碳/锡复合物和钴基复合氧化物的制备与贮锂性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池采用锂离子存贮材料取代金属锂,改善了锂电池由于枝晶生成所造成的安全隐患及循环性能差的缺点,保留了锂电池高电压的优点,同时还兼具能量密度大,重量轻,体积小,循环寿命长,无记忆效应,环境效益好等优点,可以满足现代信息技术对电池小型高能的需求,是近来发展最快的新型化学电源。
     锂离子电池发展史上的每一次重大突破都是由于新材料的研制和新思想的应用。现代电池技术中用作锂离子电池负极材料的主要是各种碳素材料(石墨、硬炭、软炭以及各种热解树脂碳),但这类材料的贮锂容量很低(如石墨理论比容量仅为372 mAh/g),而且还存在一定的安全隐患。因此人们在努力改进现有碳材料的同时也在寻找一些性能优良的可替代材料。锡基和钴基负极材料由于具有较高的能量密度和安全性能好等优点,引起了研究者的极大兴趣。
     本论文的工作重点是将碳材料和锡基负极材料的优点结合起来,通过芳香羧酸锡盐或其他芳香羧酸衍生物的热解得到新型的性能优良的锡碳复合物负极材料:
     通过邻苯二甲酸锡的热解得到了新型的碳/锡氧化物复合材料。实验证明,与在空气中分解得到的产物相比,同样充放电条件下在惰性气氛中分解得到的碳/锡氧化物复合材料的首次不可逆容量有所降低,但循环性能不如前者。在0.01~1.5 V之间循环时,后者首次循环效率为33.12%,第十周后充电容量保持率为60.7%;前者首次循环效率仅为30.87%,十周后充电容量保持率为76.5%。
     通过在惰性气氛下热解1,8-萘二甲酸锡得到了新型的金属锡/碳复合材料,试验了该复合物在不同电压范围内的充放电行为。该复合物在0.01~1.0V、0.01~1.5 V和0.01~2.0 V之间充放电时,20周循环后充电容量保持率分别为17%、34.8%和28.8%。结果证明材料在0.01~1.5 V电压范围内充放电时性能可以得到最佳体现。
     通过在惰性气氛下热解苝环化合物得到了一种新型柱状碳。这种碳材料在0.01~1.5 V之间循环时,首次放电比容量为506.4 mAh/g,充电比容量为272.1 mAh/g,首次循环效率为53.7%,30周后充电容量保持率为95.6%,平均每周容量损失仅为0.15%。
     通过流变相反应法和惰性气氛下的热解反应,成功地向苝环化合物中引入锡锌复合氧化物,得到了一种新型团聚物SnZnO 1 39C1l_30该复合物在0.01~1.5 V之间充放电时,首次放电比容量为1555.6 mAh/g,充电比容量为586.5 mAh/g,首次循环效率为37.7%,
    
    经过30周循环后充电容量保持率为71.0%,平均每周容量损失为0.97%。我们还发现
    了该复合材料在高电位区有趣的充放电行为:该材料在0.01一4.35V之间充放电时,首
    次放电和充电比容量分别为1494.5 mAh/g和1762.6 mAh/g。经过10周循环以后,放电
    和充电比容量分别为1035.1 mA川g和1030.1 mA州g,与在该电压范围内充放电的第二
    周循环比容量(放电和充电比容量分别为1157 mA可g,1051.611】A吨)相比,容量保持
    率分别为89.5%和98%。
     另外,本论文还采用流变相反应法合成了含钻复合草酸盐前驱物,并通过热解得到
    了一系列含钻复合氧化物,其中尖晶石结构的ZnCoZO;复合氧化物平均粒径约为100
    l1m,其主要充电电压平台在2.OV以下,放电电压平台在1 .2V左右,在经过50周循环
    充放电后,其贮锉容量仍保持为460.82 mA州g,平均每周的容量损失仅为0.5%。相对
    于用类似方法合成的纳米Co3O4负极材料,充放电电压有所降低,同时也获得了良好的
    循环性能。
Since lithium-storage materials were adopted as negative electrode materials for lithium-ion batteries instead of lithium metal in lithium batteries, the hidden insecurity and poor cyclic performance caused by the formation of lithium crystalline have been improved, and the high-voltage merit of lithium batteries was remained as well. At the same time, the lithium-ion batteries possess other advantages such as high energy density, little weight, small volume, long cycle-life, little effect of memory and better environment benefits etc., so the lithium ion batteries meet the development requirements of modern information technology such as high capacity and small volume vehicles, and have mushroomed the most rapidly during the past few years.
    In the development of lithium ion batteries, each great breakthrough originates from the applying of new materials and ideas. Carbon materials (graphite, soft carbon, hard carbon and some amorphous carbon obtained from pitches) are used as anode materials for lithium ion batteries in modern battery technology. However, carbon materials suffer from poor capacity (the theoretical capacity of graphite is only 372 mAh/g) and insecurity. So many efforts have been devoted to the improvement of carbon negative electrode materials and searching for alternative materials. Tin and cobalt -based materials have attracted much interest for the high specific energy capacity, wide raw material sources and good safety.
    Essential parts of this thesis include the synthesis of novel carbon/tin composites through the pyrolysis of various aromatic carbonates and the studies of these composites as lithium- intercalation electrode materials in lithium-ion batteries. The main results and conclusion are summarized as follows:
    Novel carbon/tin oxides composites were obtained through the pyrolysis of stannous phthalate precursors. Materials attained in the inert atmosphere exhibit low irreversible capacity in the first discharge but poor cycleability comparing with composites synthesized in the atmosphere. When they work in the voltage range of 0.01 ~ 1.5 V, the initial cycle efficiency of the former composites is 33.12 %, and the charge capacity remains 60.7 % after 10 cycles. The initial cycle efficiency of the latter materials is only 30.87 %, and charge capacity remains 76.5 % after 10 cycles.
    Novel carbon/tin composites were obtained through the pyrolysis of stannous 1,8-naphthalenedicarboxylate precursors. The composites were tested as anode materials for
    
    
    
    lithium ion battery in 0.01 -1.0 V, 0.01 ~ 1.5 V, 0.01 ~ 2.0 V voltage ranges, and the charge capacity remains 17 %, 34.8 % and 28.8 % after 20 cycles, respectively. The composites cycled between 0.01 ~ 1.5 V exhibit good cycleability.
    New carbon prisms were obtained through the pyrolysis of a certain perylene tetracarboxylic acid derivatives. The charge and discharge capacity of this carbon material is 272.1 mAh/g and 506.4 mAh/g in the first cycle, and the initial cycle efficiency is 53.7 %. The charge capacity remains 95.6 % after 30 cycles, and the capacity loss is only 0.15 % per cycle.
    We have succeeded in embedding the zinc/tin composite oxides into perylene compounds, and yielded the agglutinated SnZnOCn.s composites. The composites were tested as anode materials for lithium-ion batteries in the potential range of 0.01 ~ 1.5 V, the charge and discharge capacity is 586.5 mAh/g and 1555.6 mAh/g for the initial cycle, and the cycle efficiency is only 37.7 %. After 30 cycles, the charge capacity remains 71.0 %, and the capacity loss is 0.97 % per cycle. But amusingly, we found some interesting phenomena when the composites worked between 0.01 ~ 4.35 V. The discharge and charge capacity of initial cycle are 1494.5 mAh/g and 1762.6 mAh/g, which are 1157.0 mAh/g and 1051.6 mAh/g for the second cycle, and drop to 1035.1 mAh/g and 1030.1 mAh/g after 10 cycles respectively. Comparing with the second cycle, the insertion and extraction capacity remains 89.5 % and 98.0 %, respectively.
    In the thesis, a series of cobalt-contained composite oxid
引文
1.吕鸣详,黄长保,宋玉谨.化学电源.天津大学出版社,1992:306
    2. M. Armand. Materials for Advanced Batteries, D.W.Murphy, J.Broodhead, B.C.H.Steele, Editors, New York Plenum Press, 1980:145
    3. J.J. Aubom, Y.L. Barberio, Lithium Intercalation Cells Without Metallic Lithium, J. Electrochem Soc., 1987, 134(13): 638
    4.毛永志,潘成久,王晓峰,王宝光,郭靖宏,段秋生.电动车用氢镍电池,电池工业,2000,5(2):82
    5.金明钢,我国固态铿离子电池工业发展近况[J],电池工业,2000,5(2):88
    6. M. Zhao, H.D. Dewald, F.R. Lemke, R.J. Staniewicz, Electrochemical stability of graphite-coated copper in lithium-ion battery electrolytes [J], J. Electrochem. Soc., 2000, 147(11): 3983
    7. Y. Ein-Eli, S.R. Thomas, V.R. Koch, The role of SO_2 as an additive to organic Li-ion battery electrolytes [J], J. Electrochem. Soc., 1997, 144(4): 1159
    8. E.S. Takeuchi, H. Gan, M. Palazzo, R.A. Leising, S.M. Davis, Anode passivation and electrolyte solvent disproportionation: mechanism of ester exchange reaction in lithium-ion batteries [J], J. Electrochem. Soc., 1997, 144(6): 1944
    9. M.C. Smart, B.V. Ratnakumar, S. Surampudi, Y. Wang, X. Zhang, S.G. Greenbaum, et.al, Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries [J], J. Electrochem. Soc., 1999, 146(11): 3963
    10. M. Winter, W.K. Appel, B. Evers, T. Hodal, K.C. Mller, I. Schneider, M. Wachtler, M.R. Wagner, G.H. Wrodnigg, and J.O. Besenhard, M. Für, Studies on the Anode/Electrolyte Interface in Lithium Ion Batteries, Chemie, 2001, 132:473
    11.黄峰,氧化物作为锂二次电池负极材料的基础研究,武汉大学博士学位论文,2003.10
    12. T. Zheng, J.N. Reimers, J.R. Dahn, Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium [J]. Phys. Rev. 1995, B51 (2): 734
    13. T. Zheng, Y. Liu, E.W. Fuller, S. Tseng, U.V. Sacken, J.R. Dahn, Lithium insertion in high
    
    capacity carbonaceous materials [J], J. Electrochem. Soc., 1995, 142:2581
    14. J.R. Dahn, Phys. Rev. B, 1991, 44:9170
    15. M. Fujimoto, Electrochemical behavior of carbon electrodes in some electrolyte solutions [J], J. Power Sources, 1996, 63:127
    16. G.C. Chung, H.J. Kim, S. Yu, S.H. Jun, J.W. Choi, and M.H. Kim, Origin of graphite exfoliation-An investigation of the important role of solvent cointercalation, J. Electrochem. Soc., 2000, 147(12): 4391
    17.钟俊辉,锂离子电池蓄电池阳极热解碳材料的研究进展,电源技术,1998,22(1):40
    18. Z.X. Shu, R.S. McMillan, J.J. Murray, Effect of 12 Crown 4 on the Electrochemical Intercalation of Lithium into Graphite, J. Electrochem. Soc., 1993, 140:L101
    19. Z.X, Shu, R.S. McMillan, J.J. Murray, Electrochemical Intercalation of Lithium into Graphite, J. Electrochem. Soc., 1993, 140:922
    20. J.O. Besenhard, M.W. Wagner, M. Winter, Inorganic film-forming Electrolyte additives Improving the Cycling Behavior of Metallic Lithium Electrodes and the Self-discharge of Carbon-Lithium Electrodes, J. Power Sources, 1993, 43-44:413
    21. J.R. Dahn, A.K. Sleigh, H. Shi, J.N. Reimers, Q. Zhong, and B.M. Way, Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon [J], Electochim. Acta, 1993, 38(6): 1179
    22. K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, and S. Hightower, The influence of the graphitic structure on the electrochemical characteristics for anode of secondary lithium batteries [J], J. Electrochem. Soc., 1995, 142(3): 716
    23. M. Inagaki, Carbon materials structure, texture and intercalation, Solid State Ionics, 1996, 86-88:833
    24. G. Katia, F.B. Annie, F. Serge, C. Michel, S. Bernard, Effect of graphite crystal structure on lithium electrochemical intercalation [J], J. Electrochem. Soc., 1999, 146(10): 3660
    25. E. Fitzer, K. Mueller, W. Schaefer, Chemistry and Physics of Carbon, 1971(7): 193
    26. A.Oberlin, Chemistry and Physics of Carbon, 1989, 22:1
    
    
    27.尹鸽平,周德瑞,王庆,史鹏飞.锂离子电池碳负极材料的结构与嵌锂行为,炭素,1999(4):31
    28.王先友,张允什,阎杰,宋德瑛.锂离子电池碳负极研究新动向[J],电源技术,1999,23(4):233
    29.王茂章,贺福.炭纤维的制造、性质及应用,科学出版社,1984:266
    30.吕永根,凌立成,刘朗,张碧江,吴东.由中间相炭微球制备高密度各向同性炭,炭素,1998(4):9
    31. M. Kodama, T. Fujiura, E. Ikawa, K. Esumi, K. Meguro and H. Honda, Characterization of meso-carbon microbeads prepared by emulsion method [J], Carbon, 1990, 29(1): 43
    32. M. Kodama, K. Esumi, K. Meguro, and H. Honda, Adsorption of human serum globulin on mesocarbon microbeads [J], Carbon, 1988, 26(5): 777
    33. P. Ehrburger, N. Pusset, P. Dziedzinl, Active surface area of microporous carbons [J], Carbon, 1992, 30(7): 1105
    34. S.H. Yoon, Y.D. Park, L. Mochida, Preparation of carbonaceous spheres from suspensions of pitch materials [J], Carbon, 1992, 30(5): 781
    35. J. Yamaur, Extended Abstracts of 6th Intemational Meeting on Lithium Batterise, 1992
    36. 8th International Meeting On lithium ion battery, Nagoya, Japan, 1996
    37. E. Peled, C. Menachem, D. Bar-Tow and A. Melman, Improved graphite anode for lithium-ion batteries [J], J. Electrochem. Soc., 1996, 143(1): L4
    38. E. Buiel, J.R. Dahn, Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion batteries [J], J. Electrochem. Soc., 1998, 145(6): 1977
    39. P. Yu, J.A. Ritter, R.E. White, et al., Ni-composite microencapsulated graphite as the negative electrode in lithium-ion batteries-I: Initial irreversible capacity study, J. Electrochem. Soc., 2000, 147(4): 1280
    40. P. Yu, J.A. Ritter, R.E. White, B.N. Popov, Ni-composite microencapsulated graphite as the negative electrode in lithium-ion batteries-Ⅱ: Electrochemical impedance and self-discharge studies [J], J. Electrochem. Soc., 2000, 147(6): 2081
    41. H. Sagisaka, H. Nakura, [P], JP 10144295, 1998
    
    
    42. T. Takamura, K. Sumiya, Y. Nishijima, A novel method for obtaining a high performance carbon anode for Li-ion secondary batteries In: Mater. Res. Soc. Symp. Proc., Materials Research Society, 1998:557
    43. C. Kim, T. Fujino, K. Miyashita, Microstructure and electrochemical properties of boron-doped misocarbon microbeads [J], J. Electrochem. Soc., 2000, 147(4): 1257
    44. C. Kim, T. Fujino, T. Hayashi, et al., Structural and electrochemical properties of pristine and B-doped materials for the anode of Li-ion secondary batterise [J], J. Electrochem. Soc., 2000, 147(4): 1265
    45. W.J. Weydahz, B.M. Way, T.V. Buuren, et al. Bahavior of Nitrogen-substituted carbon (N_xC_(1-x)) in Li/Li (N_xC_(1-x))6 cells [J], J. Electrochem. Soc., 1994, 141(4): 900
    46. A.M. Wilson, J.R. Dahn. Lithium insertion in carbons containing nano-dispersed silicon [J], J. Electrochem. Soc., 1995, 142(2): 326
    47. C.S. Wang, G.T Wu, X.B. Zhang, et al. Lithium insertion in carbon-silicon composite materials produced by mechanical milling [J], J. Electrochem. Soc., 1998,145(8): 2751
    48. Azuma, A. Omaru, Y. Nishi, USP5093216, 1992
    49. T. Mayer, R.W Pekala, R.L. Morrison, et al. USP 5358802, 1994
    50. H. Herbert, K. Kenshin, N. Hiroshi, et al. Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons, J. Power Sources, 1997, 68(2): 258
    51.吴宇平,锂二次电池炭负极材料的研究—以含氮聚合物为基体[D],中国科学院化学研究所,1997
    52. B. Scrosati: A High-Rate Carbon Electrode for Rechargeable Lithium-ion Batteries, J. Power Sources, 1996, 143 (3): L64
    53. T. Seiji, H. Hidetoshi, Y. Takeo, EP 0729194A2, 1995
    54. F.S. Disma, C. Lenain, B. Beaudoin, L. Aymard, J.M. Tarascon, Unique effect of mechanical milling on the lithium intercalation properties of different carbons [J], Solid State Ionics, 1997, 98:145
    55. F. Disma, L. Aymard, L. Dupont, and J-M. Tarascon, Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbons [J], J. Electrochem. Soc., 1996,
    
    143(12): 3959
    56. W. Xing, R.A. Dunlap, J.R. Dahn, Sudies of lithium insertion in ball-milled sugar carbons [J], J. Electrochem. Soc., 1998, 145(1): 62
    57.张文,龚克成.锂离子电池用碳负极材料[J],电池,1997,27(3):132
    58. H. Fujimoto, A. Mabuchi, K. Tokumitsu. Effect of crystallite size on the chemical compositions of the stage metal-graphite intercalation compounds [J], Carbon, 1994, 32(2): 193
    59. K. Sato, M. Noguchi, et al., A Mechanism of Lithium Storage in Disordered Carbons, Science, 1994, 264 (4): 556
    60. W. Xing, J.R. Dahn, Correlation between Lithium Intercalation Capacity and Microstructure in Hard Carbons, J. Electrochem. Soc., 1996, 143(11): 3482
    61. J.S. Xue and J.R. Dahn, Dramatic Effect of Oxidation on Lithium Insertion in Carbons Made from Epoxy Resins, J. Electrochem. Soc., 1995, 142(11): 3668
    62. T. Zheng and J.R. Dahn, Lithium Insertion in High Capacity Carbonaceous Materials, J. Electrochem. Soc., 1995, 142 (8): 2581
    63. T. Brousse, R. Retoux, U. Herterich, D.M. Schleich, Thin film crystalline SnOz-lithium electrodes [J], J. Electrochem. Soc., 1998, 145(1): 1
    64. I.A. Courtney, J.R. Dahn, Electrochemical and in-situ X-ray diffraction studies of the reaction of lithium with tin oxide composite [J], J. Electrochem. Soc., 1997, 144:2045
    65. A.H. Whitehead, J.M. Elliott, J.R. Owen, Nanostructured tin for use as a negative electrode material in Li-ion batteries, J. Power Sources, 1999, 81-82:33
    66. W. Liu, X. Huang, Z. Wang, H. Li and L. Chen, Studies of Starmic Oxides as an Anode Material for Lithium Ion Batteries, J. Electrochem. Soc., 1998, 145:59
    67. I.A. Courtney, J.R. Dahn, Key factors controlling the reversibility of the reaction of lithium with SnO_2 and Sn_2BPO_6 glass [J], J. Electrochem. Soc., 1997, 144(9): 2943
    68. Y. Wang, J. Sakamoto, C.K. Huang, S. Surampudi, S.G. Greenbaum, Lithium-7 NMR Investigation of Electrochemical Reaction of Lithium with SnO, Solid State Ionics. 1998, 110:167
    
    
    69. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Tin-based amorphous oxides: A high capacity ion-storage material, Science, 1997, 276:1395
    70.郑青军,李国勋,刘人敏.锂离子电池碳阳极的容量及嵌锂机理,电池,1998,28(4):178
    71. P.A. Conner, J-T.S. Irvine, Novel tin oxides spinel-based anodes for Li-ion batteries, J. Power Sources, 2001, 97-98:223
    72. Z.Y. Yuan, F. Huang, J.T. Sun, Y.H. Zhou, An Amorphous Nanosized Tin-Zinc Composite Oxide as a High Capacity Anode Material for Lithium Ion Batteries, Chemistry Letters, 2002(3): 408
    73. Z.Y. Yuan, F. Huang, J.T. Sun, Y.H. Zhou, Synthesis and Characterization of Amorphous Nanosized MnSnO_3 as a High Capacity Anode Material for Lithium Ion Battery, Journal of Materials Science Letters, 2003 (22): 143
    74.袁正勇,孙聚堂,黄峰,艾常春,周运鸿,锂离子电池负极材料非晶态MgSnO_3的合成及性质研究,高等学校化学学报,2003,24:1959
    75. F. Huang, Z.Y. Yuan, H. Zhan, Y.H. Zhou, J.T. Sun, A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries, Materials Letters, 2003(22): 143
    76. M. Nagayama, T. Morita, H. Ikuta, M. Wakihara, M. Takano, S. Kawasaki, A new anode material SnSO_4 for lithium secondary battery, Solid State Ionics, 1998, 106:33
    77. L.D. Fattakhova and P. Krtil, Lithium Insertion into Mesoscopic and Single-Crystal TiO2 (Rutile) Electrodes, J. Electrochem. Soc., 1999, 146 (4): 1375
    78. L. Kavan, M. Gratzel, J. Rathousky, and A. Zukal, Nanocrystalline TiO_2 (Anatase) Electrodes: Surface Morphology, Adsorption and Electrochemical Properties, J. Electrochem. Soc., 1996, 143 (2): 394
    79. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon, Nano-sized transitions-metal oxide as negative electrode material for lithium-ion batteries, Nature 2000, 407:496
    80. P. Poizot, E. Baudrin, S. Laruelle, L. Dupont, M. Touboul, J. Tarason, Solid State Ionics, 2000, 138:31
    81. C. Rossignol, G. Ouvrard, General behaveior upon cycling of LiNiVO_4 as battery
    
    electrode, J. Power Sources, 2001, 97-98:491
    82. G. Ting-Kuo Fey, W. Li and J.R. Dahn, LiNiVO_4: A 4.8Volt Electrode Material for Lithium Cells, J. Electrochem. Soc., 1994, 141:2279
    83. T. Shodai, Y. Sakurai, T. Suzuki, Reaction mechanisms of Li_(2.6)Co_(0.4)N anode material, Solid State Ionics, 1999, 122:85
    84. M. Nishijima, T. Kagohashi, Y. Takeda, M. Imanishi, Eletrochemical studies of a new anode material, Li_(3-x)M_xN (M=Co, Ni, Cu), J. Power Sources, 1997, 68:510
    85. T. Shodai, S. Okada, S. Tobishima, J. Yamaki, Anode performance of a new layered nitride Li_(3-x)Co_xN (x=0.2-0.6), J. of Power Sources, 1997, 68:515
    86.尹鸽平,王程,程新群,史鹏飞.锂离子电池新型负极材料的研究进展,电池,1999,29(6):270
    87. O. Mao, R.A. Dunlap, J.R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-ion Batteries-The Sn_2Fe-C System, J. Electrochem. Soc., 1999, 146(2): 405
    88. O. Mao, J.R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-ion Batteries-The Sn-Fe System, J. Electrochem. Soc., 1999, 146(2): 414
    89. O. Mao, J.R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-ion Batteries-Sn_2Fe: SnFe_3C Active/Inactive Composites, J. Electrochem. Soc., 1999, 146(2): 423
    90. J.O. Besenhard, J. Yang, M. Winter, Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-ion Batteries?, J. Power Sources, 1997, 68:87
    91. J.O. Besenhard, M. Wachtler, M. Winter, R. Andreaus, L. Rom, W. Sitte, Kinetics of Li insertion into polycrystalline and nanocrystalline "SnSb" alloys investigated by transient and steady state techniques, J. Power Sources, 1999, 81-82:268
    92. K.D. Kepler, J.T. Vaughey, M.M. Thackeray., Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system, Electrochem. Solid State Lett., 1999(2): 307
    93.袁正勇,黄峰,孙聚堂,张克立,周运鸿,非晶态氧化亚锡基锂离子电池负极材料的
    
    低温合成及电化学性质研究,武汉大学学报(理学版),2002(48):417
    94. Z.Y. Yuan, F. Huang, C.Q. Feng, J.T. Sun, Y.H. Zhou, Synthesis and Electrochemical performance of Nanosized Co_3O_4, Materials Chemistry and Physics, 2003 (79): 1
    95. H. Tang, C.Q. Feng, T.M. Lei, J.T. Sun, L.J. Yuan, K.L. Zhang, Synthesis and Electrochemical Properties of Yttrium Spinel LiMn_(2-y)O_yO_4 Cathode Material, Chem. Lett., 2002(8): 822
    96. H. Tang, M. Xi, X. Huang, C. Feng, Y. Zhang, K. Zhang, Rheological phase reaction synthesis of lithium intercalation materials for rechargeable battery, J. Mater. Sci. Lett., 2002(21): 999
    97. Y. Zhang, K.L. Zhang, M.K. Jia, H. Tang, J.T. Sun, L. J. Yuan, Synthesis and Characterization of a Novel Compound SnDy_2O_4, Chinese Chem. Lett., 2002,13(6): 587
    98. Y. Zhang, K.L. Zhang, M.K. Jia, H. Tang, J.T. Sun, L.J. Yuan, Synthesis, Characterization of a Novel Compound SnEr_2O_4, Chem. Lett., 2002(2): 176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700