X, Samf Y L, Gao Z Q, et al. Synthesized hiV_3O_8 as a cathode material for rechargeable lithium batteries[J] .ElectrochemSoc, 1998, 145(9):3057-3062.
    [60] Geoge T K F, Chen K S. Synthesis, characterization and cell performance of LiNiVO_4 cathode materials prepared by a new solution precipitation method[J] .J Power Sources, 1999,81-82:467-471.
    [61] Jin K, Taka H K, Yasushi LTakashi M, Tomiya K. Lithium insertion behaviour of Li_(1+x)V_3O_8 with different degrees of crystallinity[J] .J Power Sources, 1999,81-82:448-453.
    [62] Picciotto L A, Adendorff K T, Liles D C, Thackeray M M. Structural characterization of Li_(1+x)V_3O_8 insertion electrodes by single-crystal X-ray diffraction[J] .Solid States Ionics, 1993,62(3):297-307.
    [63] Jin K,Takashi M, Tomiya K. Lithium insertion and extraction kinetics of Li_(1+x)V_3O_8[J] .J Power Sources, 1999,83:79-83.
    [64] Pistoia G, Pasquali M, Tocci M,Moshtev R V, Manev V. Li/Li_(1+x)V_3O_8 secondary batteries further characterization of the mechanism of Li~+ insertion and of the cycling behavior[J] .Electrochem Soc, 1985, 132(2):281-284.
    [65] Wadsley A D. Crystal chemistry of nonstoichiometric quinquevalent vanadium oxides:crystal structure of Li_(1+x)V_3O_8[J] .Acta Crystallogr, 1957,10:261-267.
    [66] 刘建睿.锂离子电池正极材料-(锂)钒氧化物的制备研究.西北工业大学博士论文,2001.
    
    
    [67] 高剑,姜长印,万春荣.球形Li_(1-x)V_3O_8的制备及其电化学性能[J] .电源技术,2003,27(2):108-110.
    [68] 曾祖亮.锂离子电池正极材料技术进展[J] .四川有色金属,2000,1:37-42.
    [69] Liu G Q, Zeng C L, Yang K. Study on the synthesis and properties of LiV_3O_8 rechargeable lithium batteries cathode. Electrochimica Acta, 2002,47:3239-3243.
    [70] Liu G Q, Yu N, Zeng C L, Yang K. Synthesis and electrochemical properties of LiV_3O_8 phase[J]. Materials Research Bulletin, 2002,37:727-733.
    [71] 刘素琴,黄可龙,雷磊,唐爱东.低温合成锂离子二次电池正极材料Li_(1+x)V_3O_8及其性能[J].应用化学,2000,17(4):383-386.
    [72] Kawakita J, Katagiri H, Miura T, et al. Lithium insertion behaviour of manganese or molybdenum substituted Li_(1+x)V_3O_8 [J]. J Power Sources, 1997,68:680-685.
    [73] Manev V, Momchilov A, Nassalevska A. A new approach to the improvement of Li_(1+x)V_3O_8 performance in rechargeable lithium batteries[J]. J Power Sources, 1995,54:501-507.
    [74] Pistoia G, Pasquali M, Wang G, et al. Li / Li_(1+x)V_3O_8 secondary batteries synthesis and characterization of amorphous form of the cathode[J]. J Electrochem Soc, 1990,137:2365--2370.
    [75] LU C, Liou S J. Fabrication and microstructure of lithium nickel vanadium oxide prepared by solid-state reaction [J].Ceramics International, 1999,25(5):431-436.
    [76] Pistoia G, Pasquali M, Geronov Y, et al. Small particle-size lithiumvanadium oxide:an improved cathode material for high rate rechargeable lithium batteries[J]. J Power Sources, 1989,27:35-43.
    [77] Naoaki K, Aishui Y. Ultrasonically treated LiV_3O_8 as cathode material
    
    for secondary lithium batteries [J] .J Electrochem Soc, 1997,144(3) :830-835.
    [78] Aishui Y, Naoaki K, Liu Z L, Jim Y Lee. A new method for preparing lithiated vanaduim oxides and their electrochemical performance in secondary lithium batteries. J Power Sources, 1998, 74:117-121.
    [79] Dai J X, Samf Y L, Gao Z Q, et al. Synthesized LiV_3O_8 as a cathode material for rechargeable lithium batteries[J] .Electrochem Soc, 1998,145(9) :3057-3062.
    [80] PistoiaM G, Pasquali Y, Geronov, Manev V, Moshtev R V. Small particlesize lithium—-vanadium oxide: An improved cathode material for high rate rechargeable lithium batteries[J] .J Power Sources, 1989,27(1) :35-43.
    [81] 谢静刚,肖婕,周运鸿.Li_(1+x)V_3O_8的低温合成研究[J] .全国电化学会议论文集,2001,B046.
    [82] Koval E P, Reshetnyak 0 V, Kovalyshyn Y S, Lazejowski J B. Structure and properties of lithium trivanadate—a potential electroactive material for a positive electrode of secondary storage[J] .J Power Sources, 2002,107:61-66.
    [83] Xu H Y, Wang H, Song Z Q, et al. Novel chemical methode for synthesis of LiV_3O_8 nanorods as cathode material for lithium ion batteries[J] . Electrochimica Acta, 2004,49:349-353.
    [84] 吴宇平,万春荣,姜长印,李建军,李阳兴.用溶胶-凝胶法制备锂离子蓄电池材料[J] .电源技术,2000,24(2):112-115.
    [85] 刘建睿,王猛,尹大川,黄卫东.锂离子电池正极材料LiV_3O_8的低温合成研究[J] .无机材料学报,2002,17(3):617-620.
    [86] 李志友,黄伯云,汤春峰,刘志坚,曲选辉.LiV_3O_8的溶胶-凝胶法合成及
    
    500℃阴极放电性能[J] .功能材料,2001,32(2):181-183.
    [87] Thackeray, Michael M, et al. Modified lithium vanadium oxide elec trode materials and products. United States Patent, No. 6322928, 2001/11/27.
    [88] Mijazaki T, Ogino T, Masuda Y,Wada H, Kawagoc. United States Patent, No. 5013620,1991/5/7.
    [89] Bonino F, Panero S, Pasquali M, Pistoia G. Rechargeable lithium batteries based on Li_(1-x)V_3O_8 thin films[J] .J Power Sources, 1995, (56):193-196.
    [90] 金钦汗,戴树珊,黄卡玛等.微波化学,科学出版社,1999,1.
    [91] 马全龙,童学峰,彭虎.烧结技术的革命—微波烧结技术的发展现[J] .新材料产业,2001,6:30-32.
    [92] 孙来九.微波加热技术与化学反应[J] .现代化工,1994,(9):44-45.
    [93] 卢集政,赖琼玉.锂嵌脱化合物LiMn_2O_4的微波烧结研究[J] .化学研究与应用,1998,10(6):620—623.
    [94] 范薇,李熙,吕宝顺等.锂铁氧体纳米晶材料的制备与微波吸收性能的研究[J] .磁性材料及部件,1998,29(2):38—42.
    [95] 李海英,翟秀静,符岩,张爱黎.锂离子电池正极材料LiCoO2的微波合成及结构表征[J] .分子科学学报,2002,18(4):199—203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700