动力锂离子电池电极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池因为其能量密度大、使用寿命长和无记忆效应等特点,是目前应用最广泛的二次电池。正极和负极材料是决定锂离子电池性能最关键的电极材料,目前商品化的正极材料和负极材料分别是LiCoO_2和中间相碳微球(MCMB),存在成本高、倍率性能差、安全性能低下等问题,严重阻碍了锂离子电池在动力电池和储能方面的进一步发展,因此开发成本低、寿命长、倍率性能好和安全性能高的锂离子电池正、负极材料,来满足3G网络、电动汽车以及风能和太阳能储能的要求是十分重要的。为了提高锂离子电池的综合性能,本论文采用碳改性钛酸锂负极材料提高其常温和高温循环寿命以及倍率性能,采用价格低廉的钴镍锰三元材料代替钴酸锂,采用表面包覆镍酸锂提高层状正极材料的常温和高温循环寿命及倍率性能等。具体研究内容如下:
     1、采用高温固相合成方法,制备了Li_4Ti_5O_(12)负极材料,合成产物具有立方尖晶石结构。系统研究了锂钛金属元素比例、二次煅烧温度对材料的结构和电化学性能的影响。当Li/Ti物质的量比为1.05、二次煅烧温度为800oC时合成的材料具有最佳的电化学性能。
     2、以蔗糖和/或KS-6作为碳源,采用高温固相法制备了Li_4Ti_5O_(12)/C复合材料。系统研究了不同碳源对Li_4Ti_5O_(12)的结构、形貌、循环寿命和倍率性能的影响。蔗糖分解碳包覆在Li_4Ti_5O_(12)表面,KS-6分布在Li_4Ti_5O_(12)颗粒之间,碳改性并没有改变Li_4Ti_5O_(12)主体的尖晶石结构,不同的碳源对Li_4Ti_5O_(12)/C复合材料的综合性能具有不同的影响,与只添加蔗糖或KS-6的Li_4Ti_5O_(12)/C复合材料相比较,二者协同作用的Li_4Ti_5O_(12)/C复合材料(LTO-1)具有最佳的综合性能。Li_4Ti_5O_(12)/C复合材料(LTO-1)0.2C首次充放电比容量分别为170.5和152.5mAh·g~(-1),1C比容量为149.9mAh·g~(-1),经过1000周循环后其放电比容量为145.3mAh·g~(-1),1000周的容量保持率高达96.9%,远高于纯Li_4Ti_5O_(12)的73.8%,而且该材料和锰酸锂组装的全电池可以通过3C-20V过充、短路和穿钉等安全性测试。
     3、以蔗糖和VGCF作为碳源,采用高温固相法制备了Li_4Ti_5O_(12)/C复合材料。蔗糖分解碳包覆在Li_4Ti_5O_(12)表面,VGCF具有较大的长径比和良好的导电性能,能够增加颗粒之间的导电性。初始添加蔗糖1%+0.5%VGCF的Li_4Ti_5O_(12)/C复合材料(LTO-b),在高温55oC下,其1C放电比容量为157.5mAh·g~(-1),100周的容量保持率为97.8%,表现出了良好的高温循环稳定性。由该材料和锰酸锂组装的(LTO-b)/LiMn_2O_4全电池,在0.1-3V和1-3V的电压区间循环寿命几乎无差别,而且,该电池在55oC储存150天后的容量恢复率为99.8%,和初始容量几乎一致,表现出良好的耐过放性能和优良的高温存储性能。
     4、以共沉淀法得到的[Ni_(3/8)Co_(1/8)Mn_(4/8)]CO_3和LiOH·H_2O混合均匀,高温煅烧得到价格低廉的Li_(1+x)[Ni_(3/8)Co_(1/8)Mn_(4/8)]O_2正极材料,研究比较了Li/[Ni_(3/8)Co_(1/8)Mn_(4/8)]物质的量比对其结构、组成、形貌、和电化学性能的影响。Li_(1.11)[Ni_(3/8)Co_(1/8)Mn_(4/8)]O_2材料具有最佳的电化学性能,常温下,在2.75-4.2V电压区间,其300次循环的容量保持率为95.7%,55oC高温下,在2.75-4.2V和2.75-4.5V电压区间,其比容量为150.3和189.3mAh·g~(-1),100次循环后的容量保持率分别为90.6%和88.2%,而且MCMB/Li_(1.11)[Ni_(3/8)Co_(1/8)Mn_(4/8)]O_2电池可以通过3C-5V过充实验和短路实验。和LiCoO_2相比较,Li_(1.11)[Ni_(3/8)Co_(1/8)Mn_(4/8)]O_2材料在2.75-4.5V电压区间具有更高的放电比容量及更好的高温循环稳定性,更佳的倍率性能和耐过充性能,而且价格只有LiCoO_2的一半左右。
     5、在恒pH值下将钴铝层状双羟基复合金属氧化物(CoAl-LDH)均匀包覆于球状Ni(OH)_2表面,与LiOH·H_2O混合均匀后,经高温煅烧得到钴铝酸锂包覆镍酸锂0.08LiCo_(0.75)Al_(0.25)O_2-0.92LiNiO_2正极材料。电化学测试表明,0.08LiCo_(0.75)Al_(0.25)O_2-0.92LiNiO_2正极比容量高、具有良好的倍率性能和循环寿命,其0.1C、0.5C和3C的放电比容量分别为211.0、195.6和161.0mAh g~(-1),0.5C30次循环后容量保持率为93.2%,明显优于LiNiO_2和钴酸锂包覆镍酸锂0.08LiCoO_2-0.92LiNiO_2正极材料。
Lithium-ion batteries are the most widely used secondary batteriescurrently because of their large energy density, long cycle life and nomemory effect and so on. The cathode and anode materials are the mostcritical materials; LiCoO_2and MCMB are the two curretlycommercialized materials. However, the high cost, low rate capacity andpoor safety performance seriously hampered the further development oflithium-ion battery in a large-scale power. It is an urgent need to developlow-cost, long-life, good rate capacity and good safety materials to meetthe demand of3G network, the wind and solar energy storage, electricvehicles and other application. This thesis focused on studyingLi_4Ti_5O_(12)/C composite anode materials, cheap LiNixCoyMn1-x-yO_2cathode material and LiCo_(0.75)Al_(0.25)O_2coated LiNiO_2cathode materialinstead of LiCoO_2to improve the cycle life, rate capability and safety ofLi-ion batteries at room temperature and high temperature. Theconclusions have been summarized as following:
     1. Spinel Li_4Ti_5O_(12)have been synthesized via a solid state reactionwith TiO_2-anatase and Li2CO3as the starting materials. The effects ofLi/Ti molar ratio and the calcinaton temperature on the morphology, structure and electrochemical performance have been investigated. Itwas found that the best Li/Ti molar ratio is1.05and the best secondarycalcining temperature is800oC.
     2. Li_4Ti_5O_(12)/C composites have been synthesized via a solid statereaction with TiO_2-anatase, Li2CO3and different carbon sources, such asconductive graphite KS-6and sucrose, as the starting materials. It wasfound that the carbon layer from sucrose was homogeneously coated onthe Li_4Ti_5O_(12)surface and the KS-6was embedded among the Li_4Ti_5O_(12)particles as a conductive bridge without affecting the major spinelstructure of Li_4Ti_5O_(12). Moreover, it was demonstrated that the sucroseand KS-6played different roles in improving the electrochemicalproperties of Li_4Ti_5O_(12)/C composite. Compared with samples preparedby solely KS-6or sucrose as the carbon source, the Li_4Ti_5O_(12)/Ccomposite (LTO-1) with KS-6and sucrose as carbon sources togetherrevealed the optimal electrochemical performance. It showed a highinitial specific capacity of152.5mAh·g~(-1)at0.2C and an excellentcycling performance with96.8%capacity retention after1000cycles at25oC at1C. Furthermore, the (LTO-1)/LiMn2O4full batterydemonstrated a good cycling performance at55oC and could pass the5C-20V overcharge test, external short-circuit and nail-puncture test.
     3. Li_4Ti_5O_(12)/C composites have been synthesized via a solid statereaction with TiO_2-anatase, Li2CO3, sucrose and VGCF as the starting material. VGCF has a larger length-diameter ratio than KS-6and goodconductive properties. The Li_4Ti_5O_(12)/C composite (LTO-b) with1%sucrose and0.5%VGCF showed good cycling performance at25and55oC. It showed an initial capacity of157.5mAh·g~(-1)at1C and anexcellent cycling performance with97.8%capacity retention after100cycles at55oC. Moreover, the (LTO-b)/LiMn2O4full batteries havesimilar cycling performance at0.1-3V and1-3V, which shows goodanti-redischarge properties. In addition, the capacity recovery ratio of(LTO-b)/LiMn2O4full batteries are99.8%(to the initial capacity) after150days at55oC, which shows excellent storage performance.
     4. Li_(1+x)[Ni_(3/8)Co_(1/8)Mn_(4/8)]O_2cathode materials have been prepared bycalcination of LiOH·H2O and [Ni_(3/8)Co_(1/8)Mn_(4/8)]CO3under O_2atmosphere.The structure and morphology have been studied, and theelectrochemical behavior and safe characteristic have been tested by14500R-type MCMB/Li_(1+x)[Ni_(3/8)Co_(1/8)Mn_(4/8)]O_2batteries. The capacityretention ratio of Li_(1.11)[Ni_(3/8)Co_(1/8)Mn_(4/8)]O_2is95.7%after300cycles in2.75-4.2V at25oC. At55oC, in2.75-4.2V and2.75-4.5V, thedischarge specific capacities are150.3mAh·g~(-1)and189.3mAh·g~(-1), withthe capacity retention ratios are90.6%and88.2%after100cycles,respectively. The MCMB/Li_(1.11)[Ni_(3/8)Co_(1/8)Mn_(4/8)]O_2batteries can pass the3C-5V overcharge test and short-circus experiment. Compared withLiCoO_2,the Li_(1.11)[Ni_(3/8)Co_(1/8)Mn_(4/8)]O_2material has higher capacity and better cycling performance in2.75-4.5V at55oC, with better rate andanti-recharged property, and with an about50%price of LiCoO2.
     5. CoAl-LDH or Co(OH)_2coated spherical Ni(OH)_2precursorswere obtained via a coprecipitation method at a constant pH. After theprecursors and LiOH H2O were mixed, the mixtures were annealed athigh temperature in O2atmosphere, and then the0.08LiCo_(0.75)Al_(0.25)O_2-0.92LiNiO_2,0.08LiCoO2-0.92LiNiO2and LiNiO2cathode materials were synthesized. Effects of the coating layer werealso studied. The results showed that the0.08LiCo_(0.75)Al_(0.25)O_2-0.92LiNiO2material owned the best rate andcycle-life. The0.1C,0.5C and3C discharging capacities were211.0mAh g~(-1),195.6mAh·g~(-1)and161.0mAh g~(-1)respectively, and thecapacity retention ratio after30cycles at0.5C was93.2%. Theseresults were much better than both pure LiNiO2and0.08LiCoO2-0.92LiNiO2.
引文
[1]汪继强.锂离子蓄电池技术进展及市场前景[J].电源技术,1996,20(4):147-151
    [2] Dahn J R, Sacken U V, Juzkow M W. Rechargeable LiNiO2/Carbon cells [J]. Journal ofElectrochemical Society,1991,138(8):2207-2211
    [3] Guyomard D, Tarascon J M. The carbon/Li1+xMn2O4system [J]. Solid State Ionics,1994,69:222-237
    [4]任学佑.锂离子电池的新进展[J].电池,1997,27(4):188-191
    [5]黄振谦,张昭.锂离子电池(RCB)进展[J].电池,1995,25(3):143-145
    [6]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社,2002,1-294
    [7] Ritchie A G. Recent developments and likely advances in lithium rechargeable batteries[J]. Journal of Power Sources,2004,136:285-289
    [8] Teruo K, Hikari S. Present status and future prospect for national project on Lithiumbatteries [J]. Journal of Power Sources,1999,81-82:144-149
    [9] Nelson R F. Power requirements for batteries in hybrid electric vehicles [J]. Journal ofPower Sources,2000,91:2-26
    [10]吴飞.我国移动通讯产业及其配套小型电源的发展[J].电源技术,2000,24(3):185-187
    [11]钟俊辉.锂离子电池及其材料[J].电池,1996,26:91-95
    [12]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2008.8-9
    [13] Aurbach D, Ein-Eli Y, Chusid O. The correlation between the surface chemistry and theperformance of Li/carbon intercalation anodes for rechargeable “Rocking-chair” typebatteries [J]. Journal of the Electrochemical Society,1994,141:603-611
    [14] Goodenough J B, Kim Y, Challenges for Rechargeable Li Batteries [J]. Chemistry ofMaterials.2010,22:587-603
    [15] Rosamaria F, Sacken U, Dhan J R, Studies of lithium intercalation into carbons usingnonaqueous eletrochemical cells [J]. Journal of the Electrochemical Society,1990,(137):2009-2013
    [16] Zhang Z, Michael M. L, Electrochemical oxidation of graphite in organic electrolytescontaining PF6-or ClO4-[J]. Journal of the Electrochemical Society,1993,140(3):742-746
    [17] Ogumi Z, Inaba Minoru. Electrochemical lithium intercalation within carbonaceousmaterials: intercalation process, surface film formation, and lithium diffusion [J]. Bulletinof the Chemical Society of Japan.1998,(71):521-534
    [18] Kuribayashi I, Yokoyama M, Yamashita M. Battery characteristics with variouscarbonaceous materials [J]. Journal of Power Sources,1995,(54):153-156
    [19] Momose H, Honbo H, Takeuchi S, Nishimura K, et al. X-ray photoelectron spectroscopyanalyses of lithium dope and undope reactions on graphite electrodes, in ExtendedAbstracts of the8th international Meeting on Lithium Batteries. June1996, Japan,172-173
    [20]王晓峰,时悦春,谢剑,二氧化碳修饰天然石墨锂离子阳极[J].电池,1994,24(1):8-10
    [21] Sohrab H, Kim Y K, Yousry S. Comparative studies of MCMB and C-C composite asanodes for lithium-ion battery systems [J]. Journal of Power Sources,2003,114(2):264-276
    [22] Yao J, Wang G X, Ahn J. Electrochemical studies of graphitized mesocarbon microbeadsas an anode in lithium-ion cells [J]. Journal of Power Sources,2003,114(2):292-297
    [23] Edward B and Dahn J R. Li insertion in hard carbon anode materials for Li-ion batteries[J]. Electrochimica Acta,1999,45(1-2):121-130
    [24] Mochida I, Ku C H, Korai Y. Anodic performance and insertion mechanism of hardcarbons prepared from synthetic isotropic pitches [J]. Carbon,2001,39(3):399-410
    [25]唐致远等,纳米碳管及其在锂离子电池中的应用[J].材料导报,2000,14(12):31-32
    [26] Flandrois S, Simon B, Carbon materials for lithium-ion rechargeable batteries [J].Carbon,1999,37(2):165-180
    [27] Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials for Li ionbatteries [J]. Carbon.2000,38(2):183-197
    [28] Rowsell J, Pralong V, Nazar L. Layered lithium iron nitride: a promising anode materialfor Li-Ion batteries [J]. Journal of the American Chemical Society,2001,123:8598-8599
    [29] Yang J, Takeda Y, Imanishi N,Yamamoto O. Novel Composite Anodes based onNano-oxides and Li2.6Co0.4N for Lithium Ion Batteries [J]. Electrochimica Acta,2001,46:2659-2664
    [30] Stoeva Z, Smith R I, Gregory D H, Stoichiometry and defect structure control in theternary lithium nitridometalates Li3-x-yNixN [J]. Chemistry of Materials,2006,18:313-320
    [31] Cabana J, Dupre N, Gillot F, Chadwick Al V, Grey C P, Palac n M R, Synthesis,short-range structure, and electrochemical properties of new phases in the Li-Mn-N-OSystem [J]. Inorganic Chemistry,2009,48:5141-5153
    [32] Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Mo Y, Pei N. The crystal structuralevolution of nano-Si anode caused by lithium insertion and extraction at roomtemperature [J]. Solid State Ionics,2000,135:181-191
    [33] Jun H, Park M, Yoon Y, Kim G, Joo S. Amorphous silicon anode for lithium-ionrechargeable batteries [J]. Journal of Power Sources.2003,115:346-351
    [34] Dimov N, Fukuda K, Umeno T, Kugino S, Yosho M. Characterization of carbon-coatedsilicon structural evolution and possible limitation [J]. Journal of Power Sources.2003,114:88-95
    [35] Courtney I A, Dahn J R. Electrochemical and in situ X-ray diffraction studies of thereaction of lithium with tin oxide composites [J]. Journal of the Electrochemical Society,1997,144:2045-2052
    [36] Li J, Li H, Wang Z, Chen L, Huang X. The sduty of surface films formed on SnO anodein lithium rechargeable batteries by FTIR spectroscopy [J]. Journal of Power Sources.2002,107:1-4
    [37] Besenhard J O, Winter M, Yang J, Proceedings of the international workshop onadvanced batteries, Lithium Batteries,1995,129
    [38] Wang G X, Chen Y, Konstantinov K. Investigation of Cobalt Oxides as Anode Materialsfor Li-ion Batteries [J]. Journal of Power Sources,2002,109(1):142-147
    [39] Han J. R., Key factors controlling the reversibility of the reaction of lithium with SnO2and SnBPO6glass [J]. Journal of the Electrochemical Society,1997,144(9):2943-2948
    [40] Wang J, Zhao H L, Liu X T, Wang J, Wang Ch M. Electrochemical properties ofSnO2/carbon composite materials as anode material for lithium-ion batteries [J].Electrochimica Acta,2011,56:6441-6447
    [41] Lin Y M, Abel P R, Heller A, Mullins C B. α-Fe2O3nanorods as anode material forlithium ion batteries [J]. Journal of Physical Chemistry Letter,2011,2:2885-2891
    [42] Li B J, Cao H Q, Shao J, Li G Q, Qu M Z, Yin G. Co3O4@graphene composites as anodematerials for high-performance lithium ion batteries [J]. Inorganic Chemistry,2011,50:1628-1632
    [43] Needham S A, Wang G X, Liu H K. Synthesis of NiO nanotubes for use as negativeelectrodes in lithium ion batteries [J]. Journal of Power Sources,2006,159:254-257
    [44] Wang J, Zhao H L, He J C, Wang C M, Wang J. Nano-sized SiOx/C composite anode forlithium ion batteries [J]. Journal of Power Sources,2011,196:4811-4815
    [45] Uchiyama H, Hosono E, Honma I, Zhou H S, Imai H..A nanoscale meshed electrode ofsingle-crystalline SnO for lithium-ion rechargeable batteries [J]. ElectrochemistryCommunications,2008,10:52-55
    [46] Cui W J, Wang F, Wang J, Wang C.X, Xia Y Y. Nanostructural CoSnC anode prepared byCoSnO3with improved cyclability for high-performance Li-ion batteries [J].Electrochimica Acta,2011,56:4812-4818
    [47] Wang G, Sun L, Bradhurst D, Zhong S, Dou S, Liu H, Innovative nanosize lithiumstorage alloys with silica as active centre [J]. Journal of Power Sources,2000,88:278-281
    [48] Cao G, Zhao X, Li T, Lu C, Zn4Sb3(C7) powders as a potential anode material forlithium-ion batteries [J]. Journal of Power Sources,2001,94:102-107
    [49] Chen Z H, Christensen L, Dahn J R. Large-volume-change electrodes for Li-ion batteriesof amorphous alloy particles held by electrometric together [J]. ElectrochemistryCommunications,2003,5:919-923
    [50] Biensan P, Simon B, Peres J P, et al. On safety of lithium-ion cells [J]. Journal of PowerSources,1999,81-82:906-912
    [51] Jansen A N, Kahaian A J, Kepler K D, et al. Development of a high-power lithium-ionbattery [J]. Journal of Power Sources,1999,81-82:902-905
    [52] Bach S, Pereira-Ramos J P, Baffier N. Electrochemical properties of sol-gel Li4/3Ti5/3O4[J]. Journal of Power Sources,1999,81-82:273-276
    [53] Faggioli E. Rena P, Danel V. et al. Super capacitors for the energy management of electricvehicles [J]. Journal of Power Sources,1999,84:261-269
    [54] Zaghib K, Simoneau M, Armand M, et al. Electrochemical study of Li4Ti5O12as negativeelectrode for Li-ion polymer rechargeable batteries [J].Journal of Power Sources,1999,81282:300-305.
    [55] Scharner S, Weppner W, Schmide P, Evidence of two-phase formation upon lithiuminsertion into the Li1.33Ti1.67O4[J]. J Journal of the Electrochemical Society,1999,146(3):857-861
    [56] Kavan L, Prochazka J, Spitler T M, et al. Li insertion into Li4Ti5O12(spinel) chargecapability vs. particle size in thin-film electrodes [J]. Journal of the ElectrochemicalSociety,2003,150(7): A1000-A1005.
    [57]殷金玲,陈猛,李胜军,锂离子电池非碳负极材料的研究进展[J].应用科技,2002,29(10):52-55
    [58]高玲,仇卫华,赵海雷,合成温度对Li4Ti5O12的电化学性能的影响[J].电池,2004,34(5):351-352
    [59] Prosini P P, Mancini R, Petrucci L, et al. Li4Ti5O12as anode in all-solid-state, plastic,lithium-ion batteries for low-power applications [J]. Solid State Ionics,2001,144:185-192.
    [60] Wang G, Xu J. Influence of high-energy ball milling of precursor on the morphology andelectrochemical performance of Li4Ti5O12–ball-milling time [J].Solid State Ionics,2008,179:946-950
    [61] Wolfenstine J, Allen J L, Electrical conductivity and charge compensation in Ta dopedLi4Ti5O12[J]. Journal of Power Sources,2008,180:582-585
    [62] Ge H, Li N. Eletrochemical characterisitics of spinel Li4Ti5O12discharged to0.01V [J].Electrochemistry Communication,2008,10:719-722
    [63] Hao Y, Lai Q, Influence of various complex agents on electrochemical property ofLi4Ti5O12anode material [J]. Journal of Alloys and Compounds,2007,439:330-336
    [64] Gao J, Jiang C, Ying J, Wan C. Preparation and characterization of high-density sphericalLi4Ti5O12anode material for lithium secondary batteries [J]. Journal of Power Sources,2006,155:364-367
    [65] Jiang Ch,Zhou Y,Zhou H, et al. Preparation and rate capability of Li4Ti5O12hollow-sphere anode material [J]. Journal of Power Sources,2007,166:514-518
    [66] Shen Ch, Zhang Xi, Zhou Y, Li H. Preparation and characterization of nanocrystallineLi4Ti5O12by sol-gel method [J]. Materials Chemistry and Physics,2002,78:437-441
    [67] Li J, Jin Y, Zhang X, Yang H. Microwave solide-state synthesis of spinel Li4Ti5O12nanocrystallites as anode material for lithium-ion batteries [J]. Solid State Ionics,2007,178:1590-1594
    [68] Tang Y F, Yang L, Qiu Z, Huang J S. Preparation and electrochemical lithium storage offlower-lik spinel Li4Ti5O12consisting of nanosheets [J]. ElectrochemistryCommunications,2008,10:1513-1516
    [69] Hsiao K,Liao S, Chen J. Microstructure effect on the electrochemical property ofLi4Ti5O12as an anode material for lithium-ion batteries [J]. Electrochimica Acta,2008,53:7242-7247
    [70] Nakahara K, Nakajima R. Preparation of particulate Li4Ti5O12having excellentcharacteristics as an electrode active material for power storage cells [J]. Journal ofPower Sources,2003,117:131-136
    [71] Chen C, Vaughey J T, Jansen A N, et al. Studies of Mg-Substituted Li4-xMgxTi5O12SpinelElectrodes (0≤x≤1) for Lithium Batteries [J]. Journal of the Electrochemical Society,2001,148(1): A102-A104
    [72] Kubiak P,Jumas J C. Phase transition in the spinel Li4Ti5O12induced by lithium insertionInfluence of the substitutions Ti/V, Ti/Mn, Ti/Fe [J]. Journal of Power Sources,2003,119-121:626-630
    [73] Huang Sh, Wen Zh, Zhu X, Liu Z. Preparation and electrochemical Performance ofspinel-type compounds Li4AlyTi5-yO12:(y=0,0.10,0.15,0.25)[J]. Journal of theElectrochemical Society,2005,152(l): A186-A190
    [74] Huang Sh, Wen Zh,Gu Zh,,Zhu X. Preparation and cycling Performance of Al3+and F-co-substituted compounds Li4AlxTi5-xFyO12-y[J]. Electrochimica Acta,2005,50:4057-4062.
    [75] Huang Sh H, Wen Zh. Effects of dopant on the Li4Ti5O12as electrode material for lithiumion batteries [J]. Journal of Power Sources,2007,165:408-412.
    [76] Hao Y J,Lai Q. Effects of dopant on the electrochemical properties of Li4Ti5O12anodematerials [J]. Ionics,2007,13:369-373
    [77] Liu D, Ouyang Ch, Chen Li Q, et al. Theoretical study of cation doping effect on theelectronic conductivity of Li4Ti5O12[J]. Physica status solidi(b),2006,8(243):1835-1841
    [78] Wolfenstine J., Allen J.L.,Electrical conductivity and charge compensation in Ta dopedLi4Ti5O12[J]. Journal of Power Sources,2008,180(l):582-585
    [79] Qi Y L, Huang Y. Preparation and characterization of novel spinel Li4Ti5O12xBrxanodematerials [J]. Electrochimica Acta,2009,54:4772-4776
    [80] Huang S H,Wen Zh. Improving the electrochemical performance of Li4Ti5O12/Agcomposite by an electroless deposition method [J]. Electrochimica Acta,2006,52:3704-3708
    [81] Huang J,Jiang Z,The preparation and characterization of Li4Ti5O12/carbon nano-tubesfor lithium ion battery [J]. Electrochimica Acta,2008,53:7756-7759
    [82] Wang G J, Gao J, Fu L J, Wu Y P, et al. Preparation and characteristic of carbon-coatedLi4Ti5O12anode material [J]. Journal of Power Sources,2007,174:1109-1112
    [83] Liu H, Feng Y, Wang Ke, Xie J, Synthesis and electrochemical properties of Li4Ti5O12/Ccomposite by the PVB rheological phase method [J]. Journal of Physics and Chemistry ofSolids,2008,69:2037-2040
    [84] Majima M, Ujite S. Development of long life lithium ion battery for power storage [J].Journal of Power Sources,2001,101:53-56
    [85] Xiang H F, Zhang X, Ge X W, et al. Effect of capacity matchup in the LiNi0.5Mn0.5O4/Li4Ti5O12cells [J]. Journal of Power Sources,2008,183:355-360
    [86] Amatucci G G,Badway F. An asymmetric hybric nonaqueous energy storage cell [J].Journal of the Electrochemical Society,2001,148: A930-A934
    [87] Pasquier A D, Plitz I. Characteristics and performance of500F asymmetric hybridadvanced supercapacitor prototypes [J]. Journal of Power Sources,2003,113:62-65
    [88] Mizushima K. LixCoO2(0    [89] A.Van der Ven, M.K.Aydinol, G.Ceder. First-Principles investigation of phase stability inLixCoO2[J]. Physical Review B,1998,58(6):2975-2987
    [90] Julien C and Gastro-Garcia S. Lithiated cobaltates for lithium-ion batteries: Structure,morphology and electrochemistry of oxides grown by solid-state reaction, wet chemistryand film deposition [J]. Journal of Power Sources,2001,97-98:290-293
    [91] Kim H J, Jeong Y U, Lee J H, Kim J J. Crystal structures, electrical conductivities andelectrochemical properties of LiCo1-xMgxO2[J]. Journal of Power Sources,2006,159:233-236
    [92] Peng Z S, Wan C R, Jiang C Y. Synthesis by sol–gel process and characterization ofLiCoO2cathode materials [J]. Journal of Power Sources,1998,72(2):215-220
    [93] Julien C and Gastro-Garcia S. Lithiated cobaltates for lithium-ion batteries: Structure,morphology and electrochemistry of oxides grown by solid-state reaction, wet chemistryand film deposition [J]. Journal of Power Sources,2001,97-98:290-293
    [94] Okubo M, Hosono E, Kim J, Enomoto M, Kojima N, Kudo T, Zhou H, Honma I.Nanosize effect on high-rate Li-ion intercalation in LiCoO2electrode [J]. Journal of theAmerican Chemical Society,2007,129(23):7444-7452
    [95] Khan M N, Bashir J. Synthesis and structural refinement of LiAlxCo1-xO2system [J].Materials Research Bulletin,2006,41:1589-1595
    [96] Kosova N V, Kaichev V V, Bukhtiyarov V I, et al. Electronic state of cobalt and oxygenions in stoichiometric and nonstoichiometric Li1+xCoO2before and after delithiationaccording to XPS and DRS [J]. Journal of Power Sources,2003,119-121:669-673
    [97]周健,戴秀珍. B元素对正极材料LiCoO2结构及性能的影响[J].安徽大学学报(自然科学版),2007,31(2):67-70
    [98] Amriou T, Sayede A, Khelifa B, Mathieu C, Aourag H. Effect of Al-doping on lithiumnickel oxides [J]. Journal of Power Sources,2004,130:213-220.
    [99] Madhavi S, Rao G V, Chowdari B, Li S. Effect of Cr dopant on the cathodic behavior ofLiCoO2[J]. Electrochimica Acta,2002,48:219-226
    [100] Wu M Q, Chen A, Xu R Q, Li Y. Nanocrystalline LiNi1xCoxO2cathode materialsprepared by a gel-combustion process [J]. Materials Science Engineering B,2003,99(1-3):336-339
    [101] Belharouak I, Tsukamot H, Amine K. LiNi0.5Co0.5O2as a long-lived positive activematerial for lithium ion batteries [J]. Journal of Power Sources,2003,119-121:175-177
    [102] Yang Zh X, Yang W S, Tang Zh F. Pillared layered Li1-2xCaxCoO2cathode materialsobtained by cationic exchange under hydrothermal conditions [J]. Journal of PowerSources,2008,184:557-561
    [103]李普良,徐舜,习小明,王荣. MgO包覆LiCoO2的结构及性能[J].矿冶工程,2004,24(6):61-62
    [104] Fey G T, Lu C Z, Kumar T P, Chang Y C. TiO2coating for long-cycling LiCoO2: acomparison of coating procedures [J]. Surface and Coating Technology,2005,199:22-31
    [105] Miyashiro H, Yamanaka A, Tabuchi M, et al. Improvement of degradation at elevatedtemperature and at high state-of-charge storage by ZrO2coating on LiCoO2[J]. Journal ofthe Electrochemical Society,2006,153(2): A348-A353
    [106] Oh S, Lee J K, Byun D, Cho W I, Cho B W. Effect of Al2O3coating on electrochemicalperformance of LiCoO2as cathode materials for secondary lithium batteries [J]. Journalof Power Sources,2004,132:249-255
    [107] Liu L J, Wang Z X, Li H, Chen L Q, Huang X J. Al2O3-coated LiCoO2as cathodematerial for lithium ion batteries [J]. Solid State Ionics,2002,152-153:341-346
    [108] Cho J, Kim Y W, Kim B, Lee J G, Park B. A breakthrough in the safety of lithiumsecondary batteries by coating the cathode material with AlPO4Nanaparticles [J].Angewandte Chemie International Edition,2003,42:1618-1621
    [109] Wang H, Zhang W D, Zhu L Y, Chen M C. Effect of LiFePO4coating on electrochemicalperformance of LiCoO2at high temperature [J]. Solid State Ionics,2007,178:131-136
    [110] Li G, Yang Zh X, Yang W S. Effect of FePO4coating on electrochemical and safetyperformance of LiCoO2as cathode material for Li-ion batteries [J]. Journal of PowerSources,2008,183:741-748
    [111] Yang Zh X, Yang W S, Evans D, Li G, Zhao Y Y. Enhanced overcharge behavior andthermal stability of commercial LiCoO2by coating with a novel material [J].Electrochemistry Communications,2008,10:1136-1139
    [112]高虹,杨勤峰,锂离子电池正极材料LiCoO2的碳包覆研究[J].有色矿冶,2006,22(2):30-33
    [113] Sun Y K, Cho S W, Myung S T, Amine K. Prakash J. Effect of AlF3coating amount onhigh voltage cycling performance of LiCoO2[J]. Electrochimica Acta,2007,53:1013-1019
    [114]孙文彬,谢嫚,张联齐,陈人杰,刘兴江, LiCoO2的TiO2包覆原理探索研究[J].电源技术,2012,36(1):75-77
    [115] Delmas C, Peres J, Rougier A. et al. On the behavior of the LixNiO2system: anelectrochemical and structural overview [J]. Journal of Power Sources1997,68:120-125
    [116]赵煜娟,陈彦彬,杜翠微,刘庆国,锂离子蓄电池正极材料LiNi1-yCoyO2的研究[J].电源技术,2002,26:56-60
    [117] Ohzuku T, Ueda A, Nagayama M. Electrchemical and structural characterization ofLiNiO2(R3m) for4volt secondary lithium cells [J]. Journal of the ElectrochemicalSociety,1993,140:1862-1870
    [118]万新华,刘庆国,包埋镍酸锂为正极的AA电池性能研究[J].电源技术,2004,28(9):538-541
    [119] Lee K, Yoon M, Kim K, et al. Thermal behavior and the decomposition mechanism ofelectrochemically delithiated Li1-xNiO2[J]. Journal of Power Sources,2001,97-98:321-325
    [120]万新华,王博,连芳,刘庆国.包埋镍酸锂的热稳定性和耐过充性[J].电池,2004,34(1):7-9
    [121] Kim J, Liu J, Chen C, Amine K. Material characterization and electrochemical study onLiNi0.95Ti0.05O2materials [J]. Journal of the Electrochemical Society,2003,150:A1491-A1497
    [122] Kim J, Amine K. A comparative study on the substitution of divalent, trivalent andtetravalent metal ions in LiNi1xM+xO2(M=Cu2+, Al3and Ti4+)[J]. Journal of PowerSources,2002,104:33-39
    [123] Julien C, Nazri G, Rougier A. Electrochemical performances of layered LiM1yMy′O2(M=Ni, Co; M′=Mg, Al, B) oxides in lithium batteries [J]. Solid State Ionics,2000,135:121-130
    [124] Islam M S, Davies R A, Gale J D. Structural and electronic properties of the layeredLiNi0.5Mn0.5O2lithium battery [J]. Chemistry of Materials,2003,15:4280-4286
    [125] Gopukumar S, Chung K Y, Kim K B. Novel synthesis of layered LiNi1/2Mn1/2O2ascathode material for lithium rechargeable cells [J]. Electrochim. Acta,2004,49:803-810
    [126] Oh S H, Jeong W T, Cho W, et al. Electrochemical characterization of high-performanceLiNi0.8Co0.2O2cathode materials for rechargeable lithium batteries [J]. Journal of PowerSources,2005,140(1):145-150
    [127] Li W, Currie J C. Morphology effects on the electrochemical performance ofLiNi1–xCoxO2[J]. Journal of the Electrochemical Society,1997,144:2773-2779.
    [128]赵煜娟,杜翠薇,余仲宝,王静,刘庆国.锂离子蓄电池正极材料LiNi1-yCoyO2的合成及性能[J].电源技术,2002,26(5):369-372
    [129] Ying J R, Wan C R, Jiang C Y. Surface treatment of LiNi0.8Co0.2O2cathode material forlithium secondary batteries [J]. Journal of Power Sources,2001,102(1-2):162-166
    [130] Saadoune I, Delmas C. On the LixNi0.8Co0.2O2System [J]. Journal of Solid StateChemistry,1998,136:8-15
    [131]应皆荣,万春荣,姜长印.以a-Ni0.8Co0.2(OH)2制备锂离子电池正极材料LiNi0.8Co0.2O2[J].无机材料学报,2001,16(5):821-826
    [132] Ehrenberg H, Nikolowski K, Bramnik N, Baehtz C, Buhrmester T, Gross T. Conditioningof Li(Ni,Co)O2cathode materials for rechargeable batteries during the firstcharge-discharge cycles [J]. Advanced Engineering Materials,2005,7:932-935
    [133]彭文杰,李新海,王云燕,王志兴,郭华军, LiNi0.5Co0.5O2的制备及其电化学性能[J].中南大学学报,2004,35(3):390-395
    [134] Nikolowski K, Bramnik N N, Baehtz C, Ehrenberg H Fuess H. Behaviour ofLiNi0.8Co0.2O2-cathodes at high cycle numbers [J]. Journal of Power Sources,2007,174:818-828
    [135]应皆荣,万春荣,姜长印.用溶胶凝胶法在LiNi0.8Co0.2O2表面包覆SiO2[J].电源技术,2001,25(6):401-404
    [136] Liu H, Li J, Zhang Z, Gong Z, Yang Y. The effects of sintering temperature and time onthe structure and electrochemical performance of LiNi0.8Co0.2O2cathode materialsderived from sol-gel method [J]. Journal of Solid State Electrochemistry,2003,7:456-462
    [137]陈勃涛.以α型氢氧化物前驱体制备LiNi0.8Co0.15Al0.05O2及其电化学性能[J].无机化学学报,2010,26(2):190-192
    [138] Weaving J S, Coowar F, Teagle D A, Cullen J, Dass V, Bindin P, Green R, Macklin W J.Development of high energy density Li-ion batteries based on LiNi1-yCoxAlyO2[J].Journal of Power Sources,2001,97-98:733-735
    [139]赵煜娟,夏定国,刘庆国.锂离子蓄电池正极材料LiNi0.85Co0.1M0.05O2的合成及性能[J].电源技术,2003,27(5):427-430
    [140] Kim W S, Chung K, Choi Y K, Sung Y E. Synthesis and charge–discharge properties ofLiNi1x yCoxMyO2(M=Al, Ga) compounds [J]. Journal of Power Sources,2003,115:101-109
    [141]李新禄,康飞宇,郑永平,施秀娟,沈万慈.锂离子电池正极材料LiNi0.7Co0.25Al0.05O2的结构表征和电化学特性[J].硅酸盐学报,2005,33(10):1193-1196
    [142] Lee S M, Oh S H, Ahn J P, Cho W I, Jang H. Electrochemical properties of ZrO2-coatedLiNi0.8Co0.2O2cathode materials [J]. Journal of Power Sources,2006,159:1334-1339
    [143] Kweon H J, Kim S J, Park D G. Modification of LixNi1-yCoyO2by applying a surfacecoating of MgO [J]. Journal of Power Sources,2000,88(2):255-261
    [144] Zhecheva E, Stoyanova R, Tyuliev G, Tenchev K, Mladenov M, Vassilev S. Surfaceinteraction of LiNi0.8Co0.2O2cathodes with MgO [J]. Solid State Sciences,2003,5:711-720
    [145] Park B C, Kim H B, Bang H J, Prakash J, Sun Y K. Improvement of electrochemicalperformance of Li[Ni0.8Co0.15Al0.05]O2cathode materials by AlF3coating at varioustemperatures [J]. Industrial&Engineering Chemistry Research,2008,47,3876-3882
    [146]翟金玲,魏进平,杨晓亮,高学平,阎杰.锂离子蓄电池正极材料表面包覆研究进展[J].电源技术,2005,29(11):765-769
    [147] Lee H, Kim Y, Hong Y S, Kim Y, Kim M G, Shin N S, Cho J. Structural characterizationof the surface-modified LixNi0.9Co0.1O2cathode materials by MPO4coating (M=Al, Ce,SrH, and Fe) for Li-ion cells [J]. Journal of the Electrochemical Society,2006,153:A781-A786
    [148] Cho J, Kim T, Kim J, Noh M, Park B. Synthesis, thermal, and electrochemical propertiesof AlPO4-coated LiNi0.8Co0.1Mn0.1O2cathode materials for a Li-ion cell [J]. Journal ofthe Electrochemical Society,2004,151: A1899-A1904
    [149] Kim Y, Cho J. Lithium-reactive Co3(PO4)2nanoparticle coating on high-capacityLiNi0.8Co0.16Al0.04O2cathode material for lithium rechargeable batteries [J]. Journal of theElectrochemical Society,2007,154: A495-A499
    [150]闫芳,叶乃清,田华,钟卓洪.一种合成锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的新方法[J].电源技术,2012,36(1):49-51
    [151] Ohzuku T, Makimura Y, Layered lithium Insertion of LiCo1/3Ni1/3Mn1/3O2for lithium-ionbatteries [J]. Chemistry Letters,2001,30:642-643
    [152] Huang Y, Chen J, Ni J, Zhou H, Zhang X. A modified ZrO2-coating process to improveelectrochemical performance of Li[Co1/3Ni1/3Mn1/3]O2[J]. Journal of Power Sources,2009,188:538-545
    [153] Chitturi V R, Arava L M R, Yasuyuki I, and Pulickel M A.LiNi1/3Co1/3Mn1/3O2-Graphene Composite as a Promising Cathode for Lithium-IonBatteries [J]. Applied Materials&Interfaces,2011,3:2966–2972
    [154] Shaju K M, Subba G V, Rao B V, Chowdari R. Performance of layeredLi[Co1/3Ni1/3Mn1/3]O2as cathode for Li-ion batteries [J]. Electrchimica Acta,2002,48:145-141
    [155] Nupur N S and Munichandraiah N. Synthesis and Characterization of Carbon-CoatedLiNi1/3Co1/3Mn1/3O2in a Single Step by an Inverse Microemulsion Route [J]. Appliedmaterials&Interfaces,2009,1(6):1241-1249
    [156] Huang Y, Chen J, Ni J, Zhou H, Zhang X. A modified ZrO2-coating process to improveelectrochemical performance of Li[Co1/3Ni1/3Mn1/3]O2[J]. Journal of Power Sources,2009,188:538-545
    [157] Ni J, Zhou H, Chen J, Zhang X. Improved electrochemical performance of layeredLiNi0.4Co0.2Mn0.4O2via Li2ZrO3coating [J]. Electrochimica. Acta,2008,53:3075-3083
    [158] Bang H J, Park B C, Prakash J, Sun Y K. Synthesis and electrochemical properties ofLi[Ni0.45Co0.1Mn0.45-xZrx]O2(x=0,0.02) via co-precipitation method [J]. Journal of PowerSources,2007,174:565-568
    [159] Li J, He X, Stannum doping of layered LiNi3/8Co2/8Mn3/8O2cathode materials with highrate capacity for Li-ion batteries [J]. Journal of Power Sources158(2006)524-528
    [160] Cao H,Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2cathode material for lithium ion batteries, Solid State Ionics [J].2005,176:1207-1211
    [161]周振平,赵世玺,柳震,等.正极材料LixMn2O4容量在循环过程中的损失机理研究[J].材料导报,2001,15:30-33
    [162]伊廷锋,霍慧彬,陈辉,等.锂离子蓄电池LiMn2O4正极材料容量衰减机理分析[J].电源技术,2006,130:599-603
    [163] Amine K, Liu J, Kang S, Belharouak I, Hyung Y, Vissers D, Henriksen G. Improvedlithium manganese oxide spinel/graphite Li-ion cells for high-power applications [J].Journal of Power Sources,2004,129:14-19
    [164]唐致远,阮艳莉.锂离子电池容量衰减机理的研究进展[J].化学进展,2005,17:1-7
    [165] Kobayashi H, Sakaebe H, Komoto K, S. et al, Changes in the structure and magneticproperties of Li1.08Mn1.92O4after charge–discharge cycles with a18650-type cylindricalbattery [J]. Solid State Ionics,2004,175:229-232
    [166] Yang Z X, Yang W S, Evans D G, Zhao Y Y, Wei X. The effect of the Co-Al mixed metaloxide coating on the performance of LiMn2O4cathode [J]. Journal of Power Sources,2009,189:1147-1153
    [167] Amatucci G, Pasquier A D, Blyr A, Zheng T, Tarascon J M. The elevated temperatureperformance of the LiMn2O4/C system: failure and solutions [J]. Electrochimica Acta,1999,45:255-271
    [168] Yang Y, Xie Ch, Riccar D R, Peng H, Kim D K,Cui Y. Single Nanorod Devices forBattery Diagnostics: A Case Study on LiMn2O4[J]. Nano Letters,2009,9(12):4109-4114
    [169] Son J T, Kim H G. New investigation of fluorine-substituted spinel LiMn2O4-xFxbyusing sol–gel process [J]. Journal of power Sources,2005,147:220-226
    [170]蒙冕武,廖钦洪,黄颖等.稀土元素对LiMn2O4电极材料相结构及性能的影响[J].金属热处理,2009,34(3):10-13
    [171] Yi T F, Hu X G, Wang D L. Effects of Al, F dual substitutions on the structure andelectrochemical properties of lithium manganese oxide [J]. Journal of University ofScience and Technology Beijing,2008,15:182-186
    [172] Han J M, Myung S T, Sun Y K. Improved Electrochemical Cycling Behavior ofZnO-Coated Li1.05Al0.1Mn1.85O3.95F0.05Spinel at55oC [J]. Journal of The ElectrochemicalSociety,2006,153:A1290-A1295
    [173] Vidu R, Stroeve P. Improvement of the Thermal Stability of Li-Ion Batteries byPolymer Coating of LiMn2O4[J]. Industry&Engineering Chemistry Research.2004,(43):3314-3324
    [174] Liu D Q, He Z Z. Increased cycling stability of AlPO4-coated LiMn2O4for lithium ionbatteries [J]. Materials Letters,2007,61:4703-4706
    [175]李文成,卢世刚,阚素荣,吴国良.固相法中试合成掺杂复合的LiMn2O4[J].电池,2009,39(3):126-128
    [176] Padhi A K, Nanjundaswamy K S, Goodenough. J B, Phospho-olivines positive-electrodematerials for rechargeable lithium batteries [J]. Journal of Electrochemical Society,1997,144(4):1188-1194
    [177] Padhi A K, Nanjundaswamy K S,Masguelier C, Goodenough J B, et al. Effect ofstructure on the Fe3+/Fe2+redox couple in iron phosphates [J]. Journal of theElectrochemical Society,1997,144(5):1609-1613
    [178] MacNe iD D, Lu Zh, Chen Z, et al. A comparison of the electrode/electrolyte reaction atelevated temperatures for various Li-ion battery cathodes [J]. Journal of powder Sources,2002,108:8-14
    [179] Takahashi M, Tobishima S, Takei K. Reaction behavior of LiFePO4as a cathode materialfor rechargeable lithium batteries [J]. Solid State Ionics,2002,148(3-4):283-289
    [180] Roberts M R, Vitins G, Owen J R. High-throughput studies of Li1xMgx/2FePO4andLiFe1yMgyPO4and the effect of carbon coating [J]. Journal of Power Sources,2008,179:754–762
    [181] Abbate M, Lala S M, Montoro L A, Rosolen J. Ti-, Al-, Cu-doping induced gap states inLiFePO4[J]. Electrochemical and Solid-State Letters,2005,8(6):A228-A229
    [182] Wang C S, Hong J. Ionic/electronic conducting characteristics of LiFePO4cathodeMaterials [J]. Electrochemical and Solid-State Letters,2007,10(3):A65-A69
    [183] Lee K T, Lee K S. Electrochemical properties of LiFe0.9Mn0.1PO4/Fe2P cathode materialby mechanical alloying [J]. Journal of Power Sources,2009,189:435–439
    [184] Nien Y H, Carey R J, Chen J S. Physical and electrochemical properties of LiFePO4/Ccomposite cathode prepared from various polymer-containing precursors [J]. Journal ofPower Sources,2009,193:822–827
    [185] Yang K, Deng Z, Suo J. Synthesis and characterization of LiFePO4and LiFePO4/Ccathode material from lithium carboxylic acid and Fe3+[J]. Journal of Power Sources,2012,201:274–279
    [186] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4for lithium battery cathodes[J]. Journal of the Electrochemical Society,2001,148: A224-A229
    [187]查全性等,电极过程动力学导论(第三版),北京:科学出版社,2002年。
    [188]阮艳莉,唐致远,彭庆文等.尖晶石型Li4Ti5O12电极材料的合成与电化学性能研究[J].无机材料学报,2006,2(4):573-879.
    [189]方杰,王志兴,李新海等.烧结温度和时间对Li4Ti5O12电化学性能的影响[J].中国有色金属学报,2009,19(12):2179-2184
    [190] Zaghib K,Simoneau M,Armand M et al. Electrochemical study of Li4Ti5O12as negativeelectrode for Li-ion Polymeric chargeable batteries [J]. Journal of Power Sources,1999,81-82:300-305.
    [191] Wang Y G, Liu H M, Wang K X, Eiji H. Wang Y R, Zhou H S. Synthesis andelectrochemical performance of nano-sized Li4Ti5O12with double surface modification ofTi(III) and carbon [J]. Journal of Materials Chemistry,2009,19:6789-6795
    [192] Kellerman D G, Gorshkov V S, Shalaeva E V, Tsaryev B.A, Vovkotrub E G. Structurepeculiarities of carbon-coated lithium titanate: Raman spectroscopy and electronmicroscopic study [J]. Solid State Sciences.2012,14:72-79
    [193] Yuan T, Cai R, Shao Z P, Different effect of the atmospheres on the phase formation andperformance of Li4Ti5O12prepared from ball-milling-assisted solid-phase reaction withpristine and carbon-precoated TiO2as starting materials [J]. The Journal of PhysicalChemistry C.2011,115:4943-4952
    [194] Jiang C H, Zhou Y, Honma I, Kudo T, Zhou H S. Preparation and rate capability ofLi4Ti5O12hollow-sphere anode material [J]. Journal of Power Sources,2007,166:514-518
    [195] Zhu G N, Liu H J, Zhuang J H, Wang C X, Wang Y G, Xia Y Y. Carbon-coatednano-sized Li4Ti5O12nanoporous micro-sphere as anode material for high-ratelithium-ion batteries [J]. Energy and Environmental Science,2011,4:4016-4022
    [196] Cheng L, Yan J, Zhu G N, Luo J Y, Wang C X, Xia Y Y. General synthesis ofcarbon-coated nanostructure Li4Ti5O12as a high rate electrode material for Li-ionintercalation [J]. Journal of Materials Chemistry,2011,20:595-602
    [197] Leising R A, Palazzo M J, Takeuchi E S. A study of the overcharge reaction oflithium-ion batteries [J]. Journal of Power Sources,2001,97-98:681-683
    [198] Yoshiyasu S, Kiyonami T, Akira N. Thermal behavior of lithium-ion cells duringovercharge [J]. Journal of Power Sources,2001,97-98:693-696
    [199] Endo M, Kim Y A, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus M S.Vapor-grown carbon fibers (VGCFs) basic properties and their battery applications [J].Carbon,2001,39:1287-1297
    [200] Abe H, Murai T, Zaghib K. Vapor-grown carbon fiber anode for cylindrical lithium ionrechargeable batteries [J]. Journal of Power Sources,1999,77:110-115
    [201] Nakajima T, Ueno A, Achiha T, Ohzawa Y, Endo M. Effect of surface fluorination andconductive additives on the electrochemical behavior of lithium titanate (Li4Ti5O12) forlithium ion battery [J]. Journal of Fluorine Chemistry,2009,130:810-815
    [202] Zhang, D,Haran, B S, Durairajan A,White R E, Podrazhanslry Y, Popov, B N,Studies on capacity fade of lithium-ion batteries [J]. Journal of Power Sources2000,91(2):122-129
    [203] Ramadass P,Haran B, White R, Popov B N, Capacity fade of Sony18650cells cycled atelevated temperatures Part II. Capacity fades analysis [J]. Journal of Power Sources,2002,112(2):614-620
    [204] Ramadass P, Haran, B, White R, Popov B N, Capacity fade of Sony18650cells cycled atelevated temperatures Part I. Cycling performance [J]. Journal of Power Sources,2002,112(2):606-613
    [205] Wu M S, Chiang P C, Lin J C, Electrochernical investigations on capacity fading ofadvanced lithium-ion batteries after storing at elevated temperature [J]. Journal of theElectrochemical Society,2005,152(6): A1041-A1046
    [206] Amatucci G C, Schmutz C N, Blyr A, Sigala C, Gozdz A S, Larcher D, Tarascon J M,Materials' effects on the elevated and room temperature performance of C/LiMn2O4Li-ion batteries [J]. Journal of Power Sources,1997,69(1-2):11-25
    [207] Araki K, Sato N, Chemical transformation of the electrode surface of lithium-ion batteryafter storing at high temperature [J]. Journal of Power Sources,2003,124(1):124-132
    [208] Quinlan F T, Vidu R, Predoana L, Zaharescu M, Gartrner M, Groza J, Stroeve P, Lithiumcobalt oxide (LiCoO2) nanocoatings by sol-gel methods [J]. Industry&EngineeringChemistry Research,2004,43:2468-2477
    [209] Kang S H, Abrahama D P, Yoonb W, Namc K W, Yang X Q, First-cycle irreversibility oflayered Li–Ni–Co–Mn oxide cathode in Li-ion batteries [J]. Electrochimica Acta,2008,54:684-689
    [210]王静,万新华,余仲宝,刘庆国. LiCoO2的热稳定性与循环性能[J].电源技术,2004,28(2):78-80
    [211] Li X, Wei Y J, Ehrenberg H, Du F, Wang C Z, Chen G, Characterizations on the structuraland electrochemical properties of LiNi1/3Mn1/3Co1/3O2prepared by a wet-chemicalprocess [J]. Solid State Ionics,2008,178:1969-1974
    [212] Belharouak I, Lu W, Vissers D, Amine K. Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2and Li(Ni1/3Co1/3Mn1/3)O2[J]. Electrochemistry Communications,2006,8:329-335
    [213] Venkateswara R C, Reddy L M A, Ishikawa Y, Ajayan P. LiNi1/3Co1/3Mn1/3O2/graphenecomposite as a promising cathode for Lithium-Ion batteries [J]. ACS Applied Materials&Interfaces,2011,3:2966-2972
    [214] Shaju K M, Subba R G V, Chowdari B V R. Performance of layeredLi(Ni1/3Co1/3Mn1/3)O2as cathode for Li-ion batteries [J]. Electrochimica Acta,2002,48:145-151
    [215] Shim J, Kostecki R, Richardson T, Song X, Striebel K A. Electrochemical analysis forcycle performance and capacity fading of a lithium-ion battery cycled at elevatedtemperature [J]. Journal of Power Sources,2002,112:222-230
    [216] Vidu R, Stroeve P. Improvement of the thermal stability of Li-Ion batteries by polymercoating of LiMn2O4[J]. Industry&Engineering Chemistry Research,2004,43,3314-3324
    [217] Amatucci G G, Tarascon J M, Klein L C. Cobalt dissolution in LiCoO2-basednon-aqueous rechargeable batteries [J]. Solid State lonics,1996,83:167-173
    [218] Tobishima S, Yamaki J, A consideration of lithium cell safety [J]. Journal of PowerSources,1999,81-82:882-886
    [219] Leroux F, Besse J P. Polymer interleaved layered double hydroxide: A new emergingclass of nanocomposites [J]. Chemistry of Materials,2001,13(10):3507-3515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700