AZ91D镁合金摩托车轮毂铸锻复合成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在车辆轻量化进程加快的背景下,轻质合金的应用研究越来越受到各国的重视。近年来,交通工具上镁合金的用量逐年上升,但是大部分镁合金制件都是由压铸生产,难以满足结构件的性能要求。而镁合金的密排六方结构使得其塑性很差,难以对形状复杂的结构件进行锻造成形。针对既有高力学性能要求又有复杂形状要求的结构件成形需求,本研究提出了铸锻复合成形工艺方法。并且以典型零件摩托车轮毂为具体研究对象,对AZ91D镁合金摩托车轮毂的铸锻复合成形工艺进行研究。
     本文依据压铸的三个最重要的参数建立三因素四水平16组正交实验方案,对轮毂进行三维实体建模,设计并优化浇注系统。模拟实验利用商业模流软件FLOW3D进行参数优化模拟,得出最佳参数组合L10,浇注温度690℃,压射速度4m/s,模具温度210℃。
     实验分为压铸和铸锻复合成形两个部分,分别按照正交实验进行。实验发现压铸成形轮毂表面缺陷较多,如充不满、裂纹和冷隔;而铸锻复合成形轮毂表面缺陷很少,成形性优良。轮辐的拉伸实验表明,锻造力的存在使得轮辐的力学性能有极大的提高。铸锻复合成形轮辐的平均抗拉强度和延伸率相比压铸件分别提高了68.6%和108.9%,并且铸锻复合成形轮辐经可T6热处理后该比例进一步提高至88.7%和169.4%。
     压铸件显微组织大都为粗大树枝晶,平均尺寸在180μm,其横断面的晶粒尺寸变化幅度很大,其间有枝晶偏析、氧化物夹杂、裂纹、气孔等缺陷。铸锻复合成形显微组织基本上为细小等轴晶,平均尺寸在25μm,晶粒尺寸变化范围很小,组织致密,裂纹、气孔被焊和,氧化物夹杂被细化弥散分布。
     本次实验证明铸锻复合成形工艺是切实可行的,其生产率很高,制件力学性能优异,而且可经过后续热处理进一步提升力学性能。
Against this global development of vehicles’lightweighting, more attention was attached to the research and application of lightweight alloys. In recent years, the dosage of magnesium alloys for vehicles has been rising. So far as the vehicle dosage of magnesium alloys has been rising, the structural part are not well-matched, because of magnesium alloys’HCP structure and significant poor forgeability which lead to die-casting manufacture of magnesium alloy parts. Therefore, this paper suggested a forming process method of combination high productivity die-casting and high performance forging. As a typical motorcycle part, AZ91D magnesium alloy wheel has been produced to study this forming process.
     Based on three most important die-casting parameters, this paper set up an experimental program of 16 orthogonal tests which belonged to three factors and four levels. By the building of three-dimensional solid modeling of motorcycle wheel, this paper designed and optimized gating system. After optimized and simulated with the commercial mold flow software FLOW3D, this paper obtained the optimal combination of parameters: pouring temperature of 690℃, injection speed 4m/s, mold temperature 210℃.
     This experiment including two parts, common die-casting and combination of die-casting and forging, respectively, orthogonal test was done during each part. It was found that die-casting wheels had many surface defects, such as incomplete filling, cracks and cold shut; while wheels produced by the excellent formability method of combination die-casting and forging had less surface defects.
     The tensile tests of spoke showed that the spoke’s mechanical properties have been greatly improved because of the existence of forging force. The average tensile and elongation of spokes increased by 68.6% and 108.9%, respectively, compared with die-casting spokes. What’s more, the performances were supposed to increase by 88.7% and 169.4% after the T6 heat treatment.
     The microstructure of die-casting wheels was, mostly, consisted by dendrites with an average size of 180μm. Besides, the grain size had a large fluctuation from cross section view. The die-castings had many defects existed in die-casting wheel, such as dendritic segregation, oxide inclusions, cracks, holes and so on. By contrast, the microstructure of combination die-casting and forging wheels was, basically, composed of fine equiaxed grain with an average size of 25μm and a small fluctuation of grain size range from horizontal view. As the existence of forging force, defects and holes were welded. And oxide inclusions were refined and dispersed.
     This study proved that this combination of die-casting and forging process was feasible. Mechanical properties of parts produced by this forming process with high productivity were excellent, and could be further enhanced by follow-up heat treatment.
引文
[1]李欣,张晓妮,徐晓沐.胶接结构和复合材料用于航空航天技术的发展[J].化学与黏合. 2006, 28(3): 172-174.
    [2]范棠.发展我国航空复合材料应用的途径[J].航空学报. 1985, 6(3): 221-226.
    [3]夏德宏,余涛.高速发展的绿色工程材料—金属镁[J].材料天地. 2004(6): 41-42.
    [4]夏德宏.金属镁—卓越的绿色工程材料[J].中国有色金属报. 2009(Z07): 1-2.
    [5] E. Aghion, B. Bronfin, D. Eliezer. The role of the magnesium Industry in protecting the environment[J]. Journal of Materials Processing Technology. 2001(117): 381-385.
    [6]文靖.半固态触变压铸AZ91D镁合金组织与性能的研究[D].兰州理工大学硕士学位论文: 2009:1-3.
    [7] PAN Fu-sheng, ZHANG Jing, WANG Jing-feng, YANG Ming-bo, HAN En-hou, CHEN Rong-shi. Key R&D activities for development of new types of wrought magnesium alloys in China[J]. Transaction of Nonferrous Metals Society of China. 2010(20): 1249-1258.
    [8] Serkan Toros, Fahrettin Ozturk, Ilyas Kacar. Review of warm forming of aluminum–magnesium alloys[J]. 2008(207): 1-12.
    [9] ZHAO Hongyang, BIAN Pei, JU Dongying. Electrochemical performance of magnesium alloy and its application on the sea water battery[J]. Environmental Sciences Supplement. 2008: S88-S91.
    [10] H.A. Patel, D.L. Chena, S.D. Bhole, K. Sadayappan. Microstructure and tensile properties of thixomolded magnesium alloys[J]. Alloys and Compounds. 2010(496): 140-148.
    [11] Mark P. Staiger, Alexis M. Pietak, Jerawala Huadmai, George Dias. Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials. 2007(26): 1728-1734.
    [12] D.Gastaldi, V.Sassi, L.Petrini, M.Vedani, S.Trasatti, F.Migliavacca. Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents[J]. Biomedicalmaterials. 2011(4): 352-365.
    [13] Jingxin Yang, Fu-zhai Cui, InSeop. Lee, Xiumei Wang. Plasma surface modification of magnesium alloy for biomedical application[J]. Surface & Coatings Technology. 2010(205): S182-S187.
    [14] T.S. Srivatsan, Satish Vasudevan, M. Petraroli. The tensile deformation andfracture behavior of a magnesium alloy[J]. 2008(461): 154-159.
    [15] Qiang Chen, Zude Zhao, Zhixiang Zhao, Chuankai Hu, Dayu Shu. Microstructure development and thixoextrusion of magnesium alloy preparedby repetitive upsetting-extrusion[J]. Journal of Alloys and Compounds. 2011(4): 113-125.
    [16] ZENG Rong-chang, ZHANG Jin, HUANG Wei-jiu, W. DIETZEL, K. U. KAINER, C. BLAWERT, KE Wei. Review of studies on corrosion of magnesium alloys[J]. Transaction of Nonferrous Metals Society of China. 2006(16): S763-S771.
    [17] A.Eliezer, E.M. Gutman, E. Abramov, Ya.Unigovski. Corrosion fatigue die-casting and extrude magnesium alloys[J]. Journal of Light Metals. 2001(1): 179-186.
    [18] J.E. Gray, B. Luan. Protective coatings on magnesium and its alloys—a critical review[J]. 2002(336): 88-113.
    [19] SONG Ying-wei, SHAN Da-yong, CHEN Rong-shi, HAN En-hou. A novel dual nickel coating on AZ91D magnesium alloy[J]. Transaction of Nonferrous Metals Society of China. 2008(18): S339-S343.
    [20] MAO Ping-li, LIU Zheng, WANG Chang-yi. Fatigue behavior of magnesium alloy and application in auto steering wheel frame[J]. Transaction of Nonferrous Metals Society of China. 2008(18): 218-222.
    [21]陈振华.变形镁合金[M].北京:化工业出版社, 2005: 2-12.
    [22]麻彦龙,陈清建,王勇,邢东兴. AM系铸造镁合金的研究进展[J].材料导报. 2007, 8(21): 84-87.
    [23] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. DeSmet, A. Haszler, A. Vieregge. Recent development in aluminium alloys for the automotive industry[J]. Materials Science and Engineering. 2000,A(208): 37-49.
    [24] John R. Kindteler. Commercial car wheels[A]. SAE paper. Harbin: 2003.
    [25]夏红兵.轿车钢制辐板式车轮[J].工艺与材料. 1994(3):9-19.
    [26]史自立.中国汽车铝轮毂行业发展前景分析[J].经济经纬, 2004(3): 61-64。
    [27]周洁,白杉.铝合金轮毂的市场、特点和制造工艺[J].铝加工. 2006(3): 43-44.
    [28] A. Morita. Aluminium alloys for automobile applications[J]. Aluminium Alloys. 1998(1): 25–32.
    [29]姜超,陈林,黄国杰.汽车轮毂材料的发展现状及制备工艺[J].金属热处理.2007,32(12):35-41.
    [30]马晓录,吕玉荣,陈艳艳.镁合金液态模锻技术及其应用前景[J]. 2008(12): 134-135.
    [31] J.F. Fana, Ch.L. Yang, G. Hana, S. Fanga, W.D. Yanga, B.S. Xu. Oxidation behavior of ignition-proof magnesium alloys with rare earth addition[J]. Alloys andCompounds. 2011(509): 2137-2142.
    [32]叶安英,马英,程正明.重力铸造网状铝合金轮毂漏气缺陷的CAE分析与改善[J].铸造. 2007, 57(2): 176-180.
    [33] MI Guo-fa, LIU Yan-le, ZHANG Bin, FU Xiu-qin, ZHANG Hong, SONG Guo-xiang. Wear Property of Cast Steel Wheel Material in Rail Truck[J]. Journal of Iron and Steel Research. 2009,16(3): 73-77.
    [34]易有福,龙思远,徐绍勇,王瑞斐,唐晓亮.低压铸造A356铝合金轮毂的微观组织和力学性能[J].特种铸造及有色合金. 2008, 28(5): 373-375.
    [35] B. Zhang, S.L. Cockcroft, D.M. Maijer, J.D. Zhu, and A.B. Phillion. Casting Defects in Low-Pressure Die-Cast Aluminum Alloy Wheels[J]. JOM. 2005,v37(11): 36-43.
    [36]刘一军. 4G93SD4气缸盖低压铸造数值模拟研究及工艺优化[D].哈尔滨理工大学硕士学位论文, 2007:4-8.
    [37]庞玉梅.压铸轮毂的强度控制与检测[J].摩托车技术. 2006: 78-80.
    [38]徐绍勇,龙思远,廖慧敏.压铸镁合金摩托车轮毂缺陷分析及工艺改进措施[J].金属铸锻焊技术. 2010, 39(21): 187-189.
    [39] Sundaram-Clayton Ltd., Brakes Division, Madras, India. Fracture analysis of wheel hub fabricated from die cast aluminum alloy[J]. Theoretical and Applied Fracture Mechanics. 2003(9): 45-53.
    [40]高成勋,刘伟明.碳钢轮毂的消失模铸造[J].铸造设备与工艺. 2010(6): 36-46.
    [41]张治民,王强,李保成,张星,李国俊.镁合金汽车轮毂铸挤复合成形方法:中国CN1429717A. 2003-07-16.
    [42] DING Pei-dao, PAN Fu-sheng, JIANG Bin, WANG Jian, LI Hua-lun, WU Jiang-cai, XU Yue-wang, WEN Yu. Twin-roll strip casting of magnesium alloys in China[J]. Transaction of Nonferrous Metals Society of China. 2008(18): S7-S11.
    [43]蒋斌,王健,潘复生,丁培道,杨春媚.镁合金薄板坯双辊连铸的研究开发[J]. 2007, 21(5A): 330-334.
    [44]汪以祥.轿车铝合金轮毂锻造成形过程研究[D].燕山大学硕士学位论文, 2006:2-5.
    [45]魏仁委.轿车铝合金轮毂锻造技术研究[D].燕山大学硕士学位论文, 2005: 2-5.
    [46]董金卫.轿车铝合金轮毂锻造成形新技术研究[D].燕山大学硕士学位论文, 2007: 2-6.
    [47] Kocaeli Plant, Ford Otomotiv, Ihsaniye-Golcuk, San. A.S. Kocaeli, Turkey. A statistical approach to comparing wheel hub forging processes[J].Proceedings ofthe Institution of Mechanical Proceedings of the Institution of Mechanical Engineers. 2009(223): 1559-1575.
    [48]蒋鹏,贺小毛.铸造锻造技术在铝合金轮毂成形中的应用[J].汽车工艺与材料. 1995(5): 1-3.
    [49] Jegathisvaran Balakrishnan, Bernd M.Fischer, Derek Abbott. Low noise spinning wheel technique for THz material parameter extraction[J]. Optics Communications. 2010(283): 2301-2307.
    [50]王艳红.车轮轮辋旋压成形技术研究[D].燕山大学硕士学位论文, 2008: 2-5.
    [51] M.C. Flemings. Solidification Processing[M]. McGraw-Hill: New York, 1974: 266.
    [52] Ji Ze Sheng, Yan Hong Hua, Zheng Xiao Ping, S.O. Sugiyama, J. Yanagimoto. Numerical and experimental investigations of semi-solid AZ91D magnesium alloy in thixoforming process[J]. Journal of Materials Processing Technology. 2008(202): 412-418.
    [53] LUO Shou-jing, W. C. KEUNG, KANG Yong-lin. Theory and application research development of semi-solid forming in China[J]. Transaction of Nonferrous Metals Society of China. 2010(20): 1805-1814.
    [54]谢水生,李兴刚,江运喜.镁合金汽车轮毂半固态触变成形的刚-粘塑性有限元分析[J].塑性工程学报. 2005, 12(2): 89-92.
    [55] P. Kapranos, D.H. Kirkwood, H.V. Atkinson, J.T. Rheinlander, J.J. Bentzen, P.T. Toft, C.P. Debel, G. Laslaz, L. Maenner, S. Blais, J.M. Rodriguez-Ibabe, L. Lasa, P. Giordano, G. Chiarmetta, A. Giese. Thixoforming of an automotive part in A390 hypereutectic Al–Si alloy[J]. Journal of Materials Processing Technology. 2003(135): 271-277.
    [56] Sang-Yong Lee, Se-II Oh. Thixoforming characteristics of thermo-mechanically treated AA 6061 alloy for suspension parts of electric vehicles[J]. Journal of Journal of Materials Processing Technology. 2002(130): 587-593.
    [57] F. Yin, G.X. Wang, S.Z.Hong, Z.P. Zeng. Technological study of liquid die forging for the aluminum alloy connecting rod of an air compressor[J]. 2003(139): 462-464.
    [58]张占领,张艳琴,阎峰云,刘真.镁合金摩托车轮毂挤压铸造生产研究[J].铸造锻压. 2007, 36(13): 92-94.
    [59]李强,李周复,张鹏宇,董国庆,李远发,高小荣.摩托车发动机壳体铸锻复合成形模设计[J].模具工业. 2008, 34(6): 66-70.
    [60]李强,李远发,罗守靖,李周复,高小荣. AZ91D镁合金铸锻复合成形与压铸制件宏观缺陷及力学性能的对比研究[J].特种铸造及有色金属2008年年会专刊. 2008: 388-392.
    [61]原帅,龙思远,廖慧敏,肖华强.变形量对铸锻复合成形AZ81材料组织与性能的影响[J].金属铸锻焊技术. 2009, 38(21): 1-4.
    [62]李远发,陈亮,单巍巍.卧式铸锻复合成形AZ91D镁合金摩托车轮力学性能研究[J].特种铸造及有色合金2009年年会专刊. 2009: 8-10.
    [63]于彦东,蒋海燕,曾小勤. AZ91D镁合金壳形件真空压铸充型和凝固过程的数值模拟.铸造. 2005, 54(10): 984-987.
    [64]吴春苗.压铸实用技术[M].广州:广东科技出版社, 2003: 211-227.
    [65]李仁杰,卓迪仕.压力铸造技术.北京:国防工业出版社, 1996: 121-128.
    [66] Michele Ciofalo. Large-eddy simulations of turbulent flow with heat transfer in simple and complex geometries using Harwell-FLOW3D[J]. Appl. Math. Modelling. 1996(20): 262-271.
    [67] Guilherme Ourique Verran, Rui Patrick Konrad Mendes, Marco Aur′elio Rossi. Influence of injection parameters on defects formation in die-casting Al12Sil, 3Cu alloy: Experimental results and numeric simulation[J]. Journal of Materials Processing Technology. 2006(179): 190-195.
    [68] C. D?rum, H.I. Laukli, O.S. Hopperstad, M. Langseth. Structural behavior of Al–Si die-castings: Experiments and numerical simulations[J]. European Journal of Mechanics A/Solids. 2009(28): 1-13.
    [69] Paul W. Cleary, Joseph Ha. Three-dimensional smoothed particle hydrodynamics simulation of high pressure die casting of light metal components[J]. Journal of Journal of Light Metals. 2002(2): 169-183.
    [70]谢水生,杨浩强,黄国杰,李雷.半固态镁合金连续铸轧过程的数值模拟[J].塑性工程学报. 2007, 14(1): 80-84.
    [71] Z. Koren. Development of semi-solid casting for AZ91 and AM50 magnesium alloys[j]. Journal of Light Metals. 2002(10): 81-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700