矩形扩压叶栅中应用叶尖小翼的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空工业的迅猛发展,航空发动机向着高推重比、低耗油率、高效率和安全性方向飞速发展,而压气机作为航空发动机的核心部件,主要的发展方向是更高的压比,更高的效率及更大的级负荷。其中,压气机级负荷的提升将导致叶顶泄漏更加严重,叶片分离更加容易。诸多研究表明,叶顶泄漏流动所造成的能量损失在压气机总损失中占举足轻重的分量。削弱叶顶泄漏流动,对于改善压气机气动性能具有可观的效果,因此,有效地抑制压气机叶顶泄漏流动成为国内外专家学者关注的重要研究方向之一。受到飞机翼梢小翼的启发,在压气机叶片顶部加装叶尖小翼来改善叶栅气动性能是本论文的主要研究内容。
     本论文通过低速风洞吹风实验测量了不同间隙和不同冲角下原始叶型(即不带有叶尖小翼的叶片)、带有吸力面叶尖小翼的叶型、带有压力面叶尖小翼的叶型和带有组合小翼的叶型(即既带有吸力面叶尖小翼又带有压力面叶尖小翼的叶片)出口截面的气动参数和上端壁壁面静压分布,研究叶尖小翼的应用对于改善矩形扩压叶栅气动性能的影响及其机理。
     与原始叶型相比,带有吸力面叶尖小翼的叶型有效地削弱了叶顶泄漏涡的尺度和强度,从而降低了矩形扩压叶栅总的能量损失,有效地改善了叶栅流场气动性能。实验结果表明,在O°冲角、叶顶间隙为1.0%H(即叶顶间隙为1%叶片高度)工况下,带有吸力面叶尖小翼的叶型改善叶栅气动性能效果最为明显。而压力面叶尖小翼的应用增加了叶顶泄漏涡的强度,增大了叶栅的能量损失,恶化了叶栅流场气动性能。组合小翼受到吸力面侧小翼和压力面侧小翼的共同影响,对叶栅流场的气动性能影响不是十分明显。
     在不同冲角下,原始叶型的能量损失波动较为强烈,而带有吸力面叶尖小翼的叶型能量损失在不同冲角下变化比较平稳。吸力面叶尖小翼的应用一方面降低了叶栅的能量损失,提高了叶栅的效率;另一方面,使得叶栅变冲角特性变化更加平稳。实验研究发现,在较大负冲角下,压力面叶尖小翼和组合小翼的应用不但没有降低叶栅的能量损失,反而加剧了叶栅的压力面分离程度。
     本论文通过数值模拟方法对原始叶型和带有吸力面叶尖小翼的叶型在0°冲角、叶顶间隙为1.0%H下的旋涡结构做了详细的分析,建立了相应的三维旋涡结构,分析了叶栅流道内的叶顶泄漏涡、通道涡、集中脱落涡等主要旋涡结构的形成和发展规律,从旋涡结构演化的角度分析了叶尖小翼的应用对矩形扩压叶栅的作用机理。
With the rapid development of the aviation industry, the performance of aero-engine develop towards improving the thrust-weight ratio, reducing the specific fuel consumption, improving the efficiency and safety. And as one of the core component of an aircraft engine, compressor mainly calls for the higher total pressure ratio and efficiency and the greater level of load. Among them, ascending the load will add the leakage from blade tip and cause the separation easier. Numerous studies have shown that, the energy loss by blade tip leakage occupies a pivotal position in total loss. Reducing the blade tip leakage will improve the aerodynamic performance of the compressor; therefore, effectively restraining the compressor blade tip leakage flow becomes one of the important research directions for experts at home and abroad.
     Being inspired by the winglet of an aircraft, improving the cascade aerodynamic performance by using blade tip winglet in compressor blade is the main research contents of this paper.
     This paper, by measuring the blowback low speed wind tunnel experiments the pneumatic parameters of the original blade (i.e. blade without tip winglet), the blade with suction side tip winglet, the blade with pressure side tip winglet and the blade with a combination side tip winglet (that is, with both the suction side and the pressure side tip winglet) at the exist section of the blade passage which is under different clearance and different incidence angle. Meanwhile, the wall static pressure distribution is measured. The aim of this experiment is to study the influence on improving the pneumatic performance by application of blade tip winglet in the rectangular compressor cascade and its mechanism. Compared with the original blade, the blade with suction side tip winglet effectively weakens the scale and intensity of the vortex of the blade tip leakage, so that it reduces the total energy loss of the rectangular compressor cascade, and effectively improves the aerodynamic performance of the cascade. The experimental results show that in the zero incidence angle and the blade tip clearance for 1.0%H (that is, the blade tip clearance for 1% blade height) conditions, the blade with suction side tip winglet improves the aerodynamic performance obviously. And the blade with pressure side tip winglet increases the strength of the blade tip leakage vortex, and increases the energy losses of the cascade, so that it deteriorates the pneumatic performance of the cascade.Under the influence of the blade with section side tip winglet and pressure side tip winglet, the blade with combination tip winglet does not play an obviously part in aerodynamic influence.
     Under different incidence angles, the energy losses of original blade fluctuation relatively intense, and the energy losses of blade with suction side tip winglet change smoothly. The blade with suction side tip winglet on one hand reduces the energy losses of cascade, and improves the efficiency of the cascade. On the other hand, it makes blade attack Angle characteristics changing more smoothly. The experiment study found that under a large negative incidence angle, the blade with pressure side tip winglet and combination tip winglet not only reduce the energy losses of cascade, but sharpen the blade pressure surface separation degree.
     This paper, numerical simulates the vortex structure of the original blade and the blade with suction side tip winglet under 0°incidence angle, and the blade tip clearance for 1.0%H. And then, the three-dimensional vortex structure is establishes. Meanwhile, the development and the law of blade tip leakage vortex, passage vortex, and concentrated shed vortex are analyzed. From the perspective of the vortex structure evolution, this paper analyses the effect mechanism about blade with tip winglet to the rectangular compressor cascade.
引文
[1]陈懋章,“航空叶轮机的气动力学问题”,气动热力学发展战略研讨会专题报告汇编,PP1-7,1989年3月,北京.
    [2]Bogod, A.B.,et al," Direct and Inverted Calculation of 2D Axisymmetric and 3D Flows in Axial Compressor blade Rows", TsAGI, Moskow, Russia, Nov.,1992.
    [3]邓向阳,压气机叶顶问隙流的数值模拟研究,2006,中国科学院研究生院(工程热物理研究所).
    [4]杨策、马朝臣、王延生、老大中,透平机械叶尖间隙流场研究的进展。力学进展,2001.9.25,第31卷,第1期,P70-71.
    [5]Booth T.C. Importance of Tip Clearance Flows in Turbine Design, Tip clearance Effects in Axial Turbomachines. VKI Lectures Series 1985-05.
    [6]Bindon J. P. The Measurement and Formation of Tip Clearance Loss. Journal of Turbomachinery, Vol.111, pp.257-263,1989.
    [7]邵卫卫,风扇/轴流压气机最大负荷设计技术探索。中国科学院工程热物理研究所[博士学位论文],2008.
    [8]Denion, J. D., "Loss Mechanisms in Turbomaehines, ASME J. Turbomaehinery, Vol.115(4), PP.621—656,1993.
    [9]Wisler, D. C., "Loss Reduction in Axial—Flow Compressor Through low Speed Model Testing, ASME J. Eng. Gas Turbines and Power,1985, vol.107, PP.354-363.
    [10]Smith, L. H., Jr., "The Effete of TIP Clearance on the Peak Pressure Rise of Axial-flow Fans and Compressor, ASME Symposium mental,1958, PP.149-152.
    [11]Cumpsty, N., Compressor Aerodynamic, Longman Scientific Technical, Inc. Published in U.S. with John Wiley Sons, Inc., New York,1989.
    [12]Dring, R. P., Johslyn, H. D. and Hardin, L., An investigation of Axial Compressor Rotor Aerodynamics, ASME Journal of Engineering for Power,104 (1):84-96,1982.
    [13]Rain, D. A., Tip Clearance Flow in Axial Flow Compressor and Pumps,1954, California Institute of Technology, Hydrodynamics and Mechanical Engineering Laboratories Report No.5.
    [14]Chen, G. T., Greitzer, E. M., Tan, C. S., Marble, F. E., Similarity Analysis of Compressor Tip Clearance Flow Structure. ASME Journal of Tubromachinery 1991,113(2):260-271.
    [15]Denton, J. D., Loss Mechanism in Turbomachines, Journal of Turbomachinery, Vol.115, PP.621-656,1993.
    [16]Storer, J.A., Cumpsty, N. A., "Tip Leakage Flow in Axial Compressors," ASME Journal of Turbomachinery,1991,113(2),99.252-259.
    [17]Kang, S., Hirsch., C., "Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance:Part Ⅰ-Velocity and Pressure Fields", ASME Journal of Turbomachinery,1993,115(3):435-443.
    [18]Kang, S., Hirsch., C., "Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance:Part Ⅱ-The Tip Leakage Vortex", ASME Journal of Turbomachinery,1993,115(3):444-452.
    [19]Kang, S., Hirsch., C., "Tip Leakage Flow in Linear Compressor Cascade", ASME Journal of Turbomachinery,1994,116(4):657-664.
    [20]马宏伟,蒋浩康,压气机转子通道内尖区三维平均流场.航空动力学报,1997(2).
    [21]于宏军等,设计状态下压气机转子叶尖泄漏涡流动研究.航空学报,2004(1):第1-8页.
    [22]竺晓程、杜朝辉,带叶顶间隙轴流转子三维流动的数值模拟.上海交通大学学报,2003(9):第1480-1483页.
    [23]卢新根,轴流压气机转子内流数值模拟及叶顶间隙泄漏分析,2004,西北工业大学.第576-580页.
    [24]蒋永松,王咏梅、陈葆实,叶尖间隙对高负荷风扇转子性能影响的数值研究.航空发动机,2006(4):第6-9页.
    [25]高学林,袁新,多级轴流压气机间隙流动数值模拟.工程热物理学报,2006(3):第395-398页.
    [26]王军等,低压轴流风机叶顶间隙对叶尖涡及外部性能的影响研究.流体机械,2011(9):第26-29+5页.
    [27]李军等,轴流透平机械通流部分泄漏流动及控制技术研究进展.热力透平,2010(2):第83-88+112页.
    [28]耿少娟等,喷气对低速轴流压气机转子叶顶区域流动的影响.工程热物理学报,2007(3):第395-398页.
    [29]Behr T. (2007), Control of Rotor Tip Leakage and Secondary Flow by Casing Air Injection in Unshrouded Axial Turbines[D]. PhD Thesis, Swiss Federal Institute of Technology Zurich.
    [30]卢家玲,楚武利、卢新根,单级轴流压气机周向槽与梯状间隙结构的对比.热能动力工程,2007(4):第357-361+464页.
    [31]Whitcomb R T. A Design Approach and Selected Wind-Tunnel Results at high Subsonic Speeds for Wing-Tip Mounted winglets. NASA TN D-8260,1976.
    [32]Van Holten. Windmill with Diffuser Effect Induced by Small Tip Vanes. Camdridge,U.K:Proc. Int. System.Wind Energy Syst.1976.
    [33]Van Bussel, G. J. W. Status Rep. on Tip vane Research. EWEA Conference, Rome, 1986, pp.691-695.
    [34]Van Bussel, G.J.W.A Momentum Theory for Winglets on Horizontal Axis Wind Turbine Rotor and some Comparison with Experiments. Proceedings of 4th IEA Symposium on the Aerodynamics of Wind Turbines,Rome, Italy,1990.
    [35]Van Bussel, G. J. W. Use of The Asymptotic Acceleration Potential Method for Horizontal Axis Wind Turbine Rotor Aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics. May1992. v39 n1-3:pp.161-172,0167-6105.
    [36]Gyatt,G.W, and Lissaman,P.B.S.Development and Testing of Tip Devices for Horizontal Axis Wind Turbines. Aero Environment Inc. DOE/NASA/0341-1,NASA CR-174991, AV-FR 85/802.
    [37]Shimizu Y., Yoshikawa T, Matsumura, S. Power Augmentation Effects of Horizontal Axis Wind Turbine by Tip Vane, rans of JSME.56-522,B1990:pp.495-507.51.
    [38]Shimizu, Y., Yoshikawa, T., and Mastumura, S.. Power Augmentation Effects of a Horizontal Axis Wind Turbine With a Tip Vane-Partl:Turbine Performance and Tip Vane Configuration, ASME J. Fluids Eng.1994, Vol.116,. pp.287-292.
    [39]Shimizu.Y., Imamura. H., Meada.T.. Power Augmentation of a Horizontal Axis Wind Turbine Using a Mie Type Tip Vane:Velocity Distribution Around the Tip of a HAWT Blade With and Without a Mie Type Tip Vane. ASME Journal of Solar Energy Engineering.1995. Vol.117(11) pp.297-303.
    [40]Y. Shimizu, T. Maeda, Y. Kamada, H. Seto. Effects of Type Tip Vane on Pressure Distribution of Rotor Blade and Power Augmentation of Horizontal Axis Wind Turbine, Wind Energy. JWEA.2000, Vol.24 (1):pp.71-76.
    [41]Y. Shimizu, T. Maeda, Y. Kamada, N. Duc Loc. The Experimental Research on 30KW/KW Wind-Diesel Systym, Wind Energy. JWEA.2001, Vol.25(3):pp.80-84.
    [42]Shimizu, Y., Ismaili, E. Kamada,Y., Maeda, T.,2003, Rotor Configuration Effects on Performance of a HAWT With Tip-Mounted Mie-Type Vanes. ASME J.Sol. Energy Eng., 125, pp.441-447.
    [43]依凤鸣,带附加导叶轴流风机的实验研究.流体工程,1990(7):第2-4+64页.
    [44]吕文灿,旋转导叶风机试验研究.流体工程,1990(8):第10-13+65页.
    [45]王军.端导翼在小型降温风扇上的运用,中国工程热物理年会学术会议论文,2008.10.
    [46]Patel.K. V., Research on a High Work Axial Gas Generator Turbine, SAE800618,1980.
    [47]Yaras, M. I. and S jolander, S. A., Measurements of the Effects of Winglets on Tip-Leakage Losses in a Linear Turbine Cascade, ISABE 91-7011, pp.127-135.
    [48]Harvey,N.W. and Ramsden, K., A Computation Study of a Noval Turbine Rotor Partial Shroud, ASME Paper,2000-GT-668.
    [49]Dey, D. and Camci, C., Tip Desensitization of an Axial Turbine Rotor Using Tip Platform Extensions,VKI Lecture Series2004-02.
    [50]Shavalikul, A. and Camci, C., A Comparative Analysis of Pressure Side Exensions for Tip Leakage in Axial Turbines,ASME Paper,GT2008-50782.
    [51]王生武,石秀华,涡轮叶尖压力边小翼肋条对泄漏流场的数值模拟.计算机测量与控制,2009(8):第1527-1530+1534页.
    [52]毛佳妮、曹紫胤,抑制叶顶间隙泄漏的叶轮机械叶片的流场模拟.热能动力工程,2009(2):第154-157+262页.
    [53]韩少冰.压气机平面叶栅加装叶尖小翼的数值研究.大连海事大学硕士论文,2009年6月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700