黄河上游灌区麦后复种油葵田N_2O排放特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N_2O已成为引起全球气候变化和平流层臭氧损耗的主要气体之一,其在100年内的增温潜势约是C_O2和CH_4的310倍和13.5倍,且在大气中的滞留时间长,约达114年,被认为是导致全球变暖的重要因素之一。同时,N_2O经排放进入大气反应生成NO_x,最终可导致臭氧层破坏。目前,宁夏黄灌区N_2O排放量较大,该区以盐碱土为主,油葵因具有耐碱、耐旱、耐瘠薄且生长快、秆叶盘产量高等特点,已成为冬小麦收获后复种的首选作物。但该地区有关温室气体排放的研究较少,尤其缺乏对稻麦轮作后复种油葵农田N_2O的排放特征和排放通量的研究。
     本研究针对目前宁夏引黄灌区典型轮作制度下农田N_2O排放量的估算存在较大不确定性的问题,通过大田观测并结合室内模拟,研究麦后复种油葵农田N_2O通量和影响因素,为准确估计宁夏灌区农田生态系统的N_2O排放提供一定的数据支持。2009-2011年种植作物为水稻-水稻-冬小麦,设置不同施肥处理,研究在此基础上开展,研究对象为麦后复种油葵田,在整个生长季不施入肥料。采用静态箱-气相色谱法,对长期不同施肥处理下形成不同肥力的油葵农田生态系统,进行N_2O通量日变化与季节变化特征研究,分析长期不同施肥处理对后茬油葵田N_2O通量的影响,并分析土壤湿度、温度、pH值、无机氮(NO_3~--N和NH4~+-N)含量、降雨等因素对N_2O通量的影响,揭示稻麦轮作后复种油葵农田N_2O通量与单个及综合因子的关系。
     研究主要得出以下结果:
     (1)有机肥与化学氮肥的长期配合施用对后茬作物油葵生长季N_2O排放通量有较大影响。不同处理(N300-OM、N240-1/2OM、N300、N240、N0)条件下N_2O平均排放通量和季节排放通量差异显著,且长期有机肥与化学氮肥的配合施用显著高于单施化学氮肥处理(P<0.05),各施肥处理均显著高于不施肥处理。土壤N_2O平均通量分别为44.82±15.07μg·m~(-2)·h~(-1)、47.58±15.20μg·m~(-2)·h~(-1)、20.25±9.10μg·m~(-2)·h~(-1)、18.05±8.38μg·m~(-2)·h~(-1)、7.58±5.94μg·m~(-2)·h~(-1),即N240-1/2OM>N300-OM>N300>N240>N0。
     (2)受土壤温度、含水量、pH、无机氮及降雨等的交互影响,油葵生长季N_2O通量随季节变化不明显。在油葵整个生长季总体上有从高到低的趋势,各处理在油葵播种后的第一个月出现较高的N_2O排放通量,在8月底各处理出现次高峰。在播种后第一个月内N300-OM、N240-1/2OM、N300、N240、N0各处理的N_2O平均排放通量分别为116.51±33.16μg·m~(-2)·h~(-1)、113.92±37.25μg·m~(-2)·h~(-1)、97.09±25.23μg·m~(-2)·h~(-1)、60.75±10.06μg·m~(-2)·h~(-1)、21.06±22.82μg·m~(-2)·h~(-1),其他阶段N_2O平均通量分别为20.93±6.27μg·m~(-2)·h~(-1)、25.47±7.96μg·m~(-2)·h~(-1)、7.98±17.95μg·m~(-2)·h~(-1)、3.81±13.10μg·m~(-2)·h~(-1)、5.3±15.06μg·m~(-2)·h~(-1)。在油葵生长的第一个月N_2O平均排放量显著高于其他阶段N_2O平均排放通量(P<0.05),之后随着油葵对土壤氮的吸收利用和温度的降低N_2O通量逐渐降低,在较小的范围内上下波动。
     (3)长期不同施肥处理后油葵田N_2O通量日变化未表现出明显的昼高夜低趋势,但日变化在不同生长季受不同施肥处理影响显著。油葵苗期,N300-OM处理N_2O通量日变化出现两个峰值,分别在11:00-13:00和18:00-22:00前后;N300和N0处理N_2O通量变化相似,呈现单峰曲线,排放高峰出现在上午9:00前后。油葵开花期,N300-OM处理N_2O通量日变化呈现两个峰值,峰值出现在11:00和22:00前后。N300和N0处理日变化通量相似,呈现出多峰曲线,峰值分别出现在11:00、18:00和2:00左右。
     (4)在油葵生长的不同时期,土壤含水量、土壤温度、土壤pH以及土壤中无机氮含量均对N_2O通量存在影响作用,且在不同施肥处理下作用大小不同。土壤含水量在7.5%~46.8%之间时,各处理下N_2O通量与土壤含水量有显著正相关关系;土壤pH为6.5~10.0时,各处理N_2O通量与其呈显著负相关。降雨会引起N_2O大量排放,多是在降雨量不太大或降雨后一段时间,短时间内有水分积存时土壤-植物系统N_2O呈吸收状态。生长季油葵田N_2O通量和土壤硝态氮、铵态氮的相关性受有机肥配施影响显著。N300-OM处理下N_2O通量随铵态氮含量的增加而增长,达到0.05的显著水平。其他处理土壤铵态氮含量与N_2O通量没有明显的关系。土壤硝态氮含量与N_2O通量也没有明显的关系。拟合油葵田生长季N_2O通量与各因子间的关系,5cm地温、土壤湿度、pH、NO_3--N、NH4+-N含量,5种因子可以解释油葵田整个观测期52.5%的N_2O排放通量的变化。
     (5)室内模拟条件下土壤N_2O排放积累量随着温度的升高而增加,并随着培养时间的不断延长而逐渐减小,约在第7天后均达到最低值,几乎接近于0。土壤N_2O排放积累量与温度和培养天数之间的拟合方程为:Y=(-2.15T~2+108.87T-1041.9)+[403.38ln(T)-984.36] ln(t),其中T表示温度,t表示培养时间。
Nitrous oxide, as one of the third-most abundant greenhouse gas, has an important effect on theglobal warming and climate change. It comprises a smaller portion of greenhouse gas emissions.However, N_2O is estimated to have310and13.5times of the globlal warming potential per molecule ofC_O2and CH_4. N_2O atmospheric lifetime is approximately114years. Once released, it may linger in theatmosphere for decades. N_2O reduction efforts have the potential to mitigate climate change. It has beenconsidered to the important factor to cause globle warming. In addition to being one cause of climatechange and globle warming, N_2O is also an ozone-depleting substance. Through a series of reactions, itcan produce NO_x, ultimately lead to ozone depletion. N_2O has become one of the primary gases thatcause global climate change and ozone depletion. N_2O emission flux is high in Ningxia irrigation area.Due to its characteristics to endure alkali, drought and barrenness, Oil-sunflower has been an importantcrop that can improve soil fertility and increase the output in Ningxia irrigation area. Oil-sunflower isregard as the important economic crop and the common and widely planting pattern to grow multiplecropping oil-sunflower after winter wheat harvest. We can turn soil with straw manuring afterharvesting the seeds of oil-sunflower to improve soil fertility. And the yield of oil-sunflower will be100-150kg per mu after harvesting winter wheat to cultivate oil-sunflower. The research on greenhousegas emissions is less in this area, especially about N_2O emission in the oil-sunflower farmland croppingafter winter wheat harvest. Therefore, it has practical significance to study N_2O emissionscharacteristics under the main planting pattern to sustainable development in the irrigation area.
     The study on N_2O emission in oil-sunflower farmland under the long term fertilization treatmentswere carried out at Lingwu farm of Ningxia Hui Autonomous Retion. We studied N_2O flux and itsinfluencing factors in oil-sunflower farmland through fied observation and indoor soil column simulatedexperiments. In the first two years we grew rice and then to grow winter wheat from2009to2011.Different amount of fertilizer in the rice-wheat rotation farmland can form different soil fertility inoil-sunflower farmland. We studied oil-sunflower farmland that was no fertilizer application after winterwheat. N_2O emission was determined by using the static closed chamber-GC technique. We studied thedaily and seasonal dynamics of N_2O emission in oil-sunflower farmland and analysis the change in timeof N_2O flux in the long term of different fertilizer treatment conditions. And the effects of soil moisture,soil temperature, soil pH, inorganic nitrogen content and rain fall on N_2O flux have been analyzed.
     The main conclusions of this dissertation as follows:
     (1) There were great influences on N_2O emission fluxes in oil-sunflower growth period from theapplication of long term organic fertilizer and chemical nitrogen fertilizer. The treatment of addingorganic fertilizer were obvious above of that of only used chemical fertilizer (P<0.05). And alltreatments were significantly above that of N0(no fertilizer treatment). The average emission andseasonal emission flux of N_2O under different treatment (N300-OM, N240-1/2OM, N300, N240, N0)were significant. The average emission flux of N_2O were respectively44.82±17.70μg·m~(-2)·h~(-1),47.58± 17.90μg·m~(-2)·h~(-1),30.25±16.28μg·m~(-2)·h~(-1),18.05±10.02μg·m~(-2)·h~(-1),9.24±7.77μg·m~(-2)·h~(-1), it showedthat N240-1/2OM>N300-OM>N300>N240>N0.
     (2) The season dynamic of N_2O flux did not change significantly during oil-sunflower growthperiod under the mutual influence of soil temperature, soil moisture, soil pH, inorganic nitrogen contentand rain fall. N_2O flux has a trend of changing from high to low in general during oil-sunflower growthperiod. In all treatments, N_2O emission fluxes were higher during the first month after oil-sunflowersowed. And the processing appeared the second peak in the end of August. During the first month, theaverage N_2O emission flux of the treatments N300-OM, N240-1/2OM, N300, N240, N0were116.51±33.16μg·m-2·h-1,113.92±37.25μg·m-2·h-1,97.09±25.23μg·m-2·h-1,60.75±10.06μg·m-2·h-1,21.06±22.82μg·m-2·h-1respectively, and the other stages N_2O average flux were20.93±6.27μg·m-2·h-1,25.47±7.96μg·m-2·h-1,7.98±17.95μg·m-2·h-1,3.81±13.10μg·m-2·h-1,5.3±15.06μg·m-2·h-1respectively.In the first month of oil-sunflower growth N_2O average emission fluxes were higher significantly thanother stages N_2O average emission fluxes (P<0.05). N_2O flux decreased gradually with the soil nitrogenabsorbed and fall of temperature, and fluctuated in a much tighter range.
     (3) Daily dynamic of N_2O emission in the long term of different fertilizer treatment in theoil-sunflower fields did not show the obvious trend of day and night. However, daily dynamic of N_2Oemission fluxes were different obviously by the effects of fertilizer treatments. During seeding, therewere two peaks in11:00-13:00and18:00-22:00of N_2O daily dynamic in N300-OM treatment. Therewas a similar trend of N_2O flux change in N300and N0treatments. The trend had the single apex andappeared in the9:00. During anthesis, there were two peaks in11:00and22:00of N_2O daily dynamic inN300-OM treatment. There was a similar trend of N_2O flux change in N300and N0treatments. Thetrend had the multi-peaks, and appeared in the11:00,18:00and2:00.
     (4) There were different effects on N_2O flux among soil moisture, soil temperature, soil pH andinorganic nitrogen content on N_2O flux during different periods of oil-sunflower growth. The flux ofN_2O has significant positive correlation with soil moisture content (7.5%-46.8%) and has significantnegative correlation with soil pH (6.5-10.0). Rainfall can cause N_2O emissions largely, and it often tookplace after the small rainfall or a period of time after rainfall. Rain infiltrate slowly during a short time.The surface of soil could store up some water. It could be found that the absorption of N_2O flux insoil-plant system. The soil was dry during the growth period of oil-sunflower. The soil moisture contentwas low, and it would influence the potential of N_2O flux determined by the temperature. Thecorrelation analysis between N_2O flux and soil inorganic nitrogen showed that N_2O flux of the treatmentN300-OM would increase with the improvement of ammonium nitrogen content. It was significant(P<0.05). The other treatments had no obvious relationship with the content of ammonium nitrogen andthe same with soil nitrate nitrogen and N_2O flux. We analysised the influence of each factor on the N_2Oflux, the factors had interaction with N_2O flux. It showed that above5factors can explain52.5%changeof N_2O emissions flux during the oil-sunflower growth period.
     (5)The accumulations of N_2O emission rised as temperature increased, and they reducedgradually with the experiment time extended and reduce. They reached the lowest about7days later, almost close to0. The accumulation of N_2O emission had interaction with soil temperature andincubation time and the equation can be showed that Y=(-2.15T~2+108.87T-1041.9)+[403.38ln(T)-984.36] ln(t), T represents soil temperature and t represents incubation time.
引文
1.白红英,韩建刚,张一平.农田温室气体N_20释放的水热效应机理初探[J].农业环境科学学报,2003,22(6):724~726.
    2.陈冠雄,商曙辉,于克伟,等.植物释放氧化亚氮研究[J].应用生态学报,1990,1(1):94~96.
    3.陈书涛,黄耀,郑循华,等.轮作制度对农田氧化亚氮排放的影响及驱动因子[J].中国农业科学,2005,38(10):2053-2060.
    4.陈书涛,黄耀,郑循华,等.种植不同作物对农田N_20和CH_4排放的影响及其驱动因子[J].气候与环境研究,2007,12(2):148~155.
    5.丁洪,蔡贵信,王跃思,等.华北平原几种主要类型土壤的硝化及反硝化活性[J].农业环境保护,2001,20(6):390~393.
    6.丁洪,王跃思,秦胜金,等.控释肥对土壤氮素反硝化损失和N_20排放的影响[J].农业环境科学学报,2010,29(5):1015~1019.
    7.丁琦,白红英,李西祥.作物对黄土性土壤氧化亚氮排放的影响-根系与土壤氧化亚氮排放[J].生态学报,2007,7(27):2824~2831.
    8.董玉红,欧阳竹,李鹏,等.长期定位施肥对农田土壤温室气体排放的影响[J].土壤通报,2007,38(1):97~100.
    9.杜睿,王庚辰,吕达仁,等.箱法在草地温室气体通量野外实验观测中的应用研究[J].大气科学,2001,25(1):61~70.
    10.封克,王子波,王小治,等.土壤pH对硝酸根还原过程中N_20产生的影响[J].土壤学报,2004,41(1):81~86.
    11.封克,殷士学.影响氧化亚氮形成与排放的土壤因素[J].土壤学进展,1995,23(6):35~40.
    12.付晓青,李勇.土壤氧化亚氮排放时空变异性及其方法研究进展[J].生态学杂志,2012,31(3):724~730.
    13.高志岭,陈新平,张福锁.农田N_20排放研究进展[J].生态环境,2004,13(4):661~665.
    14.韩建刚,李占斌,朱咏莉,等.农田土壤中N_20释放的水温特征研究[J].土壤通报,2004,35(3):285~289.
    15.黄光辉,张明园,陈阜,张海林.耕作措施对华北地区冬小麦田N_20排放的影响[J].农业工程学报,2011,2:167~173.
    16.黄国宏,陈冠雄,韩冰.土壤含水量与N_20产生途径研究[J].应用生态学报,1999(1):53~56.
    17.黄晶,刘宏斌,王伯仁.长期施肥下红壤旱地CO_2、N_20排放特征[J].中国农学通报,2009,25(24):428~433.
    18.黄益宗,张福珠,刘淑琴,等.化感物质对土壤N_20释放影响的研究[J].环境科学学报,1999,19(5):478~482.
    19.姜宁宁,李玉娥,华珞,等.不同氮源及秸秆添加对菜地土壤N_20排放影响[J].土壤通报,2012,1:219~223.
    20.巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003,12(2):192~197.
    21.李方敏,樊小林,刘芳,等.控释肥料对稻田氧化亚氮排放的影响[J].应用生态学报,2004,15(11):2170~2174.
    22.李凤琴,肖云清,王中莲,等.2001-2007年银川市降水pH值变化分析及控制措施[J].农业科学研究,2009,3:273~275.
    23.李晶,王明星,王跃思,等.农田生态系统温室气体排放研究进展[J].大气科学,2003,27(4):740~749.
    24.李明峰,董云社,齐玉春.农垦对温带草地生态系统CO_2、CH_4、N_20通量的影响[J].中国农业科学,2004,37(12):1960~1965.
    25.李楠,陈冠雄.植物释放N_20速率及施肥的影响[J].应用生态学报,1993,4(3):295~298.
    26.李天杰.土壤环境学[M].北京:高等教育出版社,1995:255~260.
    27.梁巍,张颖,岳进,等.长效氮肥施用对黑土水早田CH_4和N_20排放的影响[J].生态学杂志,2004,23(3):44~48.
    28.林杉,冯明磊,阮磊磊,等.三峡库区不同土地利用方式下土壤氧化亚氮排放及其影响因素[J].应用生态学报,2008,19(6):1269~1276.
    29.刘广深,徐文彬,洪业汤,等.土壤N_20释放通量季节变化的主要环境驱动因素研究[J].矿物学报,2002,22(3):229~234.
    30.刘惠,赵平,林永标,饶兴权.华南丘陵区2种土地利用方式下地表CH_4和N_20通量研究[J].热带亚热带植物学报,2008,16(4):304~314.
    31.刘惠,赵平,孙谷畴,等.华南丘陵区冬闲稻田二氧化碳、甲烷和氧化亚氮的排放特征[J].应用生态学报,2007,18(1):57~62.
    32.刘连杰,白红英,母国宏,等.土壤质地及环境因子对农田N_20排放的影响[J].安徽农业科学,2008,36(14):6075~6077.
    33.马二登,马静,徐华,等.施肥对稻田N_20排放的影响[J].农业环境科学学报,2009,28(12):2453~2458.
    34.潘志勇,吴文良,刘广栋,等.不同秸秆还田模式与氮肥施用量对土壤N_20排放的影响[J].土壤肥料,2004,(5):6~8.
    35.世界气象组织.温室气体公报:根据2009年全球观测制作的大气温室气体状况[R].全球大气监测计划,2010,6(2010-11-24).
    36.宋长春,王毅勇,王跃思,等.季节性冻融期沼泽湿地CO_2、CH_4和N_20排放动态[J].环境科学,2005,26(4):7~12.
    37.宋长春,张丽华,王毅勇.淡水沼泽湿地CO_2、CH_4和N_20排放通量年际变化及其对氮输入的响应[J].环境科学,2006,12(27):2369~2375.
    38.孙向阳,徐化成.北京低山区两种人工林土壤中N_20排放通量的研究[J].林业科学,2001,37(5):57~63.
    39.孙艳丽.华北平原典型农田土壤N_20通量及其影响因素的研究[硕士论文].北京:北京林业大学,2007.
    40.孙志强,郝庆菊,江长胜,王定勇.农田土壤N_20的产生机制及其影响因素研究进展[J].土壤通报,2010,41(6):1524~1530.
    41.万运帆,李玉娥,林而达,等.静态箱法测定旱地农田温室气体时密闭时间的研究[J].中国农业气象,2005,27(2):122~124.
    42.王彩绒,田霄鸿,李生秀,等.土壤中氧化亚氮的产生及减少排放量的措施[J].土壤与环境,2001,10(2):143~148.
    43.王风,高尚宾,张克强,等.冻融条件下土壤N_20排放研究进展[J].生态环境学报,2009,18(5):1933~1937.
    44.王效科,李长生.中国农业土壤N_20排放量估算[J].环境科学学报,2000,20(4):483~488.
    45.王效科,庄亚辉,李长生.中国农田土壤N_20排放通量分布格局研究[J].生态学报,2001,21(8):1225~1232.
    46.王跃思,纪宝明,黄耀.农垦与放牧对内蒙古草原N_20、CO_2排放和CH_4吸收的影响[J].环境科学,2001,22(6):7~13.
    47.王智平,曾江海,张玉铭.农田土壤N_20排放的影响因素[J].农业环境保护,1994,13(1):40~42.
    48.王智平.中国农田N_20排放量的估算[J].农村生态环境,1997,13(2):51~55.
    49.王重阳,郑靖,顾江新,等.下辽河平原几种旱作农田N_20排放通量及相关影响因素的研究[J].农业环境科学学报,2006,25(3):657~663.
    50.武其甫,武雪萍,李银坤,等.保护地土壤N_20排放通量特征研究[J].植物营养与肥料学报,2011,4:942~948.
    51.谢军飞,李玉娥.土壤温度对北京旱地农田N_20排放的影响[J].中国农业气象,2005,26(1):7~10.
    52.熊正琴,邢光熹,鹤田治雄,等.种植夏季豆科作物对旱地氧化亚氮排放贡献的研究[J].中国农业科学,2002,35(9):1104~1108.
    53.徐华,刑光熹,蔡祖聪,等.土壤质地对小麦和棉花田N_20排放的影响[J].农业环境保护,2000,19(1):1~3.
    54.徐文彬,刘维屏,刘广深.温度对旱田土壤N_20排放的影响研究[J].土壤学报,2002,39(1):1~8.
    55.颜晓元,施书莲,杜丽娟,等.水分状况对水田土壤N_20排放的影响[J].土壤学报,2000,37(4):43~50.
    56.杨兰芳,蔡祖聪.施氮和玉米生长对土壤氧化亚氮排放的影响[J].应用生态学报,2005,16(1):100~104.
    57.姚志生,郑循华,周再兴.太湖地区冬小麦田与蔬菜地N_20排放对比观测研究[J].气候与环境研究,2006,6(11):691~701.
    58.姚志生.太湖地区冬小麦田与蔬菜地的N_20和NO排放[硕士论文].重庆:西南农业大学,2005.
    59.叶欣.华北平原典型农田土壤及作物氧化亚氮通量[硕士论文].重庆:西南农业大学,2005.
    60.尤勇,蒋跃林.植物生长及环境因子对麦田N_20通量的影响[J].安徽农学通报,2009,15(10):53~54.
    61.尤勇.环境因子对农田N_20通量的影响[硕士论文].安徽:安徽农业大学,2009.
    62.于克伟,黄斌,陈冠雄,等.田间大豆植株N_20通量的测定及光照的影响[J].应用生态学报,1997,8(2):171~177.
    63.曾江海,王智平,宋文质,等.小麦-玉米轮作期土壤排放N_20通量及总量估算[J].环境科学,1994,16(1):32~37.
    64.张惠,杨正礼,罗良国,等.黄河上游灌区稻田N_20排放特征[J].生态学报,2011,31(21):6606~6615.
    65.张惠,杨正礼,罗良国,等.黄河上游灌区稻田氨挥发损失研究[J].植物营养与肥料学报,2011,17(5):1131~1139.
    66.张惠.黄河上游灌区稻田系统氮素气态损失及平衡研究[博士论文].北京:中国农业科学院,
    2011.
    67.张苗,黄少斌,肖先念. C/N和pH值对高温好氧反硝化菌产N_20的影响研究[J].环境工程学报,2012,1:33~40.
    68.张小洪,袁红梅,蒋文举.油菜地CO_2、N_20排放及其影响因素[J].生态与农村环境学报,2007,23(3):5~8.
    69.张玉铭,胡春胜,董文旭.农田土壤N_20生成与排放影响因素及N_20总量估算的研究[J].中国生态农业学报,2004,12(3):119~123.
    70.张岳芳,郑建初,陈留根,等.麦秸还田与土壤耕作对稻季CH_4和N_20排放的影响[J].生态环境学报,2009,18(6):2334~2338.
    71.张振贤,华珞,尹逊霄,等.农田土壤N_20的发生机制及其主要影响因素[J].首都师范大学学报(自然科学版),2005,26(3):114~120.
    72.张仲新,李玉娥,华珞,等.不同施肥量对设施菜地N_20排放通量的影响[J].农业工程学报,2010,26(5):269~275.
    73.郑循华,王明星,王跃思,等.稻麦轮作生态系统中土壤湿度对N_20产生与排放的影响[J].应用生态学报,1996,7(3):273~279.
    74.郑循华,王明星,王跃思,等.华东稻麦轮作生态系统的N_20排放研究[J].应用生态学报,1997,8(5):495~496.
    75.郑循华,王明星,王跃思,等.温度对农田N_20产生与排放的影响[J].环境科学,1997,18(5):1~6.
    76.郑循华,王明星,王跃思.农田N_20排放的时间变异性[J].环境科学,1999,3(20):17~21.
    77.周文能.中国农业氧化亚氮的排放量和减缓对策[J].农业环境与发展,1994,11(1):27~31.
    78.朱祖祥.土壤学[M].北京:农业出版社,1983.
    79.邹国元,张福锁.根基反硝化作用于N_20释放[J].中国农业大学学报,2002,7(1):77~82.
    80. Bai Shaojun, Lian Long, Ma Xun. A study on the net greenhouse gas emissions under intensivehigh-yielding cropland in north china-A case study of winter wheat-summer maize rotation systemin Huantai county [J]. Energy Procedia,2011(5):785~792.
    81. Ball B C, Crichton I, Horgan G W. Dynamics of upward and downward N_20and CO_2fluxes inploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence [J].Soil&Tillage Research,2008,101:20~30.
    82. Bouwan A.F. Exchange of greenhouse gases between terrestrial ecosyetems and the atmosphere [J].Soil and greenhouse effeet,1990:61~128.
    83. Bremner J M., Robbins S G, Blackmer A M. Seasonal variability in emission of nitrous oxide fromsoil [J]. Geophys.Res.Lett,1980,7:641~644.
    84. Chao C C, Young C C, Wan Y P, et al. Daily and seasonal nitrous oxide fluxes in soils fromhardwoodforest and different agro ecosystems of Taiwan Chemosphere [J]. Global Change Science,2000,2:77~84.
    85. Christian J J, Sten Struwe, Bo Elberling. Temporal trends in N_20flux dynamics in a Danishwetland-effects of plant-mediated gas transport of N_20and O2following changes in water level andsoil mineral-N availability [J]. Global Change Biology,2012,18:210~222.
    86. Colbourn P. Denitrification and N_20production in pasture soil: the influence of nitrogensupply and moisture [J]. Agric, Ecosystem Environ,1992,39:267~278.
    87. Daum D,Schenk M K. Influence of nutrient solution pH on N_20and N2emissions from a soilessculture system[J].Plant and Soil,1998,203:279~287.
    88. Dava S.Reay, Eric A. Davidson, Keith A. Smith, et al. Global agriculture and nitrous oxideemissions [J]. Nature Climate Change,2012,2:410~416.
    89. Dmitri C, Jorgen O. Soil tillage enhanced CO_2and N_20emissions from loamy sand soil underspringbarley [J]. Soil&Tillage Research,2007,97:5~18.
    90. Drury C F. Nitric oxide and nitrous oxide production from soil: water and oxygen effects [J]. SoilSci. Soc. Am. J.,1992,56:766.
    91. Ellingson L J, Kauffman J B, Cummings D L. Soil N dynamics associated with deforestation,biomass burning, and pasture conversion in a Mexican tropical dry forest [J]. Forest Ecology andManagement,2000,137:41~51.
    92. Gerard L. Velthof, Peter J. Kuikman, Oene Oenema. Nitrous oxide emission from animal manuresapplied to soil under controlled conditions [J]. Biology and Fertility of Soils,2003,37(4):221~230.
    93. Hyvoenen N P, Huttunen J T, Shurpali N J, et al. Fluxes of nitrous oxide and methane on anabandoned peat extraction site: effect of reed canary grass cultivation [J]. Bioresource Technology,2009,100:4723~4730.
    94. IPCC. Climate Change2007: The Physical Science Basis. New York, NY, USA: CambridgeUniversity Press,2007.
    95. Ishikawa T, Subbarao G V, Ito O, et al. Suppression of nitrification and nitrous oxide emission bythe tropical grass Brach aria humid cola [J]. Plant Soil,2003,255:413~419.
    96. Jan Peter Lesschen, Gerard L. Velthof, Wim de Vries, Johannes Kros. Differentiation of nitrousoxide emission factors for agricultural soils [J]. Environmental Pollution,2011,159:3215~3222.
    97. Jan Willem van Groenigen, Peter J. Kuikman, Willy J.M de Groot, Gerard L. Velthof. Nitrous oxideemission from urine-treated soil as influenced by urine composition and soil physical conditions [J].Soil Biology and Biochemistry,2005,37(3):463~473.
    98. Janina B D C, Marisa D C P, Cristiano A D A. Short-term changes in nitrogen availability, gasfluxes(CO_2, NO, N_20) and microbial biomass after tillage during pasture re-establishment in Rondonia,Brazil [J]. Soil&Tillage Research,2007,96:250~259.
    99. Karen E. Dobbie, Keith A. Smith. Nitrous oxide emission factors for agricultural soils in GreatBritain: the impact of soil water-filled pore space and other controlling variables [J]. Global ChangeBiology,2003,9:204~218.
    100. Keith A. Smith, Karen E. Dobbie, Rachel Thorman, et al. The effect of N fertilizer forms on nitrousoxide emissions from UK arable land and grassland [J]. Nutrient Cycling in Agroecosystems,2012,27:239~247.
    101. Kelsi Bracmort. Nitrous Oxide from Agricultural Sources: Potential Role in Greenhouse GasEmission Reduction and Ozone Recovery [G]. Congressional Research Service.2010-5-3.
    102. Kessavalou A, Mosier A R, Doran J W, et al. Fluxes of carbon dioxide, nitrous oxide, and methanein grass sod and winter wheat fallow tillage management [J]. J. Environ. Qual.,1998,27:1094~1104.
    103. Kuenen J G. The nitrogen and sulphur cycles [M]. Cambridge: Cambridge University Press,1988:161~128.
    104. Liao Q J, Yan X Y. Statistical analysis of factors influencing N_20emission from paddy fields inAsia [J]. Huan Jing Ke Xue,2011,32(1):38~45.
    105. Liu H, Zhao P, Lu P. Greenhouse gas fluxes from soils of different land-use types in a hilly area ofSouthChina [J]. Agriculture, Ecosystems and Environment,2008,124:125~135.
    106. Mackenzie A F, Fan M X, Cadrin F. Nitrous oxide emission as affected by tillage,corn-soybean-alfalfa rotations and nitrogen fertilization [J]. Can J Soil Sci,1997,77:145~152.
    107. Marja Maljanen, Narasinha Shurpali, Jyrki Hytonen, et al. Afforestation does not necessarily reducenitrous oxide emissions from managed boreal peat soils [J]. Biogeochemistry,2012,108:1~3.
    108. Mkhabela M S, Madani A, Gordon R. Gaseous and leaching nitrogen losses from no-tillageandconventional tillage systems following surface application of cattle manure [J]. Soil&TillageResearch,2008,98:187~199.
    109. Robertson G P, Paul E A, Harwood R. Greenhouse gases in intensive agriculture: Contributionsofindividual gases to the radioactive forcing of the atmosphere [J]. Science,2000,289(5486):1922~1925.
    110. Ross S M, Izaurralde R C, Janzen H H, et al. The nitrogen balance of three long-termagroecosystems on a boreal soil in western Canada [J]. Agriculture, Ecosystems and Environment,2008,127:241~250.
    111. Skiba U, Jones S K, Dragosits U, et al. UK emissions of the greenhouse gas nitrous oxide [J].Philosophical Transactions of the Royal Society B: Biological Sciences,2012,367(1593):1175~1185.
    112. Smiht K A. Green house gas fluxed between land surface and the atmosphere [J]. Progress ofPhysical Geography,1990,3:349~272.
    113. Soren O, Petersen, Schjonning I K. Nitrous oxide evolution from structurally intact soilasinfluenced by tillage and soil water content [J]. Soil Biology&Biochemistry,2008,40:967~977.
    114. Stevens A F, Laughlin R J, Malone J P. Soil pH affects the processes reducing nitrate to nitrousoxide and di-nitrogen [J]. Soil Biol.Biochem., l998,30:1119~1126.
    115. Teepe R, Brumme R, Bease F. Nitrous oxide emissions from soil during freezing and thawingperiods [J]. Soil Biol. Biochem.,2001,33:1269~1275.
    116. Uchida Y, Clough T J, Kelliher F M, Sherlock R R. Effects of aggregate size, soil compaction, andbovine urine on N_20emissions from a pasture soil [J]. Soil Biology and Biochemistry,2008,40:924~931.
    117. Vethof G L, Kuikman P J, Oenema O. Nitrous oxide emission from soils amended withcropresidues [J]. Nutrient Cycling in Agroecosystems,2002,62:249~261.
    118. Wantanabe T, Osada T, Yoh M, et al. N_20and NO emission from grassland soils after theapplication of cattle and swine excreta [J]. Nutrient Cycling in Agroecosystems,1997,49:35~39.
    119. Weier K L, Gilliam W. Effect of acidity on denitrification and nitrous oxide evolution from AtlanticCoastal Plain soils [J]. Soil Sci. Soc. Am.J.,1986,50:1202~1205.
    120. Wolf I, Russow R. Different pathways of formation of N_20, N2and NO in black earth soil [J]. SoilBiol Biochem,2000,32:1251~1259.
    121. Wrage N, Velthof G L, Van Beusichem M L, et al. Role of nitrifier denitrification in the productionof nitrous oxide [J]. Soil Biology and Biochenistry,2001,33:1723~1732.
    122. Xing G X, Zhu Z L. Preliminary studies on N_20emissions flux from upland soils and paddy soils inChina [J]. Nutrient Cycling in Agroecosystems,1997,49:17~22.
    123. XuHua, Xing Guangxi, Cai Zucong, et al. Nitrous oxide emissions from three rice Paddy fields inChina [J]. Nutrient Cycling in Agro-ecosystem,1997,49:23~28.
    124. Yanjiang Cai, Weixin Ding, Jiafa Luo. Spatial variation of nitrous oxide emission between interrowsoil and interrow plus row soil in a long-term maize cultivated sandy loam soil [J]. Geoderma,2012,181:2~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700