零价金属强化氧化工艺去除水中邻苯二甲酸二丁酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水环境污染的加重,水中的微量有机污染物种类越来越多,尤其是邻苯二甲酸酯类物质(PAEs),在水环境中已经达到普遍检出的水平,成为一类最普遍的污染物。这类物质具有致癌、致畸、致突变的活性,对人体健康危害极大,引起全球性关注并被很多国家列为优先控制污染物。常规给水处理工艺对这类有机物的去除效率十分有限,已经不能满足日益提高的水质标准的要求,开发新的水处理工艺以控制饮用水中的PAEs成为当前迫切需要解决的问题。
     本文以邻苯二甲酸二丁酯(DBP)为主要目标污染物,从强化臭氧氧化的角度考虑,通过对比试验筛选能够高效去除水中DBP的方法,综合考察了各种金属氧化物、活性炭、过氧化氢、零价金属等物质对臭氧氧化DBP的强化作用,最后找出能够经济高效地强化去除水中PAEs等微量有机污染物的零价金属强化氧化工艺,主要工作与研究成果如下:
     制备了多种催化剂,并考察了不同种类催化剂存在条件下对臭氧去除水中DBP的影响规律。研究发现,α-FeOOH、γ-Fe2O3、Mn3O4具有一定的强化臭氧去除DBP能力,但强化效果最佳的催化剂γ-Fe2O3对DBP的去除率也只有60.7%;过氧化氢能够大幅度的强化臭氧去除DBP,去除率可达90%以上;纳米TiO2对臭氧氧化DBP的强化效果较好,负载型的纳米二氧化钛强化臭氧氧化对DBP的去除率可达80%以上;活性炭具有一定的强化臭氧氧化去除DBP的能力,但与过氧化氢联用时并没有体现出协同作用。研究发现,零价铁、零价锌对臭氧氧化去除DBP具有良好的强化作用,反应过程中对DBP的去除率可高达90%以上;值得注意的是,在酸性条件下零价铁和零价铜具有强化水中溶解氧去除DBP的能力,臭氧在氧化反应过程中并不是必需的氧化剂。
     在零价铁强化臭氧氧化DBP过程中,DBP去除效果受零价铁投量、有机物浓度、溶液pH值等因素的影响,不同pH值条件下对DBP的氧化机理有所差别;中性条件下,零价铁对臭氧的强化作用受叔丁醇的影响,反应过程遵循羟基自由基机理;排除了反应过程中其他铁氧化物的强化作用,认为强化臭氧氧化DBP效率的提高主要是基于零价铁本身的强化能力;水质条件及水中常见阴阳离子、有机物等对零价铁强化臭氧氧化具有一定影响。
     零价锌对臭氧氧化DBP具有良好的强化能力,在所选择的实验条件下,当零价锌投量为0.05g/L时即可高效的强化臭氧去除DBP;零价锌投量增大有利于DBP的去除,DBP初始浓度对其去除效率影响不大,溶液pH值影响零价锌强化臭氧氧化的效果。值得注意的是,零价锌强化臭氧氧化过程不受水中碳酸根的影响,叔丁醇存在时对氧化过程的抑制作用也不完全,因此认为该反应过程不完全遵循羟基自由基机理;反应过程中零价锌本身对臭氧的强化起主要作用,但重复利用后效果更好,说明反应过程中零价锌生成了强化活性更高的物质;不同水质对零价锌强化臭氧氧化DBP的效率影响较小,但一些阳离子如钠离子、铵离子、铁离子及低浓度腐殖酸存在可以加快DBP的去除。
     在酸性条件下,零价铜具有良好的强化氧化去除水中多种有机物的能力,其强化氧化效果随溶液pH值降低、零价铜投量增加而提高,有机物的去除效率受有机物初始浓度的影响较小;零价铜强化氧化去除水中有机物的过程,排除了吸附、氧化铜以及铜离子的作用,并且能够达到降低TOC、矿化有机物的效果;零价铜强化氧化的反应机理受溶液中酸的影响,用硫酸调pH值时,溶解氧对于零价铜强化氧化去除有机物并不是必需的,反应遵循羟基自由基作用机理;而用盐酸调pH值时,溶解氧对于零价铜强化氧化去除有机物是必需的,反应过程不受羟基自由基抑制剂叔丁醇的影响;水质条件对零价铜强化氧化的效果影响较大,铁离子的加入能加快DBP的去除,而甲醛的加入对DBP的去除起反作用;零价铜重复使用后强化氧化效率提高,反应过程中有铜离子溶出。
     零价铁、零价锌强化臭氧氧化工艺可用于实际水源水的处理,提高原水中DOC的去除率,处理后UV254降低,氨氮浓度升高,强化臭氧氧化对分子量为1000~10000之间的有机物的去除效果明显;零价铜强化氧化对原水中的DOC有一定去除,对分子量为1750和3800附近的有机物的去除比较明显;零价铁、零价锌强化臭氧氧化也可以用于废水的处理,在一定程度上提高臭氧去除COD的效率。
With the increasing pollution of water environment, more and more micro-organic pollutants are found in water, especially phthalate acid esters(PAEs), which has been detected widely in water environment and become a kind of prevalent pollutants. PAEs are cancerogenic, teratogenic and mutagenic, which are seriously harmful to human health. PAEs have been listed as the priority pollutants by many countries and widely concerned all over the world. The improvement of drinking water standards and the low removal efficiency of PAEs by conventional water treatment technology make it urgent to develop new water treatment processes and control PAEs in drinking water.
     Dibutyl phthalate (DBP) was chosen as a main target pollutant in this experiment which aimed at improving ozonation by the presence of metal oxides, activated carbon, hydrogen peroxide and zero valent metals. The objective of this work is to find a method which is high efficiency, simple and low cost to remove PAEs from drinking water. Results and conclusions include:
     Several metal oxides were prepared by different methods, andα-FeOOH,γ-Fe2O3, Mn3O4 were found to have the ability of improving DBP removal efficiency in ozonation, and the best removal efficiency was 60.7% when usingγ-Fe2O3 as the catalyst. Removal efficiency of DBP in ozonation could be enhanced greatly by adding hydrogen peroxide and more than 90% of DBP could be removed. Nanosized titanium dioxide (TiO2) had good performance to improve ozonation efficiency, and the removal efficiency of DBP could reach 80% at least by using supported nanosized TiO2. DBP removal efficiency could also be enhanced to some extent by adding activated carbon into ozonation process, but coupling use of activated carbon and hydrogen peroxide did not show synergistic effect. Zero valent iron (ZVI) and zero valent zinc (ZVZ) had excellent ability to improve ozonation efficiency, and the DBP removal efficiency was more than 90% in the experimental conditions. In acidic condition, DBP could be removed by the presence of ZVI and zero valent copper (ZVC),and ozone was not necessary to present in these two processes.
     DBP removal efficiency in the enhanced ozonation by using ZVI was influenced by ZVI dose, DBP concentration and pH. Under different pH conditions, the oxidation mechanisms of DBP were different. Under neutral condition,the ability of improving ozonation efficiency by the presence of ZVI was influenced by the addition of tert-butyl alcohol,which means that the reaction follow hydroxyl radical mechanism. The improvement of DBP ozonation was due to mainly the acceleration effect of ZVI itself, rather than other oxide species. DBP removal efficiency in the enhanced ozonation process using ZVI was influenced by water quality condition, and cations, anions, organic compounds in water to some extents.
     ZVZ had good ability to improve the ozonation efficiency of DBP, and 0.05g/L dose of ZVZ was enough to remove DBP effectively under experimental conditions. DBP removal efficiency was enhanced from the increase of ZVZ dose and pH value of the solution, and the DBP initial concentration had little influence on its removal efficiency. The efficiency of ZVZ enhanced ozonation was not inhibited by the presence of carbonate. It is also found that the inhibition of tert-butyl alcohol on this process was uncompleted, so the reaction did not follow hydroxyl radical mechanism entirely. ZVZ itself played the major role in improving ozonation process, but better efficiency was achieved after ZVZ was reused, which means that there are some species with higher activity on improving ozonation during the reaction. Under different water quality conditions, DBP removal efficiency was changed little,but some cations such as Na+, NH4+, Fe2+ and low concentration of humic acid could accelerate the removal of DBP.
     Under acidic condition, Zero valent copper (ZVC) had good ability to remove organic compounds from water by using dissolved oxygen. The oxidation efficiency was increased with the decrease of solution pH and the increase of ZVC dose. The initial concentration of organic compounds had a little influence on the removal efficiency. The experiment results excluded the improving effect achieved by the adsorption of ZVC, the presence of copper oxide and copper ion in the ZVC enhanced oxidation process. The TOC was decreased and mineralization was achieved in the oxidation of DEP by the presence of ZVC under acid condition. The reaction mechanism of copper enhanced oxidation process was different when using different type of acids in the experiment. When the solution pH was adjusted by sulfuric acid, dissolved oxygen was not necessary to present for ZVC enhanced oxidation process and the reaction was affected by the presence of tert-butyl alcohol, which means that the reaction follow hydroxyl radical mechanism. When pH was adjusted using hydrochloric acid, dissolved oxygen was necessary to present for the enhanced removal of organic compounds, and the reaction was not influenced by the presence of hydroxyl radical inhibitor-tert butyl alcohol. The efficiency of ZVC enhanced oxidation process was greatly influenced by the water quality condition, and the addition of iron ion could speed up the removal of DBP,but the addition of methanal inhibit the removal of DBP. After ZVC was reused, its ability of improving the oxidation process increased, and copper ion was released in the reaction process.
     ZVI and ZVZ enhanced ozonation can be used in the treatment of source water. The TOC and UV254 were reduced in ZVI and ZVZ enhanced ozonation process and ammonia nitrogen concentration was increased. Organic compounds with a molecular weight of 1000~10000 was removed obviously in ZVI and ZVZ enhanced ozonation process, and Organic compounds with a molecular weight about 1750 and 3800 was removed obviously in ZVC enhanced oxidation process under acidic condition. ZVI and ZVZ enhanced ozonation process could also be used in the treatment of wastewater to increase the removal efficiency of COD.
引文
1第一次全国污染源普查公报.中华人民共和国环境保护部. 2010年2月6日.
    2 2008年中国环境状况公报.中华人民共和国环境保护部. 2008年6月4日.
    3生活饮用水卫生标准(GB5749-2006).中华人民共和国卫生部. 2006年12月29日.
    4沈军,范次樵,陈可荣,等.生物预处理对致突变物的去除效果.中国给水排水. 2002, 18(7): 54~56.
    5吴为中,邢传宏,王占生.生物陶粒滤池预处理富营养化水库水源的净化效果与工艺参数.北京大学学报(自然科学版). 2003, 39(2): 262~269.
    6 Christian volk, et al. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Wat. Res. 2000, 34(12):3247~3257.
    7许国仁,李圭白.高锰酸钾复合药剂强化过滤微污染水质的效能研究.环境科学学报. 2002, 22(5): 664~670
    8 J. Z. Wang, R. S. Summers, R. J. Miltner. Biofiltration performance: part 1, relationship to biomass. J. Am. Water Works Assoc. 1995, 87(12): 55~63
    9 Y. Chang, C. W. Li, M. M. Banjamin. Iron oxide coated media for NOM sorption and particulate filtration. J. Am. Water Works Assoc. 1997, 89(5): 100~113.
    10雷国元,刘巍,李永成,等.改性滤料强化过滤处理微污染水.净水技术. 2005, 24(6): 18~21
    11 Karanfil, J. E. Kilduff, M. A. Schlautman, et al. Adsorption of organic macromolecules by granular activated carbon.1. Influence of molecular properties under anoxic solution conditions. Environ. Sci. Technol. 1996, 30(7): 2187~2194
    12 T. Karanfil, M. Kitis, J. E. Kilduff, et al. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter. Environ. Sci. Technol. 1999, 33(18): 3225~3233
    13 A. Matilainen, N. Lindqvist, S. Korhonen,et al. Removal of NOM in the different stages of the water treatment process. Environment International, 2002, 28: 457~465.
    14 A.C. Fonseca, R. S. Summers, M. T. Hemandez. Comparative measurements of microbial activity in drinking water biofilters. Water Res. 2001, 35(16): 3817~3824.
    15 J.Hoigné, H.Bader. Rate constants of reactions of ozone with organic and inorganic compounds in water, Part I: Non-dissociating organic compounds. Water Res. 1983, 17:173~183.
    16 J. Hoigné, H. Bader. Rate constants of reaction of ozone with organic and inorganic compounds in water, Part II: dissociating organic compounds. Water Res. 1983, 17:185~194.
    17 C. C. D. Yao, W.R. Haag. Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res. 1991, 25(7):761~773.
    18 J. Hoigné, H. Bader. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions, Water Res., 1976, 10(5):377~386.
    19 W. R. Haag, C. C. D. Yao. Rate constants for reactions of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 1992, 26:1005~1013.
    20 G. V. Buxton, C. L. Greenstock, W. P. Helman, et al. Critical review of data constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH·/O-) in aqueous solution. J. Phys. Chem. Ref. Data.1988, 17: 513~534
    21 C. G. Hewes, R.R. Davinson. Renovation of waste water by ozonation, Water AIChE Symposium Series. 1972, 69: 71~79.
    22 M. S. E. Abdo, H. Shaban, M.S.H. Bader. Decolorization by ozone of direct dyes in presence of some catalysts. J. Environ. Sci. Health A. 1988, 23(7): 697~710.
    23 Gracia, J.L. Aragües, S.Cortés, et al. Study of the catalytic ozonation of humic substances in water and its ozonation by-products. In proceedings of the 12th World Congress of the International Ozone Association, Lille, France, 15-18 May 1995, p75-86.
    24 S.Cortés, J.Sarasa, P. Ormad, et al. Comparative efficiency of the systems O3/high pH and 03/catalyst for the oxidation of chlorobenzenes in water. Ozone Sci. Eng. 2000(22): 415~426.
    25 I.Arslan. Treatability of a simulated disperse dye-bath by ferrous iron coagulation, ozonation, and ferrous iron-catalyzed ozonation. Journal of Hazardous Materials, 2001(85): 229~241.
    26 R.Andreozzi, V.Caprio, A.Insola, et al. The kinetics of Mn(II) catalysed ozonation of oxalic acid in aqueous solution. Water Res. 1992, 26: 917~921.
    27 R. Andreozzi, A.Insola, V. Caprio, et al. The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution. Appl. Catalysis A: General. 1996, 138(1): 75~81.
    28 D. S. Pines, D.A.Reckhow. Effect of dissolved cobalt(II) on the ozonation of oxalic acid. Environ. Sci. Technol. 2002, 36(19): 4046~4051.
    29 J. H. Suh, M. Mohseni. A study of the relationship between biodegradabiligy enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide. Water Res. 2004(38):2595~2604.
    30 F. Wang, D. W. Smith, M. G. El-Din. Aged raw landfill leachate: membrane fraction, O3 only and O3/H2O2 oxidation, and molecular size distribution analysis.Water Res. 2006(40): 463~474.
    31 C. Tizaoui, L. Bouselmi, L. Mansouri, et al. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials. 2007, 140: 316~324
    32 C. Lee, J. Yoon, Urs Von Gunten. Oxidative degradation of N-nitrosodimethylanmine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Res. 2007(41):581~590
    33 N. Bhat, M. D. Gurol. Oxidation of chlorobenzene by ozone and heterogeneous catalytic ozonation. The 27th Idnustrial Waste Mid-Atlantic Conference. Bethlehem, PA, USA, 1995, July. p371.
    34 J. S. Park, H. Choi, J. Cho. Kinetic decomposition of ozone and para-chlorobenzoic acid(pCBA) during catalytic ozonation. Water Res. 2004, 38(9): 2285~2292.
    35 J. Ma, N. J. D. Graham. Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances. Water Res. 1999, 33(3): 785~793
    36 J. Ma, N. J. D. Graham. Degradation of atrazine by manganese-catalysed ozonation: influence of radical scavengers. Water Res. 2000, 34(15): 3822~3828.
    37 J. Ma, M. Sui, T. Zhang, et al. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene.Water Res. 2005, 39(5): 779~786.
    38 R.Andreozzi, V.Caprio, A.Insola, et al. The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese. Water Res. 1998, 32(5): 1492~1496.
    39 S. Tong, W. Liu, W. Leng, et al. Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water. Chemosphere. 2003, 50: 1359~1364.
    40 C. Reed, Y. Xi, S. T. Oyama. Distinguishing between reaction intermediates and spectators: A kinetic study of acetone oxidation using ozone on a silica-supported manganese oxide catalyst. Journal of Catalysis. 2005, 235: 378~392.
    41 F. J. Beltran, F. J. Rivas, R. Montero-de-espinosa. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Applied Catalysis B: Environmental. 2002, 39: 221~231.
    42 F. J. Beltran, F. J. Rivas, R. Montero-de-espinosa. A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water. Applied Catalysis B: Environmental. 2004, 47:101~109.
    43 R. Gracia, S. Cortés, J. Sarasa, et al. Heterogeneous catalytic ozonation with supported titanium dioxide in model and natural waters. Ozone Sci. Eng. 2000, 22: 461~471.
    44 R. Gracia, S. Cortés, J. Sarasa, et al. Catalytic ozonation with supported titanium dioxide:The stability of catalyst in water. Ozone Sci. Eng. 2000, 22: 185~193.
    45 R. Gracia, S. Cortés, J. Sarasa, et al. TiO2-catalysed ozonation of raw Ebro riverwater. Water Res. 2000, 34: 1525~1532
    46 W. J. Huang, G. C. Fang, C. C. Wang. A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2005, 260: 45~51.
    47 M. Ernst, F. Lurot, J. C. Schrotter. Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide. Applied Catalysis B: Environmental, 2004, 47: 15~25.
    48张彭义,余刚,孙海涛,等.臭氧/活性炭协同降解有机物的初步研究.中国环境科学. 2000, 20(2):159~162.
    49 J. Rivera-Utrilla, M. Sánchez-Polo. Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Applied Catalysis B: Environmental. 2002, 39: 319~329.
    50 M. Sánchez-Polo, J. Rivera-Utrilla. Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone. Carbon. 2003, 41: 303~307.
    51 M. Sánchez-Polo, R. Leyva-Ramosb, J. Rivera-Utrilla. Kinetics of 1,3,6-naphthalenetrisulphonic acid ozonation in presence of activated carbon. Carbon. 2005, 43: 962~969.
    52 F. J. Beltrán, J. Rivas, P.álvarez, et al. Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon. Ozone Sci. Eng. 2002, 24(4):227-237
    53 I. Giráldez, J. F. Garcia-Araya, F. J. Beatrán. Activated carbon promoted ozonation of polyphenol mixtures in water: Comparison with single ozonation. Ind. Eng. Chem. Res. 2007, 46: 8241~8247
    54 M. P. Robert, W. P. Robert, K. H. Sharon, et al.Coupled iron corrosion and chromate reduction:Mechanisms for subsurface remediation . Environ. Sci. Technol. 1995, 29(8): 1913~1922.
    55 K. Karschunke, M. Jekel.Arsenic removal by iron hydroxides produced by enhanced corrosion of iron. Water Sci. Technol.: Water Supply. 2002, 2(2): 237~245.
    56 A. H. Khan, S. B. Rasul, A. K. M. Munir, et al. Appraisal of a simple arsenic removal method for groundwater of Bangladesh. Environ. Sci. Health: Part A-Toxic/Hazard. Substance Environ. Eng. 2000, 35(7): 1021~1041.
    57 X. L. Olivier, J. H. Stephan. Oxidation and removal of arsenic (Ⅲ) from aerated groundwater by filtration through sand and zero-valent iron. Water Res. 2005, 39(9) 1729~1740.
    58 I. A. Katsoyiannis, T. Ruettimann, S. J. Hug. pH dependence of fenton reagent generation and As(Ⅲ) oxidation and removal by corrosion of zero valent iron inaerated water. Environ. Sci. Technol. 2008, 42: 7424~7430
    59 F. Liang, J. Fan, Y. Guo, et al. Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles. Ind. Eng. Chem. Res. 2008, 47:8550~8554
    60 G. Sposito. The surface chemistry of soils. New York: Oxford University Press, 1984: 60~70.
    61 R. L. Parfitt, A. R. Fraser, V. C. Farmer.Adsorption on hydrous oxides.Ⅲ. Fulvic acid and humic acid on goethite,gibbsite and imogolite. J. Soil. Sci. 1977, 28(3): 289~296.
    62 Gu B, Schmitt J, Chen Z, et al. Adsorption and desorption of natural organic matter on iron oxide:Mechanism and models . Environ. Sci. Technol., 1994, 28(1): 38~46.
    63 P. Zhang, X. Tao , Z. Li, et al. Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite /zero-valent iron pellets. Environ. Sci. Technol., 2002, 36(16): 3597~3603.
    64 W. A. Amold, P. Winget. Reductive dechlorination of 1,1,2,2-Tetrachoroethane . Environ. Sci. Technol. 2002, 36(16): 3536~3541.
    65 L. J. Matheson, P. G. Tratnyek. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994, 28(12): 2045~2053.
    66 Y. Liu, S. A. Majetich, R. D. Tilton, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties . Environ. Sci. Technol. 2005, 39(5): 1338~1345.
    67 M. Raymond, L. Zhang, W. A. Arnold. Reduction of haloacetic acids by Fe0: Implications for treatment and fate. Environ. Sci. Technol. 2001, 35(11): 2258~2263.
    68 O. X. Leupin, S. J.Hug. Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zerovalent iron. Water Res. 2005, 39: 1729~1740.
    69 S. H. Joo. A. J. Feitz, T. D. Waite. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ. Sci. Technol. 2005, 39: 263~1268.
    70 C. Noradoun, M. D.Engelmann, M. M. Laughlin, et al. Destruction of chlorinated phenols by dioxygen activation under aqueousroom temperature and pressure conditions. Ind. Eng. Chem. Res. 2003, 42: 5024~5030.
    71 C. E.Noradoun, I. F. Cheng. EDTA degradation induced by oxygen activation in a zero-valent iron/air/water system. Environ. Sci. Technol. 2005, 39: 7158~7163.
    72 J. D. Englehardt, D. E. Meeroff, L. Echegoyen, et al. Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient ironmediated aeration. Environ. Sci. Technol., 2007, 41:270~276.
    73 C. R Kennan, D. L. Sedlak. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol., 2008,42:1262~1267
    74 C. R. Keenan, D. L. Sedlak. Ligand-enhanced reactive oxidation generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008, 42: 6936~6941.
    75 S. H. Joo. A. J. Feitz, T. D. Waite. Oxidative degradation of the carbothioate herbicide, Molinate, using nanoscale zero-valent iron. Environ. Sci. Technol. 2004, 38: 2242~2247
    76 W. R. Kelce, E. M. Wilson. Environmental antiandrogens: developmental effects, molecularmechanisms, and clinical implication. J. Mol Med. 1997, 75(25):198~207
    77 I. Colon, D. Garo, C. J. Bourdony, et al. Identification of phthalate esters in the serum of young Puetro Rican girls with premature breast development. Toxicological Science. 1998, 45(2):895~900
    78 P. D. Loff, U. Subotic, J. Oulmi-Kagemann, et al. Diethythexylphthalate(DEHP) extracted by typical newborn lipid emulsions from polyvinylchlo-ride in fusion systems causes significant changes in histology of rabbit liver. JPEN J Parenter Enteral Nutr. 2007, 31(3):188-193
    79 I. Rusyn, J. M. Peters. M. L. Cunningham. Modes of action and species-specific effects of di-(2-ethylhexyl) phthalate in the liver. Crit Rev Toxicol, 2006, 36(5):459~479
    80 M. Z. Badr, A. Shnyra, M. Zoubine, et al. Phthalate-induced liver protection against deleterious effects of the triresponse: a potentially serious health hazard. PPAR Res. 2007, 224(12):1-6
    81 R. Hokanson, W. Hanneman, M Hennessey, ea al. DEHP, bis(2)-ethylhexyl phthalate, alters gene expression in human cells possible correlation with initiation of fetal developmental abnormalities. Hum Exp Toxicol, 2006,25(12):687~695
    82高丽芳.邻苯二甲酸-(2-乙基己基)酯对小鼠胚胎致畸作用和心肌细胞的毒性.毒理学杂志. 2005, 19(2): 123~124
    83林兴桃,王小逸,任仁.环境内分泌干扰物-邻苯二甲酸酯的研究.环境污染与防治. 2003, 25(5): 286~292
    84 C. A. Stales, D. R. Peterson, T. F. Parkerton, et al. The environmental fate of phthalate esters: A literature review. Chemosphere. 1997, 35(4):667~-749.
    85 M. F. Aignasse, P. Prognon, M. Stachowicz, et al. A new simple and rapid HPLC method for determination of DEHP in PVC packaging and releasing studies. International Journal of Pharmaceutics. 1995,113(2):241~246.
    86孙胜龙.环境激素与人类未来.化学工业出版社。2005:63.
    87罗固源,梁艳,许晓毅,等.长江嘉陵江重庆段邻苯二甲酸酯污染及评价.三峡环境与生态. 2009, 2(3): 43~55.
    88王凡,沙玉娟,夏星辉,等.长江武汉段水体邻苯二甲酸酯分布特征研究.环境科学. 2008, 29(05): 1163~1169.
    89沙玉娟,夏星辉,肖翔群.黄河中下游水体中邻苯二甲酸酯的分布特征.中国环境科学. 2006(01): 120~124.
    90牛静萍,刘亚平,阮烨,等.黄河兰州段环境激素的污染水平.环境与健康杂志. 2006, 23(6): 527~529.
    91吴平谷,韩关根,王惠华,等.饮用水中邻苯二甲酸酯类的调查.环境与健康杂志. 1999,16(6):338-339.
    92于涵,胡建英,金晓辉,等.北方某水厂原水和处理过程中邻苯二甲酸酯类的监测.给水排水. 2005, (06):20~23.
    93熊毅.长江三峡库区城市给水厂典型持久性有机污染物研究.重庆大学硕士学位论文. 2005.
    94胡雄星,韩中豪,周亚康,等.黄浦江表层水体中邻苯二甲酸酯的分布特征及风险评价.环境化学. 2007, 26(2): 258~259.
    95李东,吴惠勤,黄芳,等.珠江广州河段水中有机污染物的GC-MS分析.分析测试学报. 2002, 21(3): 86~88.
    96张付海.巢湖水中五种邻苯二甲酸酯的检测和微生物降解研究.安徽农业大学硕士学位论文. 2005.
    97孙英.北京地区地表水环境激素污染现状与环境风险性评价.中国农业大学硕士学位论文. 2004.
    98王春,李晓东,史玉坤,等.南通市地表水中邻苯二甲酸酯类污染状况研究.南通大学学报(医学版). 2007, 24(3): 438~440.
    99郭志顺,罗财红,张卫东,等.三峡库区重庆段江水中持久性有机污染物污染状况分析.中国环境监测. 2006, (04): 45~48.
    100陆洋,袁东星,邓永智.九龙江水源水及其出厂水邻苯二甲酸酯污染调查.环境与健康杂志. 2007, 24(9):703~705.
    101王侠.三峡库区城市给水厂典型有毒有害有机物分布研究.重庆大学硕士学位论文. 2007.
    102韩关根,吴平谷,王惠华,等.邻苯二甲酸脂对城镇供水的污染及现行水处理工艺净化效果的评价.环境与健康杂志. 2001,18(3): 155~156.
    103 S. M. Lee, J. W. Lee, B. W. Koo. Dibutyl phthalate biodegradation by the white rot fungus, polyporus brumalis. Biotechnol Bioenq. 2007, 97(6):1516~1522
    104王建龙,吴立波,钱易,等.驯化活性污泥降解邻苯二甲酸酯类化合物的研究.环境科学. 1998, 19(1):18~20.
    105 H. F. Cheng, S. Y. Chen, J. G. Lin. Biodegradation of di-(2-ethylhexyl) phthalate in sewage sluge. Water Sci. Technol. 2000, 41(12):1~6
    106张晓,张全兴,陈金龙.树脂吸附法处理含邻苯二甲酸的废水.石油化工. 2009, (29): 822~825
    107王穆君,孙越,周玮,等.大孔树脂对水溶液中邻苯二甲酸的吸附行为及其热力学研究.离子交换与吸附. 2004, 20(6): 533~540
    108刘军,王珂,贾瑞宝,等.臭氧-活性炭工艺对饮用水中邻苯二甲酸酯的去除.环境科学,2003, 24(4): 77~80.
    109芮旻,高乃云,徐斌,等. UV、H2O2、O3及其联用工艺对水中DMP的去除效果和降解机理分析.环境科学学报. 2005, 25(11):1547~1463
    110施银桃,李海燕,曾庆福,等.臭氧氧化法去除水中邻苯二甲酸二甲酯的初步研究.环境化学. 2002, 21(5): 500~504
    111周云瑞,祝万鹏. Al2O3催化臭氧氧化处理邻苯二甲酸二甲酯.环境科学. 2006, 27(1): 51~57.
    112 M. Halmann. Photo degradation of di-n-butyl-ortho-phthalate in aqueous solutions. Photobiology A. 1992, 66(2):215~223.
    113 K. Hustert, P. N. Moza. Photo catalytic degradation of phthalates using titanium dioxide in aqueous solution. Chemosphere.1988, 17(9):1751-1754.
    114 X. K. Zhao, G. P Yang, Y. J. Wang, et al. Photochemical degradation of dimethyl phthalate by Fenton reagent. Journal of photochemistry and photobiology A: Chemistry. 2004, 161(2-3):215~220.
    115 G. P. Yang, X. K. Zhao, X. J. Sun, et al. Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction. Journal of hazardous materials, 2005, 126(1-3):112~118
    116程沧沧,邓南圣,吴峰,等.光电催化降解邻苯二甲酸二乙酯的研究.分子催化. 2005, 19(4): 241~245.
    117 Schwertmann U, Cornell R M. Iron oxides in the laboratory: Preparation and Characterization. VCH, Weinheim, New York. 1991.
    118刘承帅.铁锰氧化物/水界面有机污染物的氧化降解研究.中国科学院研究生院博士学位论文. 2007: 34
    119李晓强.锰氧化物对甲苯液相氧化反应的催化作用研究.中国科学院研究生院博士学位论文. 2006: 123~124
    120李晓强.锰氧化物对甲苯液相氧化反应的催化作用研究.中国科学院研究生院博士学位论文. 2006: 62~67
    121曲丽红.中孔金属氧化物(氧化铝、氧化镍等)的合成、表征及催化研究.中国科学院研究生院博士学位论文. 2006
    122 F. J. Beltrán, J. M. Encinar, M. A. Alonso. Nitroaromatic hydrocarbon ozonation in water. 1. Single Ozonation. Ind. Eng. Chem. Res. 1998, 37, 25~31.
    123罗晓鸿,曹莉莉,王占生.绍兴市富营养化水源水中有机物特性研究.环境科学. 1997, 18(3):13~16.
    124 Y. X. Yang, J. Ma, J. Zhang, et al. Ozonation of trace nitrobenzene in water in the presence of TiO2/Silica-Gel catalyst. Ozone Sci. Eng. 2009, 31(1): 45~52
    125 L. Zhao, Z. Sun, J. Ma. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aquous solution. Environ. Sci. Technol. 2009, 43: 4157~4163
    126 H. Tomiyasu, H. Fukutomi, G. Gordon. Kinetics and mechanism of ozone decomposition in basic aqueous solution. Inorga. Chem. 1985, 24:2962~2966
    127 W. H. Glaze, J. W. Kang. Advance oxidation processes. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxides in a semibatch reactor. Ind. Eng. Chmo. Res. 1989, 28: 1580~1587
    128 F. J. Beltran et al. Aqueous degradation of atrazine and some of its main by-products with ozone and ozone/hydrogen peroxide. J. Chem. Technol. Biotechnol. 1998, 71:345~355
    129 H. Paillard, R. Brunet, M. Dore. Optimal conditions for applying an ozone-hydrogen peroxide oxidizing system. Water Res. 1988, 22: 91~103
    130. P. C. C. Faria, J. J. M.órf?o, M. F. R. Pereira. Activated carbon catalytic ozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental. 2007, 79: 237~243
    131 I. Giráldez, J. F. García-Araya, F. J. Beltrán. Activated carbon promoted ozonation of polyphenol mixtures in water: Comparison with single ozonation. Ind. Eng. Chem. Res. 2007, 46:8241~8247
    132 F. J. Beltrán, I. Giráldez, J. F. García-Araya.Kinetics of activated carbon promoted ozonation of polyphenol mixtures in water. Ind. Eng. Chem. Res. 2008, 47: 1058~1065
    133 L. Li, W. Zhu, P. Zhang, et al. Comparison of AC/O3-BAC and O3-BAC processes for removing organic pollutants in secondary effluent. Chemosphere. 2006, 62:1514~1522
    134孙晓峰,高乃云,徐斌,等.邻苯二甲酸二甲酯在颗粒活性炭中的穿透特性.环境科学,2007, 28(8): 1738~1745
    135刘军,王珂,贾瑞宝,等.臭氧-活性炭工艺对饮用水中邻苯二甲酸酯的去除.环境科学. 2003, 24(4): 77~80
    136郭栋生,李艳霞,赵艳红,等.活性炭吸附黄河水中邻苯二甲酸二丁酯、壬基酚和双酚A的研究.给水排水. 2007, 30(1): 30~33
    137鲁俊东,龙超,张波,等.活性炭-双氧水催化氧化法深度处理DSD酸废水的研究.环境污染与防治. 2005, 27(8): 384~386
    138 T. Zhang, J. Lu, J. Ma, et al. Comparative study of ozonation and synthetic goethite-catalyzed ozonation of individual NOM fractions isolated and fractionated from a filtered river water. Water Res. 2008, 42 (6):1563~1570
    139 S. Heekang, W. Choi. Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle. Environ. Sci. Technol. 2009, 43, 878~883
    140 S. H. Joo, A. J. Feitz, D. L. Sedlak, et al. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ. Sci. Technol. 2005, 39:1263~1268
    141 C. R. Keenan, D. L. Sedlak. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol., 2008, 42: 1262~1267
    142 C. R. Keenan, D. L. Sedlak. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008, 42: 6936~6941
    143 L. Zhao, Z. Sun, J. Ma. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution. Environ. Sci. Technol. 2009, 43: 4157~4163
    144陈英,张浩,钟理,等.苯酚的O3/H2O2化学氧化反应动力学研究.化学反应工程与工艺. 2001, 17(1): 55~60
    145陈英,李艳莉,钟理.苯酚液相臭氧氧化和复合氧化反应动力学.上海环境科学. 2002, 21(1): 5~8
    146申石泉,叶恒朋,陆少鸣,等.“三氮”在深度处理中的去除与转化.中国给水排水. 2004, (1):53~54.
    147 P. Berger, N. Karpel, Vel Leitner, M. Dorea, et al. Ozone and hydroxyl radicals induced oxidation of glycine. Water Res., 1999, 33(2):433~441
    148 W. Chen. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37(24), 5701~5710
    149 P. G. Coble. Characterization of marine and terrestrial DOM in seawater usingxxcitation–emission matrix spectroscopy. Marine Chem. 1996, 51(4): 325~346
    150 S. Mounier, N. Patel, L. Quilici, et al. Three-dimensional Fluorescence of the Dissolved Organic Carbon in the Amazon River. Water Res. 1999, 33(6): 1523~1533
    151 J. ?wietlik, E. Sikorska. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone. Water Res. 2004, 38(17): 3791~3799
    152 N. Senesi. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals, Part 2: The fluorescence spectroscopy approach. Analytica Chimica Acta. 1990, 232(11): 77~106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700