二次电池用正极活性物质Ni(OH)_2的固相合成及其电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子器具如玩具、收录机、数码相机、电动车、手机、手提电脑等的发展,对电池的电性能的要求越来越高,它们不仅要求电池的使用时间更长,而且要求瞬时能进行较大的电流放电。镍系列二次电池的正极活性物质Ni(OH)_2的晶型和镍电极的制备工艺对电池的性能具有重大影响。α-Ni(OH)_2比β-Ni(OH)_2具有更高的放电电位、更大的放电容量而且克服了β-Ni(OH)_2电极充放电过程中产生的电极变形现象,所以我们致力于通过掺杂不同的添加剂来制备α-Ni(OH)_2,同时不断优化电极的制各工艺,以期得到电化学性能最好的镍电极;利用XRD谱图和IR谱图来判断制备出的样品的晶型结构,用TG-DTA谱图来判断活性物质的稳定性,用CV图来研究电极的可逆性和充电效率,用恒电流充放电曲线来研究充电电位和放电电位的高低,以及放电容量的大小。本论文通过研究,取得了如下进展:
     一.采用固相反应方法,制得掺不同量的Al的Ni(OH)_2。由XRD数据得出:掺5%Al的Ni(OH)_2是β-Ni(OH)_2,从掺10%Al开始,制得α-Ni(OH)_2,且掺25%Al的Ni(OH)_2的结晶度最好。比较它们的电化学性能,可知:掺5%Al的样品具有最低的充电电位和最高的活性,掺25%Al的样品具有最高的放电电位,掺20%Al的样品具有最好的电极可逆性。掺20%、25%和30%Al的样品的质量比容量均大约为350mAh·g~(-1),远大于掺5%、10%和15%Al的样品。
     二.采用液相反应法合成了掺20%Al的α-Ni(OH)_2,粒径比固相反应法制备的样品的粒径要大一些,且晶体化程度更高。将β-Ni(OH)_2、液相反应法合成的掺20%Al的α-Ni(OH)_2和固相反应法合成的掺20%Al的α-Ni(OH)_2样品分别做成电极,作循环伏安实验和充放电实验。固相反应法制备的样品具有最小的△E_p,即具有最好的可逆性;固相法和液相法制备的样品比β-Ni(OH)_2的还原电位高,说明它们的放电电位高;而固相反应法制备的样品比液相反应法制备的样品具有更低的氧化峰电位、更高的还原峰电位,说明固相法制备的样品比液相法制备的样品更易氧化,其氧化产物更易还原,即具有更好的可逆性。固相反应法样品的放电容量达到336 mAhg~(-1),放电平台达到415 mV左右,而液相反应法样品的放电容量只有220 mAhg~(-1),放电平台也只有400 mV左右,β-Ni(OH)_2的放
    
    化学与环境科学学院硕士学位论文许娟南京师范大学20()4
    电容量只有175 mA五g一,,放电平台只有33omv。可见,固相反应法制备的样品
    放电容量更大,放电平台更高。
     三.采用固相反应方法,制备了掺杂不同量的Mn的Ni(oH)2。从实验结果
    可知,只有当Mn掺杂量达到一定量,且加入一定量的还原剂时,才能制备出
    仪一Ni(OH)20
     四.采用固相反应方法,制得了掺杂不同量的Al、Mn、Zn和Fe的双掺杂
    的Ni(OH):,从循环伏安实验筛选出电性能较好的电极。
The development of electronic apparatuses such as toys, recorderes, digital camerals, electromotion cycles, mobile telephone, mobile compyter and so on, needs the rechargeable cells with higher performance. Both the longer discharge time and the capability of instantaneous discharge with greater current are called for. Alkaline rechargeable cells have been upheld for its high capacity, high discharge voltage, capability of charge and discharge with great current, low price, non pollution and so on. We studied the nickel electrode, which is the cathode of the alkaline batteries. Conductive inhibition of active material, expansion of nickel electrode and theoretical limit to specific capacity are three main problems of the nickel electrode.
    As it is well known, among the polymorphs of nickel hydroxide, the a form has better electrochemical properties than the (3 form. The a-Ni(OH)2/r-NiOOH couple is also known for exhibitting higher charge capacity and better reversibility compared to the B-Ni(OH)2/B-NiOOH couple. But the a-Ni(OH)2 can rapidly ages into p-Ni(OH)2 in strong alkaline solution, so the advantages of the a-Ni(OH)2/r-NiOOH couple have not been expoited in practical battery. So efforts to synthesize stabilized a-Ni(OH)2 and realize the proloned cycle life of the a-Ni(OH)2/r-NiOOH couple have been major endeavoures of battery scientists and technologists. We committed ourselves to the preparation of a-Ni(OH)2 with high electrochemical performances via intermingling different additives and increasingly optimizing the preparation craftworks of the nickel electrode in order to gain nickel electrode with best electrochemical performances.
    The crystal type of Ni(OH)2 has been judged by the XRD curves and the IR curves and the thermal stability of active materials has been estimated by TG-DTA charts. The properties of doped nickel thin film electrodes were investigated by cyclic voltammetry and galvanostatic charge and discharge experiments.
    In this work, the additive effects of different ions on nickel hydroxide were studied. Firstly, nickel hydroxides substituted with different contents of aluminium
    
    
    
    were prepared by solid-state reaction. The results reveal that nickel hydroxide substituted with 5% aluminum is p form and when the content of aluminum attains some extent, the nickel hydroxide substituted with aluminum is a form, which has better electrochemical performance than B form. Then, we synthesized nickel hydroxide doped with 20% aluminum from nickel and aluminum mixed metal solutions. We found the product is also a-Ni(OH)2, but its electrochemical performance is inferior to the a-Ni(OH)2 doped with 20% aluminum prepared by solid-state reaction. Secondly, nickel hydroxides substituted with different contents of manganese were prepared by solid-state reaction. The XRD curves show that all the products are 3-Ni(OH)2. Howerever, when some proportions of manganese and reducing agent were appended altogether, the a form comes forth. Thirdly, nickel hydroxides substituted with two kind of different additives at one time were synthesized because different additive has different advantages. The doped metal
     elements included Al, Zn, Co, Fe, Mn and so on. Our goal was to prepare nickel electrode with the best electrochemical performances.
引文
[1].唐晓辉等,北京有色金属研究总院.用于锂离子二次电池的碳阳极材料及其制法.中国发明专利,94117558.1994-11-03
    [2].余国华,张士杰,陈帮华等.我国镉镍电池的电极制造技术及发展.电源技术,1998,22(2):79
    [3].陈炳兆等,中国科学院上海冶金研究所.利用钛铁锰合金制备超纯氢的方法和装置.中国发明专利,ZL8510502.1987-07-08
    [4]. David E Reisner, Morris Eisenberg. Recent Progress in the New Stabilized Ni-Zn Battery System: A Current Status Report. In: 25th IECEC. 1990, 3: 372
    [5]. Reisner D., Eisenberg M. A Safe Long-Life High Energy Stabilized Nickel-Zinc Rechargeable Battery. In: 24th IECEC. 1989, 1677
    [6].高自明,武彩霞.锌—镍电池研究的进展.电源技术,1997,21(2):83
    [7].赵允平.国外电动车用锌镍电池的研究.电源技术,1995,19(1):37
    [8].曾南波.锌—镍电池的研究.电池,1998,28(1):11
    [9]. Armstrong R D, Horrocks, B.R. The double layer structure at the metal-solid electrolyte interface Solid State Ionics 1997, 94: 181
    [10]. Bode H, Dehmelt H, Witte J. Zur. Kenntnis der nickel hydroxidelectrode (Ⅰ) Uber das nickel-hydroxidhydrat. Electrochemica Acta, 1996, 11: 1079
    [11]. Faure G, Guerlou-Demourgues. Influence of zinc on the stability of the β(Ⅱ)/β(Ⅲ) nickel hydroxide system during electrochemical cycling. J Power Sources, 2001, 102: 105
    [12].李蓉,严大洲.氢氧化镍的物理和电化学性能.电池,1998,28(2):73
    [13]. Faure C, Delmas C, Fouassier M. Preparation and characterization of cobalt-substituted α-nickel hydroxides stable in potassium hydroxide medium. I. α-nickel hydroxide with an ordered packing. J Power Sources, 1991, 35(3): 249
    
    
    [14] 池克,胡蓉.有色金属在电动车电池中的应用.电池工业,1999,4(1):29
    [15].解晶莹,张全生等.镍氢氧化物研究进展.电源技术,1999,23(4):238
    [16].张多默,曾庆学,刘志宏等.高密度高活性球形Ni(OH)_2的制备研究.电源技术,1997,21(2):65
    [17].王占良,唐致远,雷荣.稳定的α-Ni(OH)_2研究进展.辽宁化工.2001,30(2):58
    [18]. Guerlou-Demourges L, Denage C, Delmas C. New manganese-substituted nickel hydroxides Part 1. Crystal chemistry and physical characterization. J. Power Sources, 1994, 52: 269
    [19].徐艳辉,陈长聘等.α-Ni(OH)_2活性物质的初步探索.电源技术.1999,23(4):209
    [20]. Indira, L, Mridula D, Kamath P. Vishnu. Electrosynthesis of layered double hydroxides of nickel with trivalent cations. J. Power Sources. 1994, 52: 93
    [21]. Akiko S, Shintaro I, Kenzo H. Preparation and characterization of Ni/Al-layered double hydroxide. J Electrochemical Society, 1999, 146(4): 1251
    [22]. Kumar V G, Munichandraiah N, Kamath P V, et al. On the performance of stabilized α-Ni(OH)_2 as nickel-positive electrode in alkaline storagr batteries. J Power Sources, 1995, 56: 111
    [23]. Vazquez M V, Avena M J, Paulic P D. Dehydration process on nickel hydroxide: Its influence on the electrochemical behaviour of Pt/Ni(OH)_2 electrodes. Electrochemica Acta, 1995, 40(7): 907
    [24].范祥清,修荣,范自力等.高活性Ni(OH)_2的制备及电极性能.电池,1995,25(2):55
    [25].夏熙,魏莹.纳米级β-Ni(OH)_2的制备和放电性能.无机材料学报,1998,13(5):674
    [26]. Crawford, Birkby A. Method and device for analyzing particles. (P). GB: EP 0575091, 1993-12-22
    [27].杨长春,李祥杰,陈鹏磊,李大平.电解法制备球形氢氧化镍工艺研究.电源技术,2000,24(5):288
    [28].刘敏,韩恩山,朱令之,王缚鹏.氢氧化镍的制备及其电化学行为研究进展.电源技术.2002,26(3):172
    
    
    [30].王静萍,任引哲.纳米Ni(OH)_2微粉的低温固相制备.甘肃教育学院学报,2001,15(4):35
    [31].杜晓华,姜长印.动力电池用铝代氢氧化镍结构及电化学性能.电源技术,2002,26(2):74
    [32]. Watanabe K, Kikuoka T, Kumagai N. Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries. J Appl Electrochem. 1995, 25: 219
    [33]. Pickeet D F, Maloy J T. Microelectrode studies of electrochemically coprecipitated cobalt hydroxide in nickel hydroxide electrodes. J Electrochem Soc, 1978, 125(7): 29
    [34]. Sook A K. Studies on the effect of cobalt addition to the nickel hydroxide electrode. J Appl Electrochem, 1986, 16: 274
    [35]. Armstrong R D, Briggs G W D, Charles E A. Some effects of the addition of cobalt to the nickel hydroxide electrode. J Appl Electrochem, 1988, 18: 215
    [36]. Audemer A, Delahaye A, Farhi R, et al. Electrochemical and Raman studies of Beta-niclel hydroxides Ni_(1-x)Co_x(OH)_2 electrode materials. J Electrochem Soc, 1997, 144(8): 2614
    [37].曹晓燕,毛立彩,周作祥.氢氧化镍电极及其添加剂,电池,1994,24(5):236
    [38].张宝宏,孙巍,丛文博等.稳定化α-Ni(OH)_2电化学性能的研究,哈尔滨工程大学学报,2001,22(2):67
    [39]. Ogura H, Ito Y, Shirogami T. Effect of cobalt additives on charge/disehar ge prorerties of nickel hydroxide electrode. Denki Kagaku, 1998, 66(7): 750
    [40]. Armstrong R D, Charles E A. Some aspects of the A. C. impedance beh aviour of nickel hydroxide and nickel/cobalt hydroxide electrodes in alkaline solution. J Power Souces, 1989, 27: 15
    [41]. Delmas C, Faure C, Borthmieu Y. The effects of cobalt on the chemical and electrochemical behaviour of the nickel hydroxide electrode. Mater. Sci. Eng., 1992, B13: 89
    [42]. Faure C, Delmas C. Electrochemical behaviour of α-cobalted nickel hydro xide electrodes. J Power Sources, 1991, 36: 497
    
    
    [43]. Armstrong R D, Charles E A. Some effects of cobalt hydroxide upon the electrochemical behaviour of nickel hydroxide electrodes. J Power Sources, 1989, 25: 89
    [44].郑辅养,余兴增,蔡长寿等.镍电极电化学性能研究——电镀钴层和添加二氧化锰的影响.电源技术.2002,26(4):284
    [45].王先友,阎杰,张允什等.球形氢氧化镍表面包覆钴的正交实验研究.电源技术,1999,23(2):115
    [46].丁万春,袁安保,张鉴清等.Co(OH)_2包覆的Ni(OH)_2电化学性能研究.电源技术,2000,24(4):204
    [47]. Picheet D F, Maloy J T. Microelectrode studies of electrochemically coprecipitated cobalt hydroxide in nickel hydroxide electrodes. J Electrochem Soc, 1978, 125(7): 1026
    [48]. Smail J. Hmed M. F, Kamath P.V. Organic additive-mediated synthesis of novel cobalt(Ⅱ) hydroxides. J Solid State Chem, 1995, 114: 550
    [49].谢朋.添加剂Co(OH)_2的制备研究.电源技术,1998,22(4):148
    [50]. Audemer A, Delahaye A, Farhi H, et al. Electrochemical and raman studies of Beta-type nickel hydroxides Ni_(1-x)Co_x(OH)_2 electrode materials. J Electrochem Soc, 1997, 144(8): 2614
    [51].碱性蓄电池正电极的活性材料及其制备方法 JP:053225/98
    [52]. Han, K. S, Guerlou-Demourgues L, Delmas C. Intercalation process of metavanadate chains into a nickel-cobalt layered double hydroxide. Solid State Ionics. 1997, 98: 85
    [53]. Pouillerie C, Perton F, Biensan Ph, et al. Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide. J Power Sources, 2001, 96: 293
    [54]. Butel M, Gautier L, Delmas C. Cobalt oxyhydroxides obtained by 'chimie douce' reactions: structure and electronic conductivity properties. Solid State Ionics. 1999, 122: 271
    [55]. Demourgues A, Gautier L, Chadwick A V, Delmas C. EXAFS study of th e Jahn-Teller distortion in layered nickel oxyhydroxide. Nuclear Instruments a
    
    nd Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1997, 133: 39
    [56]. Chang Z R, Zhao Y J, Ding Y C. Effects of different methods of cobalt addition on the performance of nickel electrodes. J Power Sources, 1999, 77: 69
    [57]. Oshitani M, Sasaki Y, Takashima K. Development of a nickel electrode having stable performance at various charge and discharge rates over a wide temperature range. J. Power Sources, 1984, 12: 219
    [58]. Oshitani M, Takayama T, Takashima K, et al. A study on the swelling of a sintered nickel hydroxide electrode. J. Appl Electrochem, 1986, 16: 403
    [59]. Vishnu K P, Mridulad D, Indira L. Stabilized α-Ni(OH)_2 as electrode material for alkaline secondary cells. J Electrochem Soc, 1994, 141(11): 2956
    [60]. Mridula D, Jayashree R S, Vishnu K P, et al. Electrochemically impregnated aluminum-stabilized α-nickel hydroxide electrodes. Electrochemical and Soid-State Letters, 1999, 2(4): 170
    [61].冷拥军,王凤军,刘兵等.铝取代氢氧化镍的制备,结构和电化学性能(Ⅰ)电化学性能.电源技术,2000,24(2):77
    [62].冷拥军,刘兵,王凤军等.铝取代氢氧化镍的制备,结构和电化学性能(Ⅱ)结构分析.电源技术,2000,24(6):326
    [63].吴智远,席靖宇.掺铝高性能镍电极研究.武汉大学学报,1999,45(6):835
    [64]. Mridula D,Vishnu K P, Gopalakrishnan J. Zinc-substituted α-nickel hydroxide as an electrode material for alkaline secondary cells. J Electrochemical Society, 1999, 146(1): 79
    [65]. Kim G B, Lee S, Park Y C, etal. An active material for a cathode of a nickel cell and production method of a cathode [P]: EP 0848438 A1, 1997-08
    [66]. Guerlou-Demourgues L, Delmas C. New manganese-substituted nickel hyd roxides Part 1. Crystal chemistry and physical characterization J Power Sour ces, 1994, 52: 269
    [67]. Guerlou-Demourgues L, Delmas C. Electrochemical behaviour of the man ganese-substituted nickel hydroxides. J Electrochemical Soc, 1996, 143(2): 5 61
    
    
    [68]. Guerlou-Demourgues L, Delmas C. New manganese-substituted nickel hydroxides Part 2. Interstratification process upon ageing, J Power Sources, 1994, 52: 275
    [69].常照荣,任行涛,赵玉娟等.Zn添加剂的添加方式对镍电极性能的影响.应用化学,2002,19(4):369
    [70]. Mridula D, Vishnu K P, Gopalakrishnan J. Zinc-stabilized α-nickel hydroxide as an electrode material for alkaline secondary cells. J Electrochem Soc, 1999, 146(1): 79
    [71]. Tessier, Cécile; Guerlou-Demourgues, Liliane; Faure, Christiane; Denage, Catherine; et. al. Influence of zinc on the stability of the β(Ⅱ)/β(Ⅲ) nickel hydroxide system during electrochemical cycling. 2001, 102: 105
    [72]. Guerlou-Demourgues L, Delmas C. Effect of iron on the electrochemical properties of the nickel hydroxide electrode. J Electrochemical Soc, 1994, 1 41(3): 713
    [73]. Guerlou-Demourgues L, Delmas C. Structure and properties of precipitated nickel-iron hydroxides. J Power Sources, 1993, 45: 281
    [74]. Constantin D M, Maria E R, Oniciu L, Ghergari L. The influence of some additives on the electrochemical behaviour of sintered nickel electrodes in alkaline electrolyte. J Power Sources. 1998, 74: 188
    [75].冷拥军,马紫峰,张存根,等.铁取代氢氧化镍的制备,结构和电化学性能(Ⅰ)电化学性能.电源技术,1999,23(6):322
    [76].冷拥军,马紫峰,张存根,等.铁取代氢氧化镍的制备,结构和电化学性能(Ⅱ)结构分析.电源技术,2000,24(1):32
    [77]. Unates M E, Folquer M E, Vilche J R, et al. The influence of zinc hydroxide addition on the electrochemical behavior of precipitated thin hydrous nickel hydroxide on platinum substrate J Electrochem Soc, 1988, 135 (1): 25
    [78].常照荣,任行涛等.铈元素对镍电极性能的影响.功能材料,2002,33(3):291
    [79]. Zhu W, Ke J, Yu H, et al. A study of the electrochemistry of nickel hydroxide electrodes with various additives. J Power Sources, 1995, 56: 75
    [80].杨书廷,陈改荣,尹艳红等.掺杂稀土元素对Ni(OH)_2晶格的影响.电源技
    
    术,2002,26(4):278
    [81]. Ding Y C, Yuan J L, Chang Z R. Cyclic voltammetry response of coprecipitated Ni(OH)_2 electrode in 5 M KOH solution. J Power Sources, 1997, 69: 47
    [82]. Michael R, Vishnu K P. On the relationship between α-nickel hydroxide and the basic salts of nickel. J Power Sources, 1998, 70: 118
    [83].周公度,段连运著,结构化学,北京大学出版社,1997
    [84]. Boldyrev V. V. Ed Reactivity of Solids: Past, Presem and Future, Blackwell Science Ltd., 1996, p269
    [85].周益明,忻新泉,我国固体无机化学的研究进展化学通报,1999,11:1
    [86].候红卫,忻新泉,结构化学,1995,14(5~6):405
    [87]. Yao Xuebin, Zheng Limin, Xin, Xinquan. Synthesis and Characterization of Solid-Coordination Compounds Cu(AP)_2Cl_2. J. Solid State Chem., 1995, 117: 333
    [88]. Japanese Chemical Society(Ed.), Translated by DONG Wan-Tang (董万堂), DONG Shao-Jun (董绍俊), Inorganic Solid State Reaction Beijing: Science Press, 1985
    [89]. West A. R. Ed Solid State Chemistry and its Application, John Wiley & Sons, 1984, p1
    [90].周益明,忻新泉,低热固相合成化学.无机化学学报,1999,15(3):273
    [91].赖芝,忻新泉,周衡南.固相配位化学反应研究LXX Ⅳ.固相化学反应中的晶态-非晶态-晶态的变化.无机化学学报,1997,13(3):330
    [92].缪强,忻新泉,胡澄.固相配位化学反应研究—LXV.成核过程的Monte Carlo研究.化学物理学报,1994,7(2):118
    [93].林建军,郑丽敏,忻新泉,固相配位化学反应研究—LXX.二水醋酸镉与邻氨基苯甲酸的分步固相反应.无机化学学报,1995,11(1):106
    [94].龙德良,梁斌,忻新泉.室温和低热固相反应在合成化学中的应用.应用化学,1996,13(6):1.
    [95].雷立旭,忻新泉.室温固相反应与固体结构.化学通报,1997,2:1.
    [96].李娟,夏熙,李清文.纳米MnO_2和固相合成及电化学性能的研究.高等化学学报,1999,20(9):1434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700