Li_4Mn_5O_(12)的制备与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Li_4Mn_5O_(12)可在广泛的组成范围内嵌锂,理论比容量可达到163mAh/g。在充放电过程中,Li_4Mn_5O_(12)具有晶胞膨胀率较小,循环性能优秀,高容量利用率等优点。困难是难于合成纯Li_4Mn_5O_(12)并充分体现其循环性能。
     针对以上情况,本文综合考察了Li_4Mn_5O_(12)的研究进展,尝试以Li_4Mn_5O_(12)正极材料为目标产物,比较了不同原料配比、烧结方式及温度对材料性能的影响,采用XRD、FTIR、CV、SEM、TG-DTA等手段从合成方法、电化学性能等方面对锂锰氧化物Li_4Mn_5O_(12)正极材料进行了系统研究。建立并优化了以柠檬酸,EDTA为螯合剂的复合络合法制备前驱体,微波与固相烧结结合的新方法。合成出颗粒尺寸为0.3-0.4μm左右、在20-700℃热稳定性比较好的Li_4Mn_5O_(12)正极材料。将此正极材料组装成纽扣电池,先大电流再小电流充放电,样品在38循环时仍然有155mAh/g的放电容量,证明此正极材料具有良好的电化学性能。存放实验证明其存放性能也很好。
Li4MnsO12 can be inserted and deinserted lithium ion in extensive compose range, with the theory capacity of 163mAh/g. During charge-discharge cycle, the expandability of Li4Mn5O12 lattice is lower than other manganese oxides, thus the cycling performance is excellent with the high capacity utility efficiency. The problem is that it is difficult to synthesize pure Li4Mn5O12. In allusion to those, the different synthesis condition were studied ,such as different raw material proportion, sinter mode, temperature and so on. The as-synthesized samples were systemically measured by many modern experimental techniques such as the X-ray powder diffraction (XRD), Forier transform infrared spectroscopy (FT-IR), Cyclic voltammogram (CV), Scanning electron microscope (SEM), Thermogravimetric analysis-differential thermal analysis (TGA-DTA) charge-discharge and storage performance. Then the preparation condition is established. The optimized synthesis condition is that the precursor which using citric acid and EDTA as chelator. Was sintered by microwave pretreatment associating with low-temperature solid sintering, The Li4Mn5O12 with favourable electrochemical performance is synthesized in low-temperature sintering. The particle size is between 0.3-0.4 m, and it has excellent thermal stabilization performance at 20-700 C. During charge/discharge in both big current and little current, the sample has 155mAh/g discharge capacity after 38 cycles, and its storable performance is very well.
引文
[1] 雷永泉主编.新能源材料[M] ,天津:天津大学出版社,2000
    [2] 吴宇平,万春荣,姜长印等编著.锂离子二次电池[M] ,北京:化学工业出版社,2002
    [3] 刘汉三.锂离子电池正极材料锂镍氧系列化合物的合成、结构和性能研究[博士论文] .厦门:厦门大学,2003
    [4] 刘建睿,王猛,尹大川,等.锂离子蓄电池正极材料锂钒氧化物的研究进展[J] .电源技术,2001,25(4):308-311
    [5] Murphy D W, Oreenblatt M, Cava R J, et al. Topotactic lithium reactions with ReO_3 related shear structures [J] . Solid State Ionics, 1981, 5:327-329
    [6] Razzini G, Lazzari M, Scrosati B. Properties of the CuTeX solid conductors [J] , Electrochimica Acta, 1978, 23(8): 805-807
    [7] Mizushima K, Jones P C, Wiseman P J, et al. Li_xCoO_2 (0<x<1): A new cathode material for batteries of high energy density [J] . Materials Research Bulletin, 1980, 15(6):783-789
    [8] Mohri M, Yanagisawa N, Tajima Y, et al. Rechargeable lithiumbattery based on pyrolytic carbon as a negative electrode [J] . Journal of Power Sources, 1989, 26(3-4): 545-551
    [9] Nagaura T. Progress batteries col. cells[A] . 4th International Rechargeable Battery Seminar [C] . Florida, 1990:20
    [10] 刘德尧.一种新型锰材料嵌锂行为的研究.[硕士论文] .厦门:厦门大学,2000
    [11] Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials for Li ion batteries, Carbon [M] . 2000, 38(2): 183-197
    [12] 吴国良.锂离子电池负极材料的现状与发展[J] .电池,2001,31(2):54-57
    [13] Yang J, Winter M, Besenhard J O. Small particle size multiphase Li-alloy anodes for lithium-ionbatteries [J] . Solid State Ionics, 1996, 90(1-4): 281-287
    [14] Satoru S, Takahisa S. Electronic structure and electrochemical properties of electrode material Li_(7-x)MnN_4 [J] . Solid State Ionics, 1999, 116(1-2): 1-9
    [15] Kepler K D, Vaughey J T, Thackeray M M. Copper- tin anodes for rechargeable lithium batteries: an example of the matrix effect in an
    
    intermetallic system [J] .1999, 81-82:383-387
    [16] Besenhard J O, Wachtler M, Winter M, et al. Kinetics of Li insertion into polycrystalline and nanocrystalline SnSb' alloys investigated by transient and steady state techniques [J] . Journal of Power Sources, 1999, 81-82:268-272
    [17] 陈敬波,胡国荣,彭忠东,等.锂离子电池氧化物负极材料研究进展[J] ,电池,2003,133(3):183-186
    [18] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J] . Nature, 2000, 407:496-499
    [19] Morita M, Ishikawa M, Matsuda Y, Lithium Ion Batteries: Fundamentals and Performance, WILEY-VCH Verlay Gmbh, Weinheim, Germany, 1998
    [20] Ein-lli Y, Thomas S R, Kock V R, et al, New electrolyte system for li-Ion battery [J] . J. Electrochem. Soc., 1996, 143(9): L195-L198
    [21] Aurbach D, Ein-Eli Y, Chusid O, et al. The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable "Rocking Chair" Type Batteries [J] . J. Electrochem. Soc., 1994, 141(3): 603-611
    [22] Herlem G, Goux C, Fahys B, et al. Surface modification of platinum and gold electrodes by anodic oxidation of pure ethylenediamine [J] . J. Electroanalytical Chemistry, 1997,435(1-2): 259-265
    [23] Hayashi K, Nemoto Yasue, Tobishima Shin-ichi, et al. Mixed solvent electrolyte for high voltage lithium metal secondary cells [J] .1999, 44(14):2337-2343
    [24] Fauteux D. Lithium electrode in polymer electrolytes [J] . Electrochimica Acta, 1993, 38(9): 1199-1210
    [25] Fenton D E, Parker J M, Wright P V, Complexes of alkali metal ions with poly(ethylene oxide) [J] . Polymer, 1973, 14(11): 589-589
    [26] Brtyhirt C, hotrvki E, Miniet M, et al, Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts [J] . Solid State Ionics, 1983, 11: 91-95
    
    
    [27] Shen Q, Gu Q F, Hu J F, et al. Surface properties of poly(acrylonitrile) (PAN) precipitation polymerized in supercritical CO_2 and the influence of the molecular weight [J] .Journal of Colloid and Interface Science, 2003, 267(2): 333-336
    [28] Kumar B, Weissman P T, Marsh R A. The Effect of Mechanical Excitation on Ionic Conductivity and Related Properties of Polymer Electrolytes [J] . J. Electrochem. Soc., 1993, 140(2): 321-323
    [29] Michihiro I, Yukio M, Masao K, et al. A potassium alcoholate-initiated polymerization of 2-(trialkylsiloxyethyl) methacrylate [J] . Polymer, 1997, 38(5):1197-1202
    [30] Stephan A, Manuel T, Thirunakaran R, et al, A study on polymer blend electrolyte based on PVC/PMMA with lithium salt [J] J. Power Sources, 1999, 81-82: 752-758
    [31] Fernando V, Gustavo C, Claudio U, et al. Asymmetric polivinylidenfluoride (pvdf) radiation grafted membranes: preparation and performance in reverse osmosis application [J] . Desalination, 1981, 36(1):63-73
    [32] Tarascon J M, Gozdz A S, Schmutz C, et al. Performance of Bellcore's plastic rechargeable Li-ion batteries [J] . Solid State Ionics, 1996, 86-88:49-54
    [33] Sekhon S S, Pal Singh Harinder. Ionic conductivity of PVdF-based polymer gel electrolytes [J] . Solid State Ionics, 2002, 152-153:169-174
    [34] Harry R. Allcock, Mark E. Napierala, David L. Olmeijer, et al. New macromolecules for solid polymeric electrolytes [J] . Electrochimica Acta, 1998, 143(10-11): 1145-1150
    [35] 任俊霞,阎杰,王小建,等.锂离子电池正极材料LiFePO_4的研究进展[J] .电池,2004,34(1):53-55
    [36] Shao-Horn Y, Hackney S A, Kahaian A J, et al. Structural Stability of LiCoO_2 at 400℃[J] . J. Solid State Chemistry, 2002, 168(1): 60-68
    [37] Anders L, Bill B. Synthesis of LiCoO_2 starting from carbonate precursors Ⅰ. The reaction mechanisms [J] . Solid State Ionics, 1997, 96(3-4): 173-181
    [38] Chiang Y M, Jang Y, Wang H F, et al. Synthesis of LiCoO_2 by Decomposition
    
    and Intercalation of Hydroxides [J] . J. Electrocem. Soc., 1998, 145(3): 887-891
    [39] Uesaka T, Nakane K, Maeda S, et al. Structure and physical properties of poly(butylene succinate)/cellulose acetate blends [J] . Polymer, 2000, 41(23): 8449-8454
    [40] 吴国良,刘人敏,杨新河,等.LiCo_2正极材料的制备及其应用研究[J] .电池,2000,30(3):105-107
    [41] 胡国荣,桂阳海,彭忠东.锂离子蓄电池正极材料LiCoO_2研究进展[J] .电源技术,2003,27(2):125-128
    [42] D B LLe,W H Smyurl,B owens,et al,Patent W096,388865,1996
    [43] 李阳兴,姜长印,万春荣,等.喷雾干燥法制备LiCoO_2细粉[J] .无机材料学报,1999,14(4):657-660
    [44] 李国防,李琪,李飞,等.近三年来锰酸锂二次锂电池的研究进展[J] .石油化工高等学校学报,2003,16(1):72-81
    [45] 刘汉三,杨勇,张忠如,等.锂离子电池正极材料锂镍氧化物研究进展[J] .电化学,2001.7(2):145-154
    [46] Nobuhiro I, Tomoyuki M, Wataru N, et al. Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol [J] . Applied Catalysis A: General, 2003, 248(1-2): 153-160
    [47] Julien C, Letranchant C, Rangan S, et al. Layered LiNi_(0.5)Co_(0.5)O_2 cathode materials grown by soft-chemistry via various solution methods [J] . Materials Science and Engineering B, 2000, 76(2): 145-155
    [48] Palacin M R, Larcher D, Audemer A, et al. Low-Temperature Synthesis of LiNiO2. Reaction Mechanism, Stability and Electrochemical Properties [J] . J. Electrochem. Soc., 1997,144 (12): 4226-4235
    [49] Thackery M M. Structural considerations of layered and spinel lithiated oxides for lithium ion batteries [J] . J. Electrochem. Soc., 1995, 142(8): 2558-2563
    [50] Chan H W, Duh J G, Sheen S R. LiMn_2O_4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries [J] . Journal of Power Sources, 2003, 115(1): 110-118
    
    
    [51] 刘国强,徐宁,曾潮流,等.锂离子蓄电池钒系正极材料的研究进展[J] .电源技术,2002,26(2):114-118
    [52] 任旭梅,吴川,何国蓉,等.锂离子电池正负极材料研究进展[J] .化学研究与应用,2000,13(4):360-364
    [53] Winter B M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries [J] . Advanced Materials, 1998,10(10): 725-763
    [54] Akurai Y, Yamaki J. V_2O_5-P_2O_5 glasses as cathode for lithium secondary battery[J] . Electrochem Soc, 1985,132:512—513
    [55] Wadsleyad. Crystal chemistry of nonstoichiometric quinqueva lent vanadium oxides: crystal structure of hi_(1+x)V_3O_8 [J] . Acta Crystallogr, 1957, 10: 261—267
    [56] Kawakitaj, Katagirih, Miurat, et al. Lithium insertion behaviour of manganese ormolyb denum substituted Li_(1+x)V_3O_8[J] . J. power Sources, 1997, 68:680—685
    [57] Arakawa M, robishimas, Hirai T, et al. Ethylene carbonate/2-methyl -tetradrofuran electrolyte for hi/amorphous V_2O_5 secondary batteries [J] . Electrochem. Soc., 1986, 133:1527-1528
    [58] 刘景,温兆银,吴梅梅,等.锂离子电池正极材料的研究进展[J] .无机材料学报,2002,17(1):1-7
    [59] 郝好山,马天才.可逆锂离子电池新型阴极材料锂钒氧化物的研究现状[J] .周口师范高等专科学校学报,2000.17(5):40-42
    [60] Pistoia, Pasquali M, rocci M, et al. Li/Li_(1+x)V_3O_8 secondary batteries further characterization of the mechanism of Li insertion and of the cycling behavior [J] . Electrochem Soc, 1985, 132(2): 281-284
    [61] Wadsley A D. Crystal chemistry of nonstoichiometric quinquevalent vanadium oxides: crystal structure of Li_(1+x)V_3O_8[J] . Acta Crystallogr, 1957, 10: 261
    [62] 陈昌国,余丹梅,张苏红,等.锂离子蓄电池正极材料LiMn_2O_4掺钒的研究[J] .电源技术,2001.25(4):262-274
    [63] 谢静刚,肖婕,周运鸿.Li_(1+x)V_3O_8的低温合成研究[J] .全国电化学会议论文
    
    集,2001,B046
    [64] Dai Jin-xiang, Samf Y L, Gao Zhi-qiang, et al. Synthesized LiV_3O_8 as a cathode material for rechargeable lithium batteries [J] . Electrochem. Soc., 1998, 145(9): 3057-3062
    [65] 刘建睿.王猛,尹大川,等.锂离子电池正极材料LiV_3O_8的低温合成研究[J] .无机材料学报,2002.17(3):617-620
    [66] Lu C H, Liou S J. Hydrothermal synthesis of LiNiVO_4 cathode materials for lithium ion batteries[J] . Mater Sci Lett, 1998 (17-9):733-735
    [67] Geoge T K F, Feygt K, Li W, Dahn J R. LiNiVO_4: a 4.8-volt electrode material for lithium cells[J] . Electrochem Soc, 1994 (141):2279-2282.
    [68] Luch, Lee W C, Liou S J, et al. Hydrothermal synthesis of LiNiVO_4 cathode material for lithium Ion batteries[J] . Power Sources, 1999 (81-82):696-699.
    [69] Padhi A K, Nanjundaswamy K S, Goodenough J B, et al. Phosphoolivines as positive-electrode materials for rechargeable lithium batteries [J] . J. Electochem. Soc., 1997, 144(7):1188-1194
    [70] Anna S A, beata K, Lennart H, et al. Lithium extraction/insertiom in LiFePO_4: an X-ray diffraction and mossbauer spectroscopy study [J] . Solid State Ionics, 2000, 130(1-2):41-52
    [71] Yang S, Zavalij P Y, Whittingham M S. Hydrothermal synthesis of lithium iron phosphate cathodes [J] . Electrochemistry Communications, 2001, 3(9): 505-508
    [72] Scrosati B. Recent advances in lithium ion battery materials [J] . Electrochimica Acta, 2000, 45(15-16): 2461-2466
    [73] 甘晖,童庆松,汪冰冰,等.锂离子蓄电池正极活性材料磷酸亚铁锂[J] .电源技术 2003,27(3):339-342
    [74] 吴宇平,李阳兴,万春荣,等.锂离子二次电池正极材料氧化锰锂的研究进展[J] .功能材料,2000,31(1):18-22
    [75] 郑子山,唐子龙,张中太,等.锂离子电池正极材料LiMn_2O_4的研究进展[J] .无机材料学报,2003,18(2):257-263
    [76] 康慨,戴受惠,万玉华.锂离子电池阴极材料LIMxMn_(2-x)O_4的合成方法研究[J] .无机
    
    材料学报,2001,16(4):587-594
    [77] Tarascon J M, Mckinnon W R , Cowar F , et al . Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel Li_2Mn_2O_4 [J] . J. Electrochem. Soc., 1994,141:1421-1431
    [78] 彭忠东,杨建红,邓朝阳,等.锂离子蓄电池正极材料的研制进展[J] .电池,1999,29(3):125-127
    [79] Lourdes H, Julián M, Luis S, et al. Use of Li -M-Mn- O [M=Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries[J] .1999, 118:179-185
    [80] Pechini M P. To Sprague Electric Co. method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor[P] .US Pat:3330697,1967
    [81] Barboux P,Tarascon J M, Shokohi F K. The use of acetates as precursors for the low temperature synthesis of LiNiO_2 and LiCoO_2 intercalation compounds [J] . J. Solid State Chem., 1991, 19(1): 185-192
    [82] Huang H T, Bruce P G. A 4 V lithium manganese oxides cathode for rocking-chair lithium ion cells [J] . J. Power Sources ,1995 ,54(1): 52-57
    [83] Qiu X P, Sun X G, Shen W C, et al. Spinel Li_(1+x)Mn_2O_4 synthesized by coprecipitation as cathodes for lithium-ion batteries [J] . Solid State Ionics, 1997, 93: 335-339.
    [84] Myung S T, Chung H T. Preparation and characterization of LiMn_2O_4 powders by the emulsion drying method [J] . J. Power Sources, 1999, 84:32-38
    [85] Yan H W, Huang X J, Chen L Q. Microwave synthesis of LiMn_2O_4 cathode material, J. Power Sources, 1999, 81-82: 647-650.
    [86] 赵名姝,张国范,瞿玉春,等.锂离子蓄电池正极材料尖晶石型锰酸锂的制备[J] .电源技术,2001,25(3):246-250
    [87] Bates J B, Lubben D, Dudney N J. 5 Volt Plateau in LiMn_2O_4 thin films [J] . J. Electrochem. Soc., 1995, 142 (9): L149-L151.
    [88] Naba M, Doi T, Iriyama Y, et al. Lectrochemical STN observation of LiMn_2O_4 thin films prepared by pulsed laser deposition [J] . J. Power Sources, 1999; 81-82:
    
    554-557
    [89] Naichao Li, Charles J. Patrissi, Guangli Che, et al. Rate capabilities of nanostructured LiMn_2O_4 [J] . J. Electrochem. Soc. 2000, 147:2044-2049
    [90] Nishizawa M, Mukai K, Kuwabata S, et al. Template Synthesis of Polypyrrole-Coated Spinel LiMn_2O_4 Nanotubules and Their Properties as Cathode Active Materials for Lithium Batteries [J] . J. Electrochem. Soc., 1997,144 (6): 1923-1927
    [91] Michael C. Tucker, Jeffrey A. Reimer, and Elton J. Cairns. A Li NMR study of capacity fade in metal-substituted lithium manganese oxide spinels [J] . J. Electrochem. Soc., 2002,149(5):A574-A585
    [92] Xia Y, Zhou Y, Yoshio M. Capacity fading on cycling of 4 V Li/LiMn_2O_4 cells [J] . J. Electrochem. Soc. 1997, 144:2593-2600
    [93] Lee J H, Hong J K, Jang D H, et al. Degradation mechanisms in doped spinels of LiM_(0.5)Mn_(1.954)O_4 (M=Li, B, Al, Co, and Ni) for Li secondary batteries [J] . Power Sources, 2001, 89: 7-14
    [94] Bittihn R, Herr R, Hoge D. The swing system, a nonaqueous rechargeable carbon/metal oxide cell [J] . J. Power Sources, 1993,43-44:223-231
    [95] Guohua L, Ikuta H, Uchida T, et al. The Spinel Phases LiM_yMn_(2-x)O_4(M=Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries [J] . J. Electrochem. Soc., 1996,143:178-182
    [96] Zhong Q, Bonakdarpour A, Zhang M, et al. Synthesis and Electrochemistry of LiNi_xMn_(2-x)O_ [J] . J. Electrochem. Soc., 1997, 144:205-213
    [97] George T Kuo Fey, Cheng-Zhang Lu, T. Prem Kumar. Preparation and electrochemical properties of high-voltage cathode materials, LiM_yNi_(0.5-y)Mn_(1.5)O_4 (M=Fe, Cu, Al, Mg; y=0.0-0.4) [J] . Journal of Power Sources, 2003, 115(2): 332-345
    [98] Ito Yuka, Idemoto Yasushi, Tsunoda Yuka, et al. Relation between crystal structures, electronic structures, and electrode performances of LiMn_(2-x)M_xO_4(M=Ni, Zn) as a cathode active material for 4V secondary Li batteries [J] .Journal of Power Sources, 2003, 119-121: 733-737
    
    
    [99] Amatucci G G, Pereira N, Zheng T, et al. Failure mechanism and improvement of the elevated temperature cycling of LiMn_2O_4 compounds through the use of the LiAl_xMn_(2-x)O_(4-z)Fz Solid Solution J. Electrochem. Soc., 2001, 148 (2): A171-A182
    [100] Park S C, Han Y S, Kang Y S, et al. Electrochemical properties of LiCoO_2-Coated LiMn_2O_4 prepared by solution-Based chemical process [J] . J. Electrochem. Soc., 2001, 148 (7): A680-A686
    [101] Takada T, Hayakawa H, Kumagai T, et al. Thermal Stability and Structural Changes of Li_4Mn_5O_(12) under Oxygen and Nitrogen Atmosphere [J] . J. Solid State Chemistry, 1996, 121(1): 79-86
    [102] Masquelier C, Tabuchi M, Ado K, et al. Chemical and magnetic characterization of spinel materials in the LiMn_2O_4- Li_2Mn_4O_9- Li_4Mn_5O_(12) system [J] . Journal of Solid State Chemistry, 1996, 123(2): 255-266
    [103] Wang G X, Zhong S, gradhurst D H, et al. Secondary aqueous lithium-ion batteries with spinel anodes and cathodes [J] . Journal of Power Sources, 1998, 74(2): 198-201
    [104] Davidson I J, McMillan R S, Murray J J, et al. Lithium-ion cell based on orthorhombic LiMnO_2 [J] . Journal of Power Sources, 1995(54): 232-235
    [105] Paulsen J M, Dahn J R。O_2-Type Li_(2/3)[Ni_(1/3)Mn_(2/3)] O_2: A New Layered Cathode Material for Rechargeable Lithium Batteries Ⅱ. Structure, Composition, and Properties[J] . J Electrochem Soc, 2000, 147(7): 2478-2485
    [106] Armstrong A R, Bruce P G. Synthesis of LiMnO_2 as an electrode for rechargeable Lithium batteries[J] . Nature, 1996, 881,499-500.
    [107] Argue S, Davidson I J, Ammundsen B, et al. A comparative study of the thermal stability of Li_(1-x)CoO_2 and Li_(3-x)CrMnO_5 in the presence of 1 M LiPF_6 in 3: 7 EC/DEC electrolyte using accelerating rate calorimetry [J] . J. Power Sources, 2003, 119-121:664-668
    [108] Ammundsen B, Paulsen J, Davidson I, et al. Local structure and first cycle redox mechanism of layered Li_(1.2)Cr_(0.4)Mn_(0.4)O_2 cathode material [J] . J. Electrochem. Soc., 2002, 149(4): A431-A436
    [109] Kim J, Manthiram A. Low temperature synthesis and electrode properties
    
    of Li_4Mn_5O_(12) [J] . J. Electrochem. Soc., 1998,145(4): L53-L55
    [110] Peled E, Menachem C, Bar-Tow D, et al. Improved Graphite Anode for Lithium Ion Batteries Chemically Bonded SEI and Nanoehannel Formation [J] . J. Electrochem. Soc. 1996, 143:L4—L6
    [111] Thackeray M M, Mansuetto M F, Johnson C S. Thermal stability of Li_4Mn_5O_(12) electrodes for lithium batteries [J] . J. Solid State Chemistry, 1996, 125: 274 - 277
    [112] Yakada T, Akiba E, Izumi F, et al., Structure Refinement of Li_4Mn_5O_(12) with Neutron and X-Ray Powder Diffraction Data [J] . J. Solid State Chemistry, 1997, 130:74-80
    [113] Tanaka Y, Zhang Q W, Saito F. Synthesis of spinel Li_4Mn_5O_(12) with an aid of mechanochemical treatment [J] . Powder Technology, 2003, 132(1): 74-80
    [114] Xia YY, Yoshio M. Studies on the Li-Mn-O spinel system (obtained from melt-impregnation method) as positive electrodes for 4 V lithium batteries .3. Characterization of capacity and rechargeability[J] . J. Power Sources, 1996, 63(1): 97-102
    [115] Zhang YC, Wang H, Xu HY, et al., Low-temperature hydrothermal synthesis of spinel-type lithium manganese oxide nanocrystallites solid state ionics [J] . 2003, 158 (1-2): 113-117
    [116] Takada T, Hayakawa H, Akiba E, Preparation and crystal structure refinement of Li_4Mn_5O_(12) by the reitveld method[J] . J. Solid State Chemistry. 1995, 115:420-426
    [117] Robertson A D, Armstrong A R, Bruce P G. Low temperature lithium manganege cobalt oxide spinels, Li_(4-x)Mn_(5-2x)Co_(3x)O_(12)(0≤x≤1),for use as cathode materials in rechargeab] e lithium batteries [J] .J. power souces, 2001,97-98:332-335
    [118] Takada T, Hayakawa H, Akiba E . Novel synthesis process and structure refinements of Li_4Mn_5O_(12) for rechargeable lithium batteries [J] . J. power sources, 1997, 68:613-617
    [119] Yoshiom M, Nnoguchi H, Migashita T, et al. 3V or 4V Li-Mn composite as cathode in lithium batteries prepared by LiNO_3 method as lithium source [J] .
    
    J. Power Sources, 1995, 54(2): 483-487
    [120] 周燕芳,钟辉.锂离子蓄电池正极材料锂锰氧化物的研究进展[J] .电源技术,2003,27(2):121-144
    [122] 朱正江.微波辐射技术用于有机合成的研究[硕士论文] .南京:南京工业大学,2002
    [122] 金钦汉,戴树珊,黄卡玛.微波化学[M] .北京:科学出版,1999
    [123] 李运姣,常建卫,杨敏.锂离子电池正极材料锂锰氧化物的固相合成研究进展[J] .功能材料,2002,33(6):578-580
    [124] Yan H W, Huang X J, Li H. Electrochemical study on LiCoO2 synthesized by microwave energy [J] . Solid State Ionics, 1998,113-115:11-15
    [125] Masashi H, Keiichi K, Yasuo A. Synthesis of LiFePO4 cathode material by microwave processing [J] . J. Power Sources, 2003, 119- 121: 258-261
    [126] Kalyani P, Kalaiselvi N, Renganathan N.G. Microwave-assisted synthesis of LiNiO2—a preliminary investigation [J] . J. Power Sources, 2003, 123: 53 - 60
    [127] 郝华,刘韩星,欧阳世翕.微波合成锂离子电池正极材料的电性能影响因素[J] .功能材料,2001,32(4):385-387
    [128] 杨书廷,张焰峰,吕庆章,等.微波高分子网络法制备可充锂离子电池正极材料Li_xMn_2O_4(M=La,Nd,Y)[J] .功能材料,2001,32(4):399-401
    [129] Jing Z P, Abraham K M. Preparation and Electrochemical Characterization of Micron-Sized Spinel LiMn_2O_4[J] .J. Electrochem Soc., 1996,143(5): 1591-1598
    [130] 常文保,李克安.简明化学分析手册[M] .北京:北京大学出版社,1981
    [131] 中南矿治学院分析化学教研室主编,化学分析手册[M] .北京:科学出版社,1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700