方钴矿热电材料的疲劳行为的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,能源短缺问题日益严重,开发新型环保能源替代材料已迫在眉睫。热电材料作为一种能将热能和电能相互转换的功能材料,具有广阔的应用前景。其中,方钴矿Skutterudites化合物是一种具有开放笼状结构的窄带半导体材料,它具有高的Seebeck系数以及较高的电导率,通过各种优化手段有望成为一种非常具有前景的高效中温热电转换材料。在热电器件服役过程中,材料一直受到循环热载荷和循环应力载荷的作用,这些疲劳载荷会降低热电器件的可靠度和减少热电器件的的使用寿命。研究的方钴矿材料疲劳特性,对方钴矿热电器件可靠性评估和寿命预测具有重要的工程应用意义。
     本文以方钴矿热电材料为研究对象,采用熔融-扩散反应法合成粉末、放电等离子体快速烧结法制备纯方钻矿块体材料和块体Ce0.5Fe1.5CO2.5Sb2,经过切割,磨削和抛光后制成棱柱体块体试样。试样分组进行试验,主要有三大类试验,基本力学性能试验、低周疲劳试验和强度衰减试验,主要实验仪器为Instron5882电子万能材料试验机和MTS810陶瓷试验系统。本文的主要试验和理论研究内容包括以下几个方面。
     首先,进行了棱柱体纯方钴矿的基本力学性能实验,分别有压缩力学性能试验,弯曲力学性能试验。然后进行了方钴矿的低周疲劳试验,低周疲劳试验在MTS810陶瓷试验系统上进行,采用应力控制,循环应力应力比为R=0.1,加载频率为2Hz。试验环境为室温(25℃)、空气介质。单轴静载压缩试验测定出的压缩强度作为低周疲劳试验的选择依据。在不同的应力水平下进行材料疲劳寿命测试;对试样试验前的微观表面进行SEM表征。通过SEM观察和理论分析阐述试样表面裂纹形成机制和过程。并对试件疲劳断口进行SEM观察。疲劳试验结果表明:方钴矿材料具有良好的压缩疲劳性能,由于其为多晶脆性材料,疲劳破坏以脆断为主,疲劳破坏过程实质上就是裂纹扩展过程。
     本文中假定在不同的应力水平下,试样的低周疲劳寿命为独立的随机分布变量,且分别满足对数正态分。方钴矿块体材料和块体Ce0.5Fe1.5CO2.5Sb2材料的S-N曲线采用两参数线性方程来描述,通过对试验数据的统计处理,获得了各种可靠度下S-N曲线方程的系数,最后得到了P-S-N的表达式。然后进行了下一项疲劳试验,研究了疲劳载荷应力比、加载频率和加载波形(三角波、方波和正弦波)对方钴矿疲劳特性的影响。
     最后进行了棱柱体纯方钴矿试样的疲劳剩余压缩强度试验,试验结果表明,先对试样施加一定循环次数的疲劳载荷,再通过单轴静载压缩试验测定出剩余压缩强度的方法,能够较好的揭示方钴矿热电材料疲劳剩余强度的衰减规律,根据试验结果和可靠性分析方法,绘出了P-P-N曲线(P为可靠度,R为剩余强度,N为疲劳载荷的循环次数)。P-R-N曲线能在表示出剩余强度衰减的同时给出了相应的可靠度。
Nowadays, development of new environmentally-friendly energy alternative materials has been urgent due to the increasingly serious energy crisis. Thermoelectric materials are semiconducting functional materials with wide application prospect, which can interconvert heat and electricity directly. Among them, skutterudites compounds is one of the narrow bandgap semiconductor materials with open structure, it has high Seebeck coefficient and high electrical conductivity and can became be a promising thermoelectric material used in medium temperature by some special optimization method. Under service conditions, thermoelectric devices often suffer from the cyclic thermal loading and cyclic thermal stress loading. All of these loads not only cause damage to the devices, but also reduce its service life. Better understanding of the fatigue behavior of skutterudits compounds is essential for reliability estimation and service life prediction of thermoelectric devices.
     In this work, Ce0.5Fe1.5Co2.5Sb2compounds CoSb3are taken as the research object, they were prepared by using melting method combined with the spark plasma sintering technique. After cutting, grinding and polishing, the specimens were obtained. All tests are divided into three types. The first tests are static compression tests and three-poind-bending tests. The second type tests are stress-controlled low-cycle fatigue tests. The last tests are residual strength degradation tests. An MTS810servohydraulic machine and Instron5882machie were used for the test.
     First the static compression tests and three-point-bending tests were condcted. The purpose of these tests was to obtain the compressive strength, flexural strength and Young's modules. Compression-compression low cycle fatigue tests were then conducted. A sinusoidal waceform of constant amplitude with a frequency of2Hz and stress ratio R of0.1was employed. Tests were carried out at room temperature and in air. The maximum stress of the cyclic loading was chosed to be60%-90%of the static compressive strength. The surfaces and fracture surfaces of the specimens were observed by scanning electron microscopy. Based on surface crack observation and fatigue fracture surface analyses, fatigue cracks initiated from pre-existing defects in the specimen surface due to stress concentration. The fatigue fracture surface was basically characterized by intergranular fracture, which suggests brittle characteristics of the materials. Besides, thegrain size remains basically unchanged afterfatigue loading.
     All fatigue life tests date exhibit significant scatter, so in this study, the static strength, fatigue life are asuumed to be presented by two-parameter normal distribution. The S-N curve of CoSb3and Ceo.5Fe1.5Co2.5Sb2were described by two parameters linear equation. Based on statictical data processing, the coefficents of S-N equations were obtained under different probability. Thus P-S-N equation the materials are obtained. Further, fatigue tests were employed to analyze the influence the stress ration, the loading frequency and loading waveform (triangular wave, square wave and sine waveform) on the fatigue life of CoSb3. The static fatigue tests were also carried out. The results showed, under the same conditions, the fatigue lifes of static fatigue is bigger than those of cyclic fatigue.
     Lastly, residual strength degradation tests of CoSb3were employed. The tests results can describe the degradation behaviour and can analyze the effect of the cyclic loading on the residual strength. Based on the test results and probabilistic analysis method, the P-R-N curves of CoSb3were obtained. The curves can predict the residual strength at a given number of fatigues loading cycles with given probability. The residual fatigue life also can be predicted based on P-R-N curves and the linear accumulative damage rule.
引文
[1]Rechenberg H. R. Comment On "Mossbauer Effect Study of Filled Antimonide Skutterudites"[J]. Phys. Rev. B,2000,62(10):6827-6828.
    [2]余柏林,唐新峰,祁琼,等.CoSb3:纳米热电材料的制备及热传输特性[J].物理学报,2004(09):3130-3135.
    [3]Sales B. C. Thermoelectric Materials-Smaller is Cooler[J]. Science,2002,295(5558): 1248-1249.
    [4]Sales B. C, Mandrus.D and Willianms. R. K, Filled skutterudite anitmoides:A new class of thermoelectric materials, Science,1996,272(5266):1325-1328
    [5]Disalvo. F. J, Theromoelectric cooling and power generation[J], Science,1999,285 (5428):703-706
    [6]Dresselhaus.M.S, Chen.G, Tang. M.Y, Lee.H, Wang.D.Z, Ren.Z.F, Fleurial.J.P and Gogna.P, New direcitons for low-dimensional thermoelctric materials[J], Adv.Mater, 2007,19(8):1043-1053
    [4]宋新莉,杨君友,张同俊,等.填充方钴矿类热电材料的研究进展[J].材料导报,2004(06):35-38.
    [5]席丽丽,杨炯,史迅,等.填充方钻矿热电材料:从单填到多填[J].中国科学:物理学力学天文学,2011(06):706-728.
    [6]FIoffe A. Thermoelements and Thermoelectric Cooling[J]. UK:Infosearch,1956.
    [7]Tolle Hermann. Chemismus Und Genetische Stellung Des Skutterudites in Der Quarzig-Arsenidischen Abfolge Der Bi-Co-Ni-Formation Des Schneeberger Lagerstattenreviers (Sachsisches Erzgobirge)[M]. Leipzig:Deutscher Verlag fur Grundstoffindustrie,1964:103-108.
    [8]ikens H. and Ure. Thermoelectricity:Science and Engineering[J]. Intersscience Publishers, New York-London,1961:105-110.
    [9]Nordstrom L. and Singh D. J. Electronic Structure of Ce-Filled Skutterudites[J]. Phys Rev B Condens Matter,1996,53(3):1103-1108.
    [10]Feldman J. L. and Singh D. J. Lattice Dynamics of Skutterudites:First-Principles and Model Calculations for CoSb3[J]. Phys. Rev. B Condens Matter,1996,53(10): 6273-6282.
    [11]Venkatasubramanian.R, Phonon blocking electron transmitting superlattice strectures as advanced thin film thermoelectric materis[J], in Recent Trend in Thermoelectric Materilas Tesearch 3.2001:172-:201
    [12]Harman.T.C, Walsh.M.P, Laforge.B.E, and Turner.G.W, Nanostructured thermoelectric materials[J], J.Electron. Mat.,2005,34(5):L19-L22
    [13]Caillat.T, Fleurial.J.P and Borshchevsky.A, Preparation and thermoelectric properties of semiconducting Zn4Sb3[J], J.Phys.Chem.Solids,1997,58(7):1119-1125
    [14]Kim.S.W, Kimura.Y and Mishima.Y, High temperature thermoelectric properties of TiNiSn-based Half-Heusler compounds, Intermetallics,2007,15(3):349-356
    [15]Bhattacharya.S, Pope.A.L, Littleton.R.T, Tritt.M.T, Ponnambalam.V, Xia.Y and Poon.S.J, effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1-xSbx[J], Appl.Phys.Lett,2000,77(16):2476-2478
    [11]Chen L. D., Tang X. F. and Kawahara T., et al. Multi-Filling Approach for the Improvement of Thermoelectric Properties of Skutterudites[J]. Twentieth International Conference on Thermoelectrics, Proceedings,2001:57-60.
    [12]FIoffe A. Thermoelements and Thermoelectric Cooling[J]. UK:Infosearch,1956.
    [13]Vining C. The B Factor in Multilayer Thermionic Refrigeration [J]. J. Appl. Phys.,1999, 86(12):6852-6854.
    [14]Chasmar. P. and Stratton R. The Thermoelectric Figure of Merit and its Relation to Thermoelectric Generators[J]. Journal of Electronics and Control,1959,7(1):52-72.
    [15]Kartal Zeki. Ft-Ir Spectroscopic Study On some Hofmann-Type Clathrates: M(p-Benzoquinone)Ni(CN) 4·2G (M=Mn, Co, Ni Or Hg; G=Aniline)[J]. J. Mol. Struct.,2009,938(1-3):70-75.
    [16]Nagira.T, Ito.M and Katasuyama.S, Thermoelectric properties of NaxCo2O4 prepared by the polymerized complex method and hot-pressing[J], Mater.Trans.,2003,44(1), 155-160
    [17]Itoh.T, Shan.J and Kitagawa.K, Thermoelectric properties of β-Zn4Sb3 synthesized by mechanical alloying and lulse discharge sintering[J], J.Propul.Power,2008, 24(2):353-358
    [18]Bobev.S and Sevov.S.C, Clathrate III of group 14 exists after all[J], J.Am.Chen.Soc.,2001,123(14),3389-3390.
    [19]Biswas and Myles.C.W, Electronic and vibrational properties of framework-substrituted type-II silicon Clatherates, Phys.Rev.B,2007,75(24):205-245
    [20]Anon. Skittery Skutterudites[J]. Nature Materials,2003,2(5):290-295.
    [21]Leithe-Jasper A., Schnelle W. and Rosner H., et al. Ferromagnetic Ordering in Alkali-Metal Iron Antimonides:NaFe4Sb12 and KFe4Sb12[J].Phys. Rev. Lett.,2003,91(3): 037208-037212.
    [22]Zhang W., Shi X. and Mei Z. G., et al. Predication of an Ultrahigh Filling Fraction for K in CoSb3[J]. Appl. Phys. Lett.,2006,89(11):112105-112108.
    [23]Mei Z. G., Yang J. and Pei Y. Z., et al. Alkali-Metal-Filled CoSb3 Skutterudites as Thermoelectric Materials:Theoretical Study[J]. Phys. Rev. B,2008,77(4):45202-45210.
    [24]Pei Y. Z., Chen L. D. and Zhang W., et al. Synthesis and Thermoelectric Properties of KyCo4Sb12[J]. Appl. Phys. Lett.,2006,89:221107-221110.
    [25]Lamberton G. A., Tedstrom R. H. and Tritt T. M., et al. Thermoelectric Properties of Eu-Doped CoSb3[J]. Thermoelectric Materials 2001-Research and Applications,2001, 691:31-36.
    [26]Shi X., Zhang W. and Chen L., et al. Study On the Filling Fraction Limit of Impurities in CoSb3[J]. Materials and Technologies for Direct Thermal-to-Electric Energy Conversion, 2006,886:355-368.
    [27]Bauer E. D., Slebarski A. and Freeman E. J. Strongly Correlated Electron Behavior in ROs4Sb12 (R=Ce, Pr) Filled Skutterudites [J]. Physica B,2002,312-313:230-231.
    [28]Lars Nordstrom David J. Singh. Electronic Structure of Ce-Filled Skutterudites[J]. Phys. Rev. B,1996,53(3):1103-1108.
    [29]Pei Y. Z., Bai S. Q. and Zhao X. Y., et al. Thermoelectric Properties of EuyCo4Sb,2 Filled Skutterudites[J]. Solid State Sci.,2008,10(10):1422-1428.
    [30]He T., Chen J. Z. and Rosenfeld H. D., et al. Thermoelectric Properties of Indium-Filled Skutterudites[J]. Chem. Mater.,2006,18(3):759-762.
    [31]Sales B. C., Chakoumakos B. C. and Mandrus D. Thermoelectric Properties of Thallium-Filled Skutterudites[J]. Phys. Rev. B,2000,61(4):2475-2481.
    [32]Mallik R. C., Jung J. Y. and Ur S. C., et al. Thermoelectric Properties of InzCo4Sb12 Skutterudites[J]. Metals and Materials International,2008,14(2):223-228.
    [33]Kim I. H., Lee J. I. and Ur S. C., et al. Annealing Effect On the Thermoelectric Properties of Undoped CoSb3[J]. Heat Treatment of Materials,2006,118:565-569.
    [34]B. C. Sales D. Mandrus B. C. Filled Skutterudite Antimonides:Electron Crystals and Phonon Glasses[J]. Phys. Rev. B,1997,56(23):15081-15089.
    [54]Long G. J., Hautot D. and Grandjean F., et al. Reply to "Comment On 'Mossbauer Effect Study of Filled Antimonide Skutterudites"[J]. Phys. Rev. B,2000,62(10):6829-6831.
    [35]Stokes K. L., Ehrlich A. C. and Nolas G. S. Thermal Conductivity of Fe-Doped CoSb3 Skutterudites[J]. Thermoelectric Materials 1998-the Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications,1999,545:339-344.
    [36]G. S. Nolas J. L. Cohn G. Effect of Partial Void Filling On the Lattice Thermal Conductivity of Skutterudites[J]. Phys. Rev. B,1998,58(1):164-170.
    [37]D. J. Singh I. I. Mazin. Calculated Thermoelectric Properties of La-Filled Skutterudites[J]. Phys. Rev. B,1997,56(4):2556-2571.
    [38]Ghumaty S, Bass.J.C, Elsener N.B. Quantun well the thermoelectric devices and application. Proceedings of the 22th international conference on thermoelectrics[J]. La Grande Motte. France,2003,563-566
    [39]http://www.termo-gen.com/[M]
    [40]http://www.komatsu.com/[M]
    [41]http://hi-z.com/[M]
    [42]Sei-ichi Tanuma. Thermoelectricity, Thinking of the Past and Tomorrow[C].17th IEEE International Conference on Thermoelectrics,1998:33-35
    [43]Goledsmind.H.J and Nolas.G.S. A review of new thermoelectric materials[C].20th IEEE International conference on Thermoelectrics,2001:1-5
    [44]Kajikawa.T. Present state of R&D on thermoelectric technology in Japan[C].20th IEEE International conference on Thermoelctrcis,2001:49-56
    [45]徐德胜主编.半导体制冷与应用技术[M].上海:上海交通大学出版社,1999,18-22
    [46]何元金,陈宏,陈默轩.温差发电-一种新型绿色的能源技术[J].工程物理,2000,10(2):36-41
    [47]Kaibe.H.T, Tauscher.L, et al., Development of Thermoelectric Generating Cascade Modules Usinsilicide and Bi-Tie[C],2004
    [48]Mohamed S. EI-Genk, Hamed H.Saber, Jeff Sakamoto, Thierrry Caillat, Proformace Tests of Coated and Unocated Sedgemnted skutterudites/BiTe thermoelectric unicouples[C], Australia:23rd International Conference on Thermoelctrcis,2004.
    [49]El-Genk, M. S., H. H. Saber, T. Caillat, and J. Sakamoto, Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples[J]. J. Energy Conversion and Management.47,174(2006)
    [50]Li, Y; Yang, XQ; Zhai, PC, et al. Thermal Stress Simulation and Optimum Design of CoSb3/Bi2Te3 Thermoelectric Unicouples with Graded Interlayers[J]. Multiscale and Fuctionally Graded Materials.973(2008),297-302
    [51]Pengfei Wen, Peng Li, Qingjie Zhang, Fajun Yi, Lisheng Liu, and Pengcheng Zhai, Effect of Cyclic Thermal Loading on the Microstructure and Thermoelectric Properties of CoSb3 [J]. J ELECTRON MATER.38,1200(2009)
    [52]S.Suresh,王中光等译.材料的疲劳[M].国防工业出版社,1999,1-4.
    [52]徐灏.疲劳强度设计[M].北京:机械工业出版社,1981.
    [53]陈传尧.疲劳与断裂[M].华中科技大学出版社,2001.
    [54]邓增杰,周敬恩.工程材料的断裂与疲劳[M].北京:机械工业出版社,1995,2-10.
    [55]刘世英.内燃机活塞机械疲劳损伤与可靠性研究[D].博士毕业论文,2007.
    [56]刘禹门.金属的疲劳[M],陕西科学技术出版社,1986.
    [57]Meng.F.M, Zhang.Y.Y, Hu.Y.Z. Thermo-elasto-hydrodynamic Lubrication Analysis of Piston Skirt Considering Oil Film Inertia effect[J]. Tribology International. 2006(12):18-27
    [58]Walter Bryzik, Melvin E. Woods, Ernest Schwarz. High Temperature Engineering Component Exploratory Desigh Development[C]. SAE paper 890296,1989.
    [59]Woods.M.E, Ernest Schwarz, Walter Brazik. Advances in High Temperature Components for the Adiabatic Engine[C]. SAE Paper 910457,1991.
    [60]Keith.D.V, Rifat K. Acceleration of Piston Durability Testing in Natural Gas Engine [C]. SAE Paper 930275,1993.
    [61]Paris,P.C.,Edrgna,F.A Critilcal Analysis of Crack Propagation Laws [L].Journal of Basic Engineering.1963,85,528—534.
    [62]Miner,M.A.Cumulative Dmagae in Fatigue [J] Journal of Applied Mechanics.1945, 12,159-164.
    [63]Tait.N.s. The use of porbbailiy in engneienrig desing a hiostrical suvrey[J]. Relibailiy Engineering and System Saefty.1993,40(2):119-132
    [64]Weibull W. A Statistical theoy of te Strength of materials.Stockholm [C]. Royal Swedish Aedaemy of Engneeing Seiences,1939
    [65]Goto.M. Corrsion fatiuge bhevaior of a heat-treated carbon seteel and its statical characteristics [J]. Engnieerig Facrutre Meehnaies.1992,42(6):893-909
    [66]Goot M. Statistical investigation of the effct of laboratory air on the Fatiuge behaviour of a carbon steel [M]. Fatigue anf Fracturte of Engineering Materials and Structures.1998, 21(6):705-715
    [67]Wirsehing.P.H, Tomg.T.Y, Martin.W.S. Advnaced fatigue relibailiyt Analysis. International Jounal of Fatigue.1991,13(5):389-394
    [68]Wirsehing.P.H, Nugyen.H.P. Fatigue reliability a review of recent Advnaces. International Journal of Materials and Product Teehnology.200116(4):285-294
    [69]Baldwin.J.D, Thacker.J.G.Strain-based fatigue relibailiy analysis Mehtod. ASME Journal of Mechanical Design.1995,117(ZA):229-234
    [70]Topper.T.H, Wetzel R.M, Momrw.J. Neuber rule applied to fatigue of notched specimens. Jomual o Materials.1969,4(1):200-209
    [71]Bargmnna.H, Rustenberg.I, Devlukia.J. Reliability of meta components in fatigue a simple algorithm for the exact solution. Fatigue and Fracture Engineering Materials and Structure.1994,17(12):1445-1457
    [72]冯振宇,诸德培.可靠性试验中最小子样容量的确定.机械强度.1999,21(3)186一188
    [73]方钦志,赵少汁.韩素兰.几种有效的pSN曲线的数据处理方法.机械强度.1999,21(1):63-66
    [74]丁克勤,傅惠民,柳春图.表面疲劳裂纹扩展性能曲线测试的小样本方法.实验力学.2000,15(1):22毛9
    [75]熊峻江,刘文班,高镇同.疲劳裂纹扩展速率实验数据的可靠性分析模型.强度与环境.1997,(4):6—10
    [76]Zhao.Y.X. On preventice maintenance policy of a critical reliability level for system subject to degradation. Reliability Engineering and System Safety[J].2003,79(3):301-308
    [77]赵永翔.应变疲劳可靠性分析的现状及展望.机械工程学报.2001,37(11):1-6
    [78]Coffin L.F. A study of the effects of cyclic thermal stresses on a ductile mental. Transactions of the Ameriean Sociey of Mechanical Engineers.1954;76:931-950
    [79]Manson SS. Behaviour of materials undere condition of thermal stress NACA, TN,2933, 1954.
    [80]D. M. Rowe and V. S. Shukla, The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy. J. Appl. Phys.,1981,52:7421
    [81]Miura, Atom insertion into the CoSb3 skutterudite host lattice under high pressure. Jounal of alloys and compounds.282(19990,79-83
    [82]唐新峰,陈立冬,后藤孝,平井敏熊,袁润章,Skutterudite化合物FexCo4-xSb12的固相反应合成及热电特性.物理学报,Vol.49,N0.6,2000(6):1120-1123
    [83]杨红川,机械合金化制备高性能ThMn12型稀土永磁材料研究..北京工业大学博士论文,2001,6
    [84]李汶霞,鲁燕萍等,等离子烧结与等离子活化烧结.真空电子技术,1998(1):17-23
    [85]刘科高MA-SPS制备CoSb3和RexCo4Sbl2的热电性能及其机理研究.北京工业大学工学博士学位论文,2004.4.
    [86]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [87]金宗哲,包亦望.脆性材料力学性能评价与设计.北京:中国铁道出版社,1996.
    [88]来亭荣,施剑林,朱国强.脆性材料强度评价.现代技术陶瓷,1998,4.
    [89]A.G. Evans and E.R. Fuller, Crack propagation in ceramic materials under cyclic loading conditions, Metall. Trans.,5 (1974):27-33.
    [90]詹国栋,张以增,周洋.陶瓷与陶瓷基复合材料的疲劳行为研究,力学进展,24(3),1994:399-408
    [91]E.R. Fuller, B.R. Lawn and R.F.Cook, Theory of fatigue for brittle flaws originating from residual stress concentrations, J. Am. Ceram. Soc.,66 (1983):314-321.
    [921 S.R. Choi, J.E. Ritter and K. Jakus, Failure of glass with subthreshold flaws, J. Am.Ceram. Soc.,73 (1990) 268-274.
    [93]C.-K.J. Lin and D.F. Socie, Static and cyclic fatigue of alumina at high temperatures, J. Am. Ceram. Soc.,74(1991) 1511-1518.
    [94]S. Lathabai, Y.-W. Mai and B.R. Lawn, Cyclic fatigue behavior of an alumina ceramic with crack-resistance characteristics, J. Am. Ceram. Soc.,72(1989) 1760-1763.
    [95]S. Horibe and R. Hirahara, Cyclic fatigue of ceramic materials:influence of crack path and fatigue mechanisms,,4cta Metall. Mater.,39 (1991) 1309-1317.
    [96]R.H.Dauskardt, R.R.James, J.R.Porter and R.O. Ritchie, Cyclic fatigue-crack growth in SiC whisker-reinforced alumina ceramic composite:long and smallcrack behavior, J. Am. Ceram. Soc.,75 (1992) 759-771.
    [97]J.E. Riner, P.B. Oates, E.R. Fuller and S.M. Wiederhorn, Proof testing of ceramics, Part 1 Experiment, J. Mater. Sci.,5 (1980) 2275-2281.
    [98]B.K.Sarkar. Fatigue of brittle materials-a critical appraisal. Bull.Mater.Sci.18(6),755 (1995).
    [99]P. Ostojic. Stress enhanced environmental corrosion and lifetime prediction modeling in silica optical fibers. J Mater Sci.30,3011 (1995).
    [100]Forsyth PJE. A two-stage process of fatigue crack growth. Proceeding of crack propagation symposium, Cranfield, UK; 1961. p.76-94.
    [101]Tomkins B. Fatigue crack propagation—an analysis. Philos Mag 1968;18 p.1041-66.
    [102]Y. Murakami, M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength INT J FATIGUE.,16(3),1994:163-182
    [103]Y. MURAKAMI., Small Defects and Inhomogeneities in FatigueStrength:Experiments, Models and Statistical ImplicationsExtremes.2,1999:123-137
    [104]L. Ewart, S. Suresh, Dynamic Fatigue Crack Growth in Polycrystalline Alumina under Cyclic Compression J MATER SCI LETT.5(8),1986:774-778
    [105]Sung Eun Park, Bong Seok Hahn, Hong Lim Lees, Static and Cyclic Fatigue Behaviour in Alumina Ceramics J MATER SCI LETT.14(23),1995:1688-1690
    [106 Luo.J and Bowen.P., A Probabilistic Methodology for Fatigue Life Prediction. Acta Materialia.51(12),2003:3537-3550
    [107]邬华芝,高德平,郭海丁.概率疲劳破坏寿命特性研究综述.湖北工学院学报.2002,173:18-22.
    [108]董月香,高增梁.疲劳寿命预测方法综述,大型铸锻件,2006,39-40.
    [109]Broutman LJ, Sahu S. A New Theory to Predict Cumulative Fatigue Damage in Fberglass Reinforced Plastics. Composite Materials:Testing and Design (2nd Conference). ASTM STP,497,1972. p.170-88.
    [110]Yang JN, Liu MD. Residual Strength Degradation Model and Theory of Periodic Proof Tests for Graphite/epoxy Laminates. J Compos Mat 1977;11:176-203.
    [111]Yang JN. Reliability Prediction for Composites under Periodic Proof tests in Service. ASTM STP,617,1977. p.272-95.
    [112]Yang JN. Fatigue and Residual Strength Degradation for Graphite/epoxy Composites under Tension-Compression Cyclic Loading. J Compos Mat 1978; 12:19-39.
    [113]Yang JN, Jones DL. Statistical Fatigue of Graphite/epoxy Angle Plylaminates in Shear. J Compos Mat 1978;12:371-89.
    [114]Yang JN, Sun CT. Proof Test and Fatigue of Unnotched Composite Laminates. J Compos Mat 1980; 14:168-76.
    [115]Yang JN, Jones DL. Effect of Load Sequence on the Statistical Fatigue of Composites. AIAAJ 1980;18(12):1525-31.
    [116]Yang JN, Jones DL. Statistical Fatigue of Unnotched Composite Laminates. In:Advances in Composite Materials, ICCM-Ⅲ 1980,1,.472-83.
    [117]Yang JN, Jones DL. Load Sequence Effects on the Fatigue of Unnotched Composite Laminates. ASTM STP,723,1981. p.213-32.
    [118]Yang JN, Cole RT. Fatigue of Composite Bolted Joints under Dual Stress Levels. In: Progress in Science and Engineering of Composites,ICCM-IV 1982,1, p.333-40.
    [119]Yang JN, Jones DL. Fatigue of Graphite/epoxy [0/90/45/-45]S Laminates Under Dual Stress Levels. Compos Tech Rev 1982;4(3):63-70.
    [120]Yang JN, Du S. An Exploratory Study into the Fatigue of Composites under Spectrum Loading. J Compos Mat 1983; 17:511-26.
    [121]Hashin.z. Cumulative Damage Theory for Composite Materials:Residual Life and Residual Strength Methods[J]. Composites Science and Technology,1985,23(1):1-19
    [122]Hahn HT, Kim RY. Proof Testing of Composite Materials. J ComposMat 1975;9:297-311.
    [123]Schaff JR, Davidson BD. Life Prediction Methodology for Composite Structures. Part Ⅰ-Constant Amplitude and Two Stress Level Fatigue. J Compos Mat 1997;31(2):128-57.
    [124]Schaff JR, Davidson BD. Life Prediction Methodology for Compositestructures. Part Ⅱ-Spectrum Fatigue. J Compos Matl997;31(2):157-81.
    [125]Chou PC, Croman R. Residual Strength in Fatigue Based on the Strength-life Equal Rank Assumption. J Compos Mat 1978; 12:177-94.
    [126]Chou PC, Croman R. Degradation and Sudden Death Models of Fatigue of Graph ite/epoxy composites. Composite Materials:Testing and Design (5th conference). ASTM STP,674, 1979. p.431-54.
    [127]Charwics.A. and Daniel.I.M. Damage Mechanism and Accumulation in Graphite/epoxy Laminates[C]. Composite Materials:Fatigue and Fracture, ASTM STP907,1986:274-297
    [128]Sendeckyj GP. Life Prediction for Resin-matrix Composite Mmaterials. Composite Material Series,4. Elsevier; 1991. p.431-83.
    [129]Sendeckyj GP. Fitting Models to Composite Materials Fatigue Data. Test Methods and Design Allowables for Fbrous Composites. ASTM STP,734,1981. p.245-60.
    [130]Adam T, Dickson RF, Jones CJ, Reiter H, Harris B. A Power Law Fatigue Damage Model for Fber-reinforced Plastic Laminates. ProcInstn Mech Engrs 1986;200(C3):155-66.
    [131]Diao X, Lessard LB, Shokrieh MM. Statistical Model for Multiaxial Fatigue Behavior of Unidirectional Plies. Compos Sci Tech 1999;59:2025-35.
    [132]Radhakrishnan K. Fatigue and Reliability Evaluation of Unnotchedcarbon Epoxy Laminates. J Compos Mat 1984;18:21-31.
    [133]Andersons J, Korsgaard J. Residual Strength of GRP at High Cycle Fatigue. ICCM-11 1997;Ⅱ:135-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700