光催化合成芳香醛缩醛及其反应行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳香醛缩醛作为一类特殊的精细化学品,在有机合成和化工生产领域具有极其重要的应用价值。本论文首次采用自行设计的UV-LED恒温石英光催化反应器将非均相光催化反应技术应用于芳香醛缩醛化反应体系,制备了不同掺杂的纳米TiO2光催化剂并对其光催化活性进行了评价。高选择性地合成了苯甲醛二乙缩醛(BDA)及其不同取代的缩醛衍生物,优化了合成反应工艺,探讨了不同取代基的电子效应对反应活性和产率的影响,并提出了光催化苯甲醛缩醛反应的可能机理。
     采用溶胶-凝胶法,分别以钛酸四正丁酯[Ti(OC4H9)4]为前驱体,氨水(NH3)为氮源,六水合氯铂酸(H2PtCl6·6H2O)为铂源,在一定条件下制备了纯TiO2、N/TiO2、Pt/TiO2和PtN/TiO2晶体粉末,并通过XRD、XPS、TEM等分析测试手段对其一系列物理特性进行了表征。XRD及TEM测试结果表明:溶胶-凝胶法制备的各种纳米TiO2样品粉末主要为单一锐钛矿晶型的球状颗粒且分布均匀,平均粒径在20nm左右。以紫外光催化降解亚甲基蓝水溶液为模型反应,评价了各种掺杂改性的纳米Ti02和商用Degussa P25的光催化性能,结果表明:各种纳米TiO2粉末对亚甲基蓝均有较好的光催化降解效果,其中混晶型Degussa P25的光催化效率最高。
     自行设计了配备光强可调式UV-LED阵列光源的恒温石英玻璃光催化反应系统。在此基础上,采用Degussa P25作为光催化剂,在无水乙醇中研究了苯甲醛光催化合成苯甲醛二乙缩醛(BDA)的反应行为。讨论了氮气是否饱和、反应液pH、紫外光强、反应时间、反应物初始浓度、催化剂用量等因素以及不同类型反应器对苯甲醛二乙缩醛的产率及选择性的影响,优化了反应条件。并考察了甲醇、乙醇、异丙醇等不同醇溶剂对苯甲醛的光催化缩醛反应活性及选择性的影响,发现不同醇溶剂中的缩醛反应速率与醇的pKa值有关,pKa值越小,醇越活泼,反应速率越快。实验结果表明:在反应液pH为7.86,紫外光强为0.6mw/cm2,苯甲醛初始浓度为0.05mol/L, TiO2(P25)催化剂用量为5.0g/L,反应15min条件下,苯甲醛二乙缩醛的产率和选择性最好,GC产率高达99.86%,选择性为100%,且重复性好。
     在上述优化条件下,考察了无水乙醇中对位不同取代的苯甲醛光催化缩醛反应行为,讨论了苯环对位取代基的电子效应对缩醛反应活性及选择性的影响。苯环对位为供电子基团(EDG)取代比为吸电子基团取代(EWG)更利于发生缩醛反应,且供电子能力越弱,缩醛产率越高。结合传统缩醛反应机理和非均相光催化反应的特点,探讨了光催化芳香醛缩醛反应机理,与传统质子酸活化羰基不同,芳香醛基在光生电子和空穴的作用下,选择性的生成α-羟基自由基是引发反应的关键步骤。
     此外,本文采用自制的光催化微反应器进行苯甲醛与乙醇的光催化反应行为和缩醛反应研究。考察了光强、反应时间及反应器尺寸对微反应器中苯甲醛的光催化缩醛反应影响,结果表明微反应器中不仅发生苯甲醛缩醛反应,更容易发生苯甲醛的还原反应。光强越大、反应时间越长越容易发生苯甲醛还原。而反应器尺寸越大越利于光催化缩醛反应的进行。
     纳米Ti02光催化技术为苯甲醛缩醛及其衍生物的合成提供了一种绿色、高效、简便且价廉的合成方法,对缩醛的合成生产具有重要的理论研究意义和一定的实用价值。
Aromatic acetals as a specific kind of fine chemicals has very significant appli-cation value in organic synthesis and industrial production.In this paper, heterogene-ous photocatalytic technology is firstly applied to the acetal reaction in a self-designed constant temperature quartz-glass photocatalytic reactor with UV-LED as light source. Different kinds of TiO2photocatalysis have been prepared and their photocatalysis properties were evaluated.Benzaldehyde Diethyl Acetal (BDA) has been high selec-tively synthesized.the condition of acetal reaction has been optimized. The photocata-lytic acetal reaction of benzaldehyde with different substitutions have also been rese-arched and the mechanism was discussed.
     Pure TiO2,N/TiO2,Pt/TiO2and PtN/TiO2were prepared by sol-gel method with tetrabutyltitanate[Ti(OC4H9)4] as a precursor,ammonia(NH3)as nitro source,and six hydration chlorine platinum acid(H2PtCl6·6H2O) as platinuim source respectively.The properties of the various kinds of TiO2were studied by different technologies, such as XRD,XPS and TEM.X-ray diffraction(XRD) and Transmission Electorn Microscope (TEM) showed that the self-synthesized TiO2by sol-gel method mainly are composed with anatase globular particles,and average particle size is less than20nm.The photo-catalytic activities of self-synthesized TiO2and commercial mixed crystal-Degussa P25were evaluated by photo-degradation of methylene blue solution and the result showed that all catalysts demonstrated good capacity of photodagradation,in which mixed crystal-Degussa P25is the best.
     We have designed the photocatalytic reaction system equipped with adjustable light intensity UV-LED array light source and constant temperature quartz glass reactor. Based on the system, photocatalytic synthetic reaction behavior of Benzaldehyde Diethyl Acetal(BDA) is studied in anhydrous alcohol with Degussa P25as a catalyst from benzaldehyde. The effects of reaction solution pH, light intensity, reaction time, concentration of substrate, loading of TiO2and dimension of the reactor on reaction rate and yield of BDA were evaluated. Several alcohols such as methanol. ethanol and isopropanol as reactant of the acetal reaction with benzaldehyde were also studied. The yield of BDA could reach high up to100%under the condition of solution pH7.86, TiO2concentration:5.0g/L,benzaldehyde initial concentration:0.05mol/L, light intensity:0.6mw/cm2,temperature:30℃.reaction time:15min. Additionally,the reaction rate was also related to the pKa of the alcohols, the smaller pKa value, the more lively alcohol, the higher the reaction activity.
     Furthermore, we investigated the synthesis of aromatic aldehyde with different substitutions under the optimized conditions mentioned above. The results showed that benzaldehyde with EDG substitutions in/P-phenyl ring have good efficiency in the photocatalytic acetal reaction, acetal yield is in the range of83.89%-58.20%,. Chlorine substituted benzaldehyde showed high reaction activity as the lone-electron pair on Chlorine atom give strong electrophobic effect on the phenyl ring, the yield of acetal product reached to96.84%. While acetal reactions of benzaldehyde with EDG substitutions in P-phenyl ring were relatively difficult to take place. The mechanism of the photocatalytic acetal reaction was discussed based on the facts mentioned above.
     In addition, benzaldehyde photocatalytic reaction behavior and acetal reaction in ethanol with self-made photocatalytic micro reactors was studied in this paper. The effects of light intensity, reaction time and the size of photocatalytic reactor on benzaldehyde acetal reaction was investigated. The results showed that not only benzaldehyde acetal but reduction of benzaldehyde were produced. The greater the light intensity and the longer reaction time is, the more tendency benzaldehyde reduction would occur. And when the reactor size is larger, photocatalytic acetal reaction is more likely to take place.
     our study indicates that photocatalysis is a novel, green and effective method for acetalization of Benzaldehyde and have good prospect in acetal synthesis.
引文
[J]Meskens F A.Methods for the Preparation of Acetals from Alcohols or Oxiranes and Carbonyl Compounds[J].Synthesis,1981,7:501-522.
    [2]Tavares R F.et al.,US,3822290;US,3936398;CA;1974,81,120719k;CA,1976,84,135736 Z.
    [3]N.H勃拉图斯[苏].香料化学[M].刘树文译.北京:轻工业出版社,1984,250-254,24-26.
    [4]Kodama K H,Yamane H,Okumera M,Shiro M,Tagnchi T.Lewis Acid Catalyzed Aldol-type Reatction of 1,1-Difluoroviny Methyl Ether Derivatives[J].Tetrahedron,1995,51: 12217-12228.
    [5]Clerici A, Pastori N, Porta O.Efficient Acetalization of Aldehydes Catalyzed by Titaniu-m Tetrachloride in a Basic Medium[J].Tetrahedron,1998,54:15679-15690.
    [6]Srivastava N, Dasgupta S K, Banik B K.A Remarkable Bismuth Nitrate-catalyzed Protection of Carbonyl Compounds[J].Tetrahedron Lett.,2003,44:1191-1193.
    [7]Ates A, Gautier A, Leroy B, Plancher J M, Quesnel Y, Vanherck J C, Mark I E.Mild an-d Chemoselective Catalytic Deprotection of Ketals and Acetals Using Cerium(IV) Am-monium Nitrate[J].Tetrahedron,2003,59:8989-8999.
    [8]Daignault R.A.,et al.Synthesis of 2-Cyclohexyloxyethanol[J] Org.Syn.Col.,1973,5,303.
    [9]庄志杨,李继忠.氨基磺酸催化合成苯甲醛乙二醇缩醛的研究[J].科学研究,2007,24(3):17.
    [10]张富捐,梁保安,盛淑玲.硫酸高铈催化合成苯乙醛1,2-丙二醇缩醛[J].香料香精化妆品,2005(1):17-18.
    [11]郑清云,李谦和.硫酸铝催化苯甲醛1,2-丙二醇的缩醛化反应[J].吉林化工学院学报,2001,18(3):29-33.
    [12]梁学正,于心玉,彭惠琦,等.Hβ沸石催化合成缩醛(酮)[J].石油化工,2005,34(11):1083-1085.
    [13]张富捐,盛淑玲,张翔字.氨基磺酸催化合成苯甲醛缩1,2-丙二醇[J].精细石油化工2005,(1):18-20.
    [14]杨水金,童文龙H4SiW12O40-PAn催化剂催化合成苯甲醛乙二醇缩醛[J].香料香精化妆,,2004.(5):17-19,26.
    [15]Corma A.Martinez A.Chemistry catalysts and processes for iso-paraffin nolefin alkyla tion[J].Catal.Rev.Sci.Eng,1993,35(4):483.
    [16]王景芸,张树江.固体超强酸催化剂SO42-/ZrO2在缩醛反应中的应用[J].辽宁石油化工大学学报,2006,26(01):34-37.
    [17]张晓丽,高文艺,任立国SO42-TiO2/γ-Al2O3固体超强酸催化剂上的缩醛(酮)反应[J].辽宁石油化工大学学报,2006,26(2):38-41.
    [18]Rao P,Vatcha S R.Solid acid alkylation:Catalyst and process per-formance,criterin and R & D guidelines[J].Oil&Gas,1996,94(3):56-61.
    [19]梁学正,高珊,刘彩华,等.路易斯酸盐ZnCl2催化合成缩醛(酮)的研究[J].化工时刊.2006,20(3):38-40.
    [20]俞善信,彭红阳.三氯化铁催化合成缩醛(酮)[J].现代化工,1994,(12):29-30.
    [21]丁盈红,谭莉萍.硫酸铁铵催化合成乙酰乙酸乙酯乙二醇缩酮[J].广东药学院学报,2002,18(02):81-82.
    [22]郑清云,李谦和.硫酸铝催化柠檬醛和1,2-丙二醇的缩醛化反应[J].化工中间体,2004,1(07):28-30.
    [23]梁学正,高珊,刘彩华,于心玉,杨建国.路易斯酸盐ZnCl2催化合成甘油类缩醛(酮)的研究[J].化学工业与工程技术,2006,27(4):1-3.
    [24]张敏,袁霖,袁先友.微波促进活性炭负载四氯化锡催化合成乙酰乙酸乙酯缩酮[J].广州化学,2007,32(01):7-12.
    [25]Sket B,Zupan M.Polymer-Protected Reagents:Polystrene Boron Fluoride[J].J.Macr-omol.Sci.Chem:.A,1983,19(5):643-647.
    [26]Neckers D C,Kooistra D K,Green G W.Polymer-Protected Reagents:Polystrene Alu-minum Chloride[J].J.Am.Chem.Soc.,]972,94(26):9284-9285.
    [27]Blossey E C.Turner L M,Neckers D C.Polymer-Protected Reagents Ⅲ.Acetal Format-ion with Polymer-Protected Aluminum chloride[J].J.Org.Chem.,1975.40(7):959-960.
    [28]冉瑞成,裴伟伟,贾欣茹,等.高分子载体Lewis酸催化剂:聚苯乙烯-三氯化铁复合物[J].科学通报,1986,31(18):748-752.
    [29]吕宝兰,杨水金.碘掺杂聚苯胺催化剂催化合成丁醛乙二醇缩醛[A].中国化学会2005年中西部十五省(区)、市无机化学化工学术交流会论文集[C],2005:110-112.
    [30]刘福安,吕艳,黄化民.高分子载体FeCl3催化剂的合成及其在加成酯化反应中的应用[J].石油化工,]990,19(12):814-817.
    [31]俞善信.聚氯乙烯-三氯化铁的酯化催化作[J].湖南师范大学学报:自然科学版,1990,13(1):56-62.
    [32]俞善信,陈春林.高分子催化剂聚氯乙烯-三氯化铁催化合成缩醛(酮)[J].离子交换与吸附,1992,8(5):447-450.
    [33]俞善信,黄国华.高分子催化剂氯化聚氯乙烯·三氯化铁催化缩醛(酮)的合成[J].香料香精化妆品,1990(3):5-7.
    [34]李毅群.聚氯乙烯支载三氯化铁试剂催化醛与乙酸酐反应合成乙酰缩醛[J].有机化学,2001,2](3):2-11.
    [35]雷庆英,傅相锴,罗必奎.杂多酸(HPA)催化制取环缩酮和缩醛[J].化学研究与应用,1989,1(1):90-92.
    136]马雪琴,丁辰元.钨硅酸催化合成缩醛(酮)[J].河北科技大学学报,1997,18(2):15-17.
    [37]罗玉梅,吕银华,刘江燕.钨硅酸的制备及其在催化合成缩酮(醛)中的应用[J].化学研究与应用,2005,5,615-618.
    [38]吕月仙.磷钼酸催化法制备某些缩醛(酮)的研究.郑州轻工业学院学报[J],1999,14(1):60-63.
    [39]罗玉梅,杨水金.磷钨酸催化剂催化合成缩酮[J].稀有金属,2004,28(4):787-789.
    [40]许招会,陈德锴,黄宜祥,等.硅钨酸镧绿色合成环己酮乙二醇缩酮[J].工业催化,2005,13(10):40-42.
    [41]杨水金,夏佳,吕宝兰.磷钨酸催化合成缩醛(酮)[J].精细化工,2004,21(9):686-688.
    [42]刘春生,罗根祥.苯甲醛1,2-丙二醇缩醛的催化合成研究[J].化工科技,2005,13(1):53-55.
    [43]许招会,廖维林,王甡.磷钨酸镧催化合成缩醛(酮)的研究[J].分子催化,2008,22(1):39-43.
    [44]Yang S J, Yu X Q, Sun J T. Catalytic synthesis of cyclohexanone 1,2-propanediol ketal with H4SiW12/PAn[J].Rare Metals,2004,23(4):300-305.
    [45]马荣萱.活性炭负载磷钨酸催化合成丁醛乙二醇缩醛[J].兰州理工大学学报,2006,32(5):69-7].
    [46]许招会,熊斌,廖维林,等H3PW12O40/SiO2催化合成糠醛乙二醇缩醛的研究[J].日用化学工业,2006,36(3):202-204.
    [47]许招会,廖维林,王生H3PW12O40/TiO2催化合成苯甲醛1,2-丙二醇缩醛[J].日用化学工业,2005,35(6):371-373.
    [48]杨水金,杜心贤,吕宝兰.活性炭负载磷钨杂多酸催化合成缩醛(酮)[J].北京化工大学学报:自然科学版,2005,(01):81-84.
    [49]王存德,钱文元.分子筛催化合成缩醛(酮)的研究[J].化学世界,1993,(01):20-22.
    [50]梁学正,刘彩华,高珊,等HMCM-22沸石分子筛催化合成缩醛(酮)[J].化工进展,2005,24(12):1383-1385.
    [51]梁学正,于心玉,彭惠琦,等.Hp沸石催化合成缩醛(酮)[J].石油化工,2005,34(11):1083-1085.
    [52]兰支利,吕妍,李靖,等.四丁基二锡氧烷的催化缩醛化性能研究[J].催化学报,2001,22(5):423-426.
    [53]Wilkes J S.Properties of Ionic Liquid Solvents for Catalysis[J]. J. Mol. Cata. A:Chem., 2004,214:11-17.
    [54]Sheldon R.Catalytic Reactions in Ionic Liquids.Chem.Commun.,200]:2047-2399.
    [55]乔火昆,邓友全.氯铝酸室温离子液体中缩醛和缩酮反应[J].化学学报,2002,60(3):528-531.
    [56]张帆,许丹倩,罗书平,等.离子液体催化醛与二元醇的缩醛化反应[J].化工学报,2004,55(12):2047-2050.
    [57]Fujishima A,Hond K.Electrochemical Photolysis of Water at a Semi-conductor Electr-ode[J].Nature,1972,238:37-38.
    [58]Yue P L,Khan F,Rizzuti L.Photocatalytic ammonia synthesis in a fluidized bed react-or[J].J.Chem.Engi.Sci.,1983,38(11):1893-1900.
    [59]Brunet J,Sidot C,Caubere P. Sunlamp-irradiated phase-transfer catalysis:Cobalt carbonyl catalyzed SRN1 carbonylations of aryl and vinyl halides[J].J.Org.Chem., 1983,48:1166-1171.
    [60]Fox M A.Organic heterogeneous photocatalysis:chemical conversions sensitized by irradiated semiconductors[J].Acc.Chem.Res..1983,16.314-321.
    [61]Pichat P, Fox M A.Chanon M.Photoinduced Electron Transfer[M],Elsevier, Amster-dam,1988,241-302.
    [62]Mills A,Hunte S L.An overview of semi-conductor photocatalysis[J].J.Photochem. Photobiol.A:Chem.,1997,108,1-35.
    [63]Maldotti A,Molinari A,Amadelli R. Photocatalysis with organized Systems for the oxofunctionalization of hydrocarbons by O2[J].Chem.Rev.,2002,] 02,3811-3836.
    [64]Fox M A.Dulay M T.Heterogeneous photocatalysis[J].Chem.Rev.,1993,93,341-357.
    [65]Kung H H.Transition Metal Oxides,Elsevier,Amsterdam,1989,252-282.
    [66]Palmisano G,Augugliaro V,Pagliano M,Palmisano L.Photocatalysis:a promising route for 21st century organic chemistry[J].Chem. Commun.,2007,425-3437.
    [67]Kisch H.Semiconductor photocatalysis for organic synthesis[J].Adv.Photochem.,2001, 62,93-143.
    [68]Fagnoni M,Donbi D.Ravelli D,Albini A.Photocatalysis for the Formation of the C-C Bond[J].Chem.Rev.,2007,107,2725-2756.
    [69]Ohtani B,Pal B,Ikeda S.Photocatalytic Organic Syntheses:Selective Cyclization of Amino Acids in Aqueous Suspensions[J]. Catal.Surv.Asia.,003,7,165-176.
    [70]Shiraishi Y,Hirai T.Selective organic transfor-mations on titanium oxide-based photocatalysts[J].J Photochem.Photobiol.C:Photochem. Rev.,2008,9,157-170.
    [71]马鹏举,闫国田,钱俊杰,张敏,杨建军.新型N-TiO_2的固相法制备及其光催化性能[J].催化学报,2011,32(8):1430-1435.
    [72]施利毅,李春忠,房鼎业.氯化法制备金红石型二氧化钛的研究进展[J].化工生产与技术,1997,4:1-5.
    [73]Siegle R W,Ramasamy S,Hahn H,Zongquan L,Ting L, Gronsky R. Synthesis, charact-
    errrization, and properties of nanophase TiO2[J]. Journal of Materials Research,1988, 3(6):1367-1372.
    [74]Jang H D.Kim S K.Controlled synthesis of titanium dioxide nano-particles in a modif-yed diffusion flame reactor[J].Mater.Res.Bull.,2001.36(3):627-637.
    [75]姜海波,李春忠,丛德滋,朱以华.气相燃烧合成二氧化钛纳米颗粒[J].中国粉体技术,2001,7(2):28-32.
    [76]顾少轩,周静,刘静.溶胶-凝胶法制备锐钛矿型TiO2薄膜[J].硅酸盐通报,2001,(4),18-21.
    [77]温敏,齐公台,孙菊梅.TiO2溶胶的制备及其胶凝过程影响因素分析[J].表面技术,2004,33(1):30-31.
    [78]盂季茹,赵磊,粱国正.无机非垒属纳米微粒的制备方法[J].化工新型材料,2000,(4):23-27.
    [78]胡安正,唐超群Sol-Gel法制备纳米二氧化钛的原料配比和胶凝过程机理研究[J].功能材料,2002,(4):394-396.
    [79]Venkatachalam N,Palanichamy M,Murugesan V.Sol-gel preparation and characteriza-tion of nanosize TiO2:Its photocatalytic performance[J].Mater.Chem.Phys.,2007,104 (2-3):454-459.
    [80]吴腊英,李长江.纳米二氧化钛粉末的溶胶-凝胶法合成及晶相转化[J].无机化学学报,2002,18(4):399-403.
    [81]戴智铭,陈爱平,等TiOSO4热水解法制备超细TiO2颗粒光催化剂[J].华东理工大学学报:自然科学版,2002,28(2).180-183.
    [82]杨儒,李敏,等.锐钛矿型纳米Ti02粉体的精细结构及其光催化降解苯酚的活性[J].催化学报,2003,24(8):629-634.
    [83]阮继锋,等.TiO2纳米粒子制备及其光催化性能研究[J].北京化工大学学报.2002,29(3):1-4.
    [84]Sung W O,Sang H P,Yang K S.Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials[J]. Power Sources,2006,161: 1314-1318.
    [85]Chhabra V,Pillai V,Mishra B K,Morrone A,Shah D O.Synthesis,Characterization,and Properties of Microemulsion-Mediated Nano-phase TiO2 Particles[J]. Langmuir,1995. 11(9):3307-3311.
    [86]丁珂,田进军,王晟,叶庆国.液相沉淀法制备纳米TiO2及其光催化性能的研究[J].工业催化,2004,10(12):30-33.
    [87]Ding K L,Miao Z J,Liu Z M.Facile Synthesis of High Quality TiO2 Nanocrystals in Ionic Liquid via a Microwave-Assisted Process[J].J.Am.Chem.Soc.,2007,] 29:6362-6363.
    [88]Bacsa R R. Kiwi J. Effect of rutile Phase on the Photocatalytic properties of nanocry-stalline titania during the degradation of P-coumaric acid [J].Appl.Cata.B:Environ mental,1998,16(1):19-29.
    [89]Ohno T.Sarukawa K,Matsumura M.Photocatalytic activities of pure rutile Particles isolated from TiO2 Powder by dissolving the anatase component in HF solution[J]. J.Phys.Chem.:B,2001,105(12):2417-2420.
    [90]Kevin E O,Pemas E,Saiers J.The Influence of Mineralization products on the Coag-ulation of TiO2 Photocatalyst[J],Langmuir,1999,15:2071-2076.
    [91]Sclanfani A,Palmosano L,Schiavello M.Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion[J]. Phys.Chem.,1990,94:829-832.
    [92]Zhang Q H,Gao L.Guo J K.Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis Appl[J]. Catal.B:Enviro.,2000, 26:207-215.
    [93]张琦,李新军,李芳柏,等WOx/TiO2光催化剂的可见光催化活性机理探讨[J].物理化学学报,2004,20(5):507-511.
    [94]Hurum D C, Agfios A G, Gray K A, et al. Explaining the Enhanced Photo-catalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR[J]. Phys. Chem., B,2003,107: 4545-4549.
    [95]Hofmann M R, Martin S T, Choi W, Bahnemann D W.. Environmental Applications of Semiconductor Photocatalysis[J].Chem.Rev.,1995,95:69-96.
    [96]Muhammad S V, Keiichi T.. Photocatalytic degradation of aqueous pollutants using silica-modified TiO2[J],Water Research,2003.37(16):3992-3996.
    [97]Hoffman A J, mills G, Yee H, et al. Q-Sized CdS:Synthesis.Charaeterization and Effi-ciency of Photoinitiation of Polymerization of Several Vinyllc Monom[J].J.Phys. Chem.,1992.96(13):5546-5552.
    [98]李新勇,李树本.纳米半导体研究进展[J].化学进展,1996,8(3):231-239.
    [99]Siham Al-Qaradawi. Photocatalytic degradation of methyl orange as a modelcom-pound[J].J.Photochem.Photobiol.A:Chem.,2002,148(1-3):161-168.
    [100]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [101]Choi W. Y,Termin A,Michael,Hoffmann R.The Role of Metal Ion Dopants in Qu-antum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Re com-bination Dynamics [J],J.Phys. Chem.,1994,98(51),13669-13679.
    [102]陈建华,王晓林,张培新,等.纳米二氧化钛粉末离子掺杂研究[J].广西大学学报:自然科学版,2005,30(1):44-50.
    [103]架勇,傅平丰,戴学刚,等.金属离子掺杂对TiO2光催化性能的影响[J].化学进展,2004,16(5):738-746.
    [104]Reddy K. M, Baruwati B, Jayalakshmi M, et al. S-.N-and C-doped titanium dioxide nanoparticles:Synthesis, characterization and redox charge transfer study [J]. Jour-nal of Solid State Chemistry,2005,178(11):3352-3358.
    [105]Di L, Haneda H, Hishita S, et al. Fluorine-doped TiO2 Powders Prepared by spray pyrolysis and the improved Photocatalytic activity for decomposition of gas-phase acetaldehyde [J]. Journal of Fluorine Chemistry,2005,126(1):69-77.
    [106]Asahi R, Morikawa T, Tohwaki, et al. Visible-light Photocatalysis I Nitrogen-Doped Titanium Oxides [J]. Science,2001,293(5528):269-271.
    [107]Zhao W, Ma W H, Zhao J C, et al. Effieient Degradation of Toxic Organic Pollutants with Ni2O3TiO2-xBx under Visible Irradiation [J].J. Am. Chem. Soc.,2004,126(15):47-52-4753.
    [108]Sakatani Y,Nunoshuge J,Ando H,etal.Photoeatalytic decomposition of Acetaldehyde under visible light irradiation over La3+,and N co-doped TiO2:[J].Chem.Lett.,2003, 32(12):1156-1157.
    [109]Wei H Y, Wu Y S, Lun N, etal. Preparation and Photocatalysis of TiO2 Nanoparticles co-doped with nitrogen and lanthanum[J].J. Mater. Sci.,2004,39(4):1305-1308.
    [110]华南平,吴遵义,杜玉扣,等.Pt、N共掺杂TiO2:在可见光下对三氯乙酸的催化降解作用[J].物理化学学报,2005,21(10):]081-1085.
    [111]吕媛,倪伶俐,等.铬和硫共掺杂二氧化钦催化剂的制备及其可见光催化性能[J].催化学报,2007,28(1]):957-992.
    [112]黄东升,陈朝凤,等.铁、氮共掺杂二氧化钦粉末的制备及光催化活性[J].无机化学学报,2007,23(4):739-742.
    [113]Fox M A, Dulay M T. Acceleration of secondary dark reactions of intermediates derived from adsorbed dyes on irradiated TiO2 powders [J], J. Photochem. Photobio. A,1996,98(1-2),91-101.
    [114]Viridiana Santana Ferreira-Leitao, Maria Eleonora Andrade de CarvaIho, Elba P.S. Bon, Lignin peroxidase efficiency for methylene blue decolouration:Comparison to reported methods [J], Dyes and Pigments,2007,74(1),230-236.
    [115]Ross H, Bendig J, Heeht S. Sensitized photocatalytical oxidation of terbutylazine [J], Sol. Energ. Mater. Sol. C.,1994,33(4),475-481.
    [116]曹沛森.纳米TiO2光催化剂的改性及应用研究进展[J].纳米材料与结构,2008,45(3):145-152
    [117]Machida, Norimoto M K, Watanabe T, Hashimoto K, Fujishima A. The The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst [J], J. Mater. Sci., 1999,34(11),2569-2574.
    [118]Deng X Y, Yue Y H, Gao Z. Gas-pHase photooxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations. [J]. Appl Catal B:Environ-mental,2002,39(2):135-147.
    [119]曹沛森.纳米TiO2光催化剂的改性及应用研究进展[J].纳米材料与结构,2008,45(3):145-152.
    [120]Li H X, Bian Z F, Zhu J, etal. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity[J]. J. Am. Chem. Soc.,2007,129(15):4538-4539.
    [121]Seerty M K, George R,Floris P, et al. Silver doped titanium dioxide nano-materials for enhanced visible light pHotocatalysis [J]. J Photochem Photobio A:Chem,2007, 189(2-3):258-263.
    [122]Zhang, F X, Pi Y, Cui J, et al. Unexpected selective photocatalytic reduction of nitr-iteto nitrogen on silver-doped titanium dioxide [J]. J Phys Chem C.2007,111 (9): 3756-3761.
    [123]丘永樑,陈洪龄,徐南平.水热法制备CdS/TiO2及其光活性[J],化工学报,2005,56.1338-1342.
    [124]Masakazu A, Takafumi K, Sukeya K, Kenichi M, Takaharu O. Photocatalysis On titanium-aluminum binary metal oxides:enhancement of the Photocatalytic Activity of titania species [J]. J. phys. Chem.,1988,99 (2),435-440.
    [125]Munoz-Paez A, Malet P. X-ray absorption spectroscopy (XAS) study of the Semi-conductor-insulator interface in TiO2 based Photocatalysts [J]. Appl. Surf. Sci.,1992, 56-58(B):873-880.
    [126]Fu X Z,Clark L A,Yang Q, Anderson M A. Enhanced Photocatalytic Performance of titania-based binary metal oxides:TiO2/SiO2 and TiO2/ZrO2 [J].Environmental science and technology,1996,30(2):647-653.
    [127]Hang L,Martin A S, Klavs F J.Photochemical reactions and on-line UV detection in micro fabricated reactors[J].Lab on a Chip,2001,1,22-28.
    [128]张鹏会,王九思,韩迪.TiO2光催化降解有机污染物研究进展.化工技术与开发[J].2009,38(7),51-54,64.
    [129]Park H, Choi W. Photocatalytic conversion of benzene to phenol using modified TiO2 and polyoxometalates[J]. Catal Today,2005,101:291-297.
    [130]Chen J, Eberlein L, Langford C H. Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite[J].J. Photochem. Photobio. A.,2002,148:183-189.
    [131]Shiraishi Y, Saito N, Hirai T. Adsorption-driven photocatalytic activity of mesopor-ous titanium dioxide[J]. J.Am. Chem. Soc.,2005,127:12820-12822.
    [132]张楠,张燕辉,潘晓阳,等.光催化选择性氧化还原体系在有机合成中的研究进展[J].中国科学:化学,2011,41(7),1097-1111.
    [133]Gonzalez M A, Howell S G, Sikdar S K. Photocatalytic selective oxidation of hydro-carbons in the aqueous phase[J]. J Catal,1999,183:159-162.
    [134]王亚青,周继承,杨晓烽.纳米金复合催化剂制备及其低温选择催化环己烷氧化性能[J].过程工程学报,2009,9:1186-1191.
    [135]薛晓金,孙琼,王妍,吕康乐,许宜铭.氟离子对二氧化钛选择性光催化氧化环己烷的影响[J].化学学报,2010,68:471-475.
    [136]Pillai U R, Sahle-Demessie E. Selective oxidation of alcohols in gas phase using light-activated titanium dioxide[J]. J. Catal.,2002,211:434-444.
    [137]Djeghri N, Teichner S J. Heterogeneous photocatalysis:The photo-oxidation of 2-methylbutane[J]. J. Catal.,1980,62:99-106.
    [138]Calza P, Minero C, Pelizzetti E. Photocatalytically assisted hydrolysis of chlorinated methanes under anaerobic conditions[J]. Environ Sci Technol,1997,31:2198-2203.
    [139]Higashimoto S, Suetsugu N, Azuma M, Ohue H, Sakata Y. Efficient and selective oxidation of benzylic alcohol by O2 into corresponding aldehydes on a TiO2 photo-catalyst under visible light irradiation:Effect of phenyl-ring substitution on the photocatalytic activity[J]. J. Catal.,2010,274:76-83.
    [140]Zhang M, Chen C, Man W, Zhao J. Visible-light-induced aerobic oxidation of alco-hols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO.[J] Angew. Chem. Int. Ed.,2008,47:9730-9733.
    [141]Zhang M, Wang Q, Chen C, Zang L, Ma W, Zhao J. Oxygen atom transfer in the ph otocatalytic oxidation of alcohols by TiO2:Oxygen isotope studies[J]. Angew. Chem. Int. Ed.,2009,48:6081-6084.
    [142]Li X, Kutal C. Photocatalytic selective epoxidation of styrene by molecular oxygen: over highly dispersed titanium dioxide species on silica[J].J Mater Sci Lett,2002,21 1525-1527.
    [143]Bruin B, Budzelaar P H M, Gal A W. Functional models for rhodium-mediated olefin-oxygenation catalysis[J]. Angew Chem Int Ed,2004,43:4142-4157.
    [144]Murata C, Hattori T, Yoshida H. Electrophilic property of photoformed on isolated Ti species in silica promoting alkene epoxidation[J]. J Catal,2005,231:292-299.
    [145]Murata C. Yoshida H, Kumagai J, Hattori T. Active sites and active oxygen species for photocatalytic epoxidation of propene by molecular oxygen over TiO2-SiO2 binary oxides[J]. J Phys Chem B,2003,107:4364-4373.
    [146]Shiraishi Y, Morishita M, Hirai T. Acetonitrile-assisted highly selective photocata-lytic epoxidation of oleflns on Ti-containing silica with molecular oxygen[J]. Chem Commun,2005,5977-5979.
    [147]Yoshida H, Murata C, Hattori T. Photocatalytic epoxidation of propene by molecular oxygen over highly dispersed titanium oxide species on silica[J]. Chem Commun, 1999,1551-1552.
    [148]Yoshida H, Tanaka T, Yamamoto M, Yoshida T, Funabiki T, Yoshida S. Epoxidation of propene by gaseous oxygen over silica and Mg-loaded silica under photoirra-diation[J]. J Catal 1997,171:351-357.
    [149]Yoshida H, Tanaka T, Yamamoto M, Funabiki T, Yoshida S. Photooxidation of pro-pene by O2 over silica and Mg-loaded silica[J]. Chem Commun,1996,2125-2126.
    [150]Yoshida H, Murata C, Hatton T. Photooxidation of propene to propene oxide by mo-lecular oxygen over zinc oxide dispersed on silica[J].Chem Lett,1999,28:901-902.
    [151]Yoshida H, Murata C, Hattori T. Screening study of silica-supported catalysts for photoepoxidation of propene by molecular oxygen[J]. J.Catal.,2000,194:364-372.
    [152]Maldotti A, Andreotti L, Molinari A, Tollari S, Penoni A, Cenini S. Photochemical and photocatalytic reduction of nitrobenzene in thepresence of cyclohexene[J]. J Photochem.Photobiol.A,2000,133:129-133.
    [153]Ferry J L, Glaze WH. Photocatalytic reduction of nitro organics over illuminated tit-anium dioxide:Role of the TiO2 surface[J]. Langmuir,1998,14:3551-3555.
    [154]Ferry J L, Glaze W H. Photocatalytic reduction of nitroorganics over illuminated titanium dioxide:Electron transfer between excited-state TiO2 and nitroaromatics [J]. J.Phys.Chem. B,1998,102:2239-2244.
    [155]Brezova V, Blazkova A, Surina 1, Havlinova B. Solvent effect on the photocatalytic reduction of 4-nitrophenol in titanium dioxide suspensions[J].J. Photochem. Photo-biol. A,1997.107:233-237.
    [156]Zhang T, You L, Zhang Y. Photocatalytic reduction of p-chloronitrobenzene on illuminated nano-titanium dioxide particles[J]. Dyes Pigm.,2006,68:95-100.
    [157]Warrier M, Lo MKF. Monbouquette H. Garcia-Garibay MA. Photocatalytic reduc- tion of aromatic azides to amines using CdS and CdSe nanoparticles.[J] Photochem. Photobiol. Sci., 2004,3:859-863.
    [158]Huang H, Zhou J. Liu H, Zhou Y. Feng Y. Selective photoreduction of nitrobenzene to aniline on TiO2 nanoparticles modified with amino acid[J].J. Hazard. Mater.,2010, 178:994-998.
    [159]Joyce-Pruden C, Jeffrey K P, and Yuzhuo L. Photoinduced reduction of aldehydes on titanium dioxide[J]. J. Org. Chem.1992,57,5087-5091.
    [160]Shigeru K, Eito Y, Kenji S, Akihiko K, Hideto M. Photocatalytic hydrogenation of acetophenone derivatives and diaryl ketones on polycrystalline titanium dioxide[J]. Catalysis Communications,2010,11,1049-1053
    [161]Yoshihisa M, Nobuko O, Shinji K,Kosaku S, Tadashi S,Teijiro I. Photocatalytic reactions in microreactors [J]. Chemical Engineering Journal,2008,135,303-308.
    [162]Kaneco S, Shimizu Y, Ohta K, Mizuno T. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger[J]. J Photochem Photobiol A,1998,115:223-226.
    [163]Yahaya A H, Gondal M A, Hameed A. Selective laser enhanced photocatalytic conv-ersion of CO2 into methanol[J]. Chem. Phys. Lett.,2004,400:206-212.
    [164]杨绪杰,刘孝恒,张梅,陆路德,汪信.纳米Ti02的制备醋酸改性及催化性能研究[J].材料学报,2002,16(12):74-76.
    [165]俞马宏,马卫华,钟秦,杨绪杰,陆路德.羟基自由基引发的马来酸酐聚合反应机理AM1研究[J].分子科学学报,2004,20(1):33-37.
    [166]Damm C, Herrmann R, Israel G, Muller F W. Acrylate photopolymerization on heterostructured TiO2 photocatalysts [J],Dyes and Pigments,2007,74,335-342.
    [167]Kindernay J, Blazkova A, Ruda J, Jancoricova V, Jakubikova Z. Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer[J], J. Photochem. Photobiol. A:2002.151,229-236.
    [168]Damn C. An acrylate polymerisation initiated by iron doped titanium dioxide [J], J. Photochem.Phtobio.A:2006,181,297-305.
    [169]Hiroaki T, Masato H, Hideo K. Photoinduced polymerization of 1,3,5,7-tetramethyl cyclotetrasiloxane by titania particles [J], J. Phys. Chem.,1991,95,10185-10188.
    [170]Yanping W, Lian L, Yang K, Lynne A. Samuelson, Jayant K. Nanocrystalline TiO2-Catalyzed Solid-State Polymerization of Diacetylene in the Visible Region [J], J. Am. Chem. Soc.,2007,129(23):7238-7239.
    [171]Fox M A,Chen C C. Mechanistic features of the semiconductor photocatalyzed olefin-to-carbonyl oxidative cleavage [J], J. Am. Chem.Soc.1981,103,6757-6759.
    [172]Becker W G, Truong M M, Aic, Hamel N N. Interfacial factors that affect the photoefficiency of semiconductor-sensitized oxidations in nonaqueous media [J], J. Phys. Chem.1989,93(12),4882-4886.
    [173]Sclafani A, Palmisano L, Farneti G. Synthesis of 2-hydroxybenzoic acid from CO2 and phenol in aqueous heterogeneous photocatalytic systems[J]. Chem. Commun., 1997.6,529-530.
    [174]Lakshmi K M, Soumi L, Jagjit Y, Sreedhar B. Friedel-Crafts alkylation of indoles with epoxides catalyzed by nanocrystalline titanium (IV) oxide [J], Tetrahedron Letters,2006,47,6213-6216.
    [175]Wei Z, Yanping G, Li Y, Zhongli, L. Photochemically Catalyzed Diels-Alder Reacti-on of Azadienes with 2,3-Dihydrofuran by2,4,6-Triphenylpyry-lium Salt:Synthesis of Styrylfuroquinoline Derivatives [J], Chinese Chemical Letters,2005,16(5): 575-577.
    [176]Asahir, Morikawa T, Ohwaki T, etal.Visible-light photocatalysis in nitro gen-doped titanium oxides[J].Science,2001,293(5528):269-271.
    [177]Tiensyh Y, Min-Chi Y, Ching-bin S, etal.Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation [J].Applied Surface Science,2006,252:3729-3736.
    [178]Yohei I. Aita, Masakazu K. Shu Y, etal.Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvo-thermal proce-ss[J].Journal of Solid State Chemistry,2004,177(3):235-3238.
    [179]Shu Y, Hirosh I, Yamaki. Wu Z Q, etal. Mechanochemical synthesis of nitrogen-doped titania and its visible light induced NOx destruction ability[J]. Solid State Ionics,2004,172:205-209.
    [180]Shu Y, Irosh H, Yamaki I, Masakazu K, etal.Synthesis of visible-light reactive TiO2xNy photocatalyst by mechanochemical doping[J]. Solid State Sciences,2005, 7:1479-1485.
    [181]Xu A W, Gao Y, Liu H Q, The preparation,characterization, and their photocatal-ytic activities of rare earth-droped TiO2:nanoparticles[J].Journal of Catalysis,2002, 207(2):15-157.
    [182]周艺,徐协文,刘其城,等RE/TiO2纳米粒子在自然光下的催化氢化性能[J].中南工业大学学报,2002,33(4):371-373.
    [183]Zhao W,Ma W H, Zhao J C, etal. Effieient Degradation of Toxic Organic Pollu tants with Ni2O3TiO2-xBx under Visible Irradiation[J] Journal of the American Chemistry Society,2004,126(15):4752-4753.
    [184]Sakatani Y, Nunoshuge J, Ando H, etal. Photoeatalytic decomposition of Acetalde hyde under visible light irradiation over La3+, and N co-doped TiO2[J].Chemistry Letters,2003,32(12):1156-1157.
    [185]Wei H Y, Wu Y S, Lun N, etal. Preparation and Photocatalysis of TiO2 Nanoparticals co-doped with nitrogen and lanthanum[J].Joumal of Materials Science,2004, 39(4):1305-1308.
    [186]华南平,吴遵义,杜玉扣,等.Pt、N共掺杂TiO2:在可见光下对三氯乙酸的催化降解作用[J].物理化学学报,2005,2](]0):1081-1085.
    [187]吕媛,倪伶俐,等.铬和硫共掺杂二氧化钦催化剂的制备及其可见光催化性能[J].催化学报,2007,28(11):957-992.
    [188]黄东升,陈朝凤,等.铁、氮共掺杂二氧化钦粉末的制备及光催化活性[J].无机化学学报,2007,23(4):739-742.
    [189]刘秀华,吴仲成,赵雅文,等.微量铂掺杂对TiO2粉末结构和性能的影响[J].化学学报,2009,67(6):507-512.
    [190]Li Y F,Nian D P. Powder Diffraction Method for the Determination of Crystal Structure[M].Science Press, Beijing,2003.
    [191]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J].J.Phys.Chem.l 977,81 (15):1484-1488.
    [192]Hsiao C Y,Lee C L.Heterogeneous photocatalysis:Degradation of dilute solutions of dichloromethane (CH2Cl2),chloroform (CHCl3),and carbon tetrachloride(CCl4) with illuminated TiO2 photocatalyst[J].J.Catal.1983,82(2):418-423.
    [193]Ohno T, Sarukawa K, Tokieda K, Matsumura M. Morphology of a TiO2 Photo-catalyst (Degussa P25) Consisting of Anatase and Rutile Crystalline Phases [J]. Journal of Catalysis,2001,203,82-86.
    [194]Hurum D C, Agfios A G, Gray K A, et al. Explaining the Enhanced Photo-catalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR[J]. Phys. Chem. B,2003, 107:4545-4549.
    [195]Hofmann M R, Martin S T, Choi W, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis Chem.Rev.[J],1995,95:69-96.
    [196]Greene T W, Wuts P G M. Protective Groups in Organic Synthesis[M], New York: John Wiley& Sons,1991.
    [197]Pearson A J, Roush W J. Handbook of Reagents for Organic Synthesis Activating Agents and Protecting Groups[M], New York:John Wiley& Sons,1999.
    [198]Kocienski P J. Protective Groups[M], Stuttgart:Thieme,1994.
    [199]Loader C E, Anderson H, Pyrrole J.synthesis of pyrrole acetals[J]. Synthesis,1978, 3,295-297.
    [200]Shiya H, Naoya K, Norio Y, Teruki S, Masashi A, Hiroyoshi O, Yoshihisa S. Selec-tive photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation[J] J.Catal.,2009,266:279.
    [201]Shigeru K, Eito Y, Kenji S. Akihiko K. Hideto M. Photocatalytic hydrogenation of acetophenone derivatives and diaryl ketones on polycrystalline titanium dioxide[J]. Catal. Commun.,2010,11(13):1049-1053.
    [202]Jose G S B, Miguel Angel V Z, Sergio Odin F V, Ra miro Omar R B. Benz aldehyde photocatalytic reduction[P], Mex.2006007925,2008.
    [203]Stefan F, Ralph M, Heiko Ingo S, Josef A S, Michael G, Burkhard K. Green light photocatalytic reduction using dye-sensitized TiO2 and transition metal nanopar ticles[J] Green Chem.,2010,12(3):400-406.
    [204]Qun W H, Ping Y J, Fu C W, Min Z Z. Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO2[J]. Catal. Commun.,2009,10,989-994.
    [205]Marinkovic S, Hoffmann N. Diastereoselective Radical Tandem Addition Cyclizat-ion Reactions of Aromatic Tertiary Amines by Semiconductor-Sensitized Photo-chemical Electron Transfer[J]. Eur. J. Org. Chem.,2004,14,3102-3107.
    [206]Ohtani B, Tsuru S, Nishimoto-i S, Kagiya T, Izawa K. Photocatalytic one-step syntheses of cyclic imino acids by aqueous semiconductor suspensions[J] J. Org. Chem.,1990,55:5551-5553
    [207]方肇伦.微流控分析芯片的制作及应用[M].北京:化学工业出版社,2005.
    [208]Chunli K, Lu Y, Guo P, etal.Photooxidation of Furfural with Phthalo cyaninesens-itized TiO2 Particle Under Xenon Lamp Chemical Research in Chinese Univer-sities [J],2007,23(2):154-158.
    [209]Bond F T, Stemke J E, Powell D W. Facile. Synthesis of 1-Azospiro (5.5) Undecan-2,7-Dione[J].Synth.Commun.,1975,5:427.
    [210]Sterzycki R. Pyridinium Tosylate, A Mild Catalyst for Formation and Cleavage of Dioxolane-Type Acetals[J]. Synthesis,1979,724-725.
    [211]Stenberg V I, Kubik D A. Catalytic dehydrator. Simplified isolation procedure for acetals and ketals[J]. J. Org. Chem.,1974.39:2815-2816.
    [212]章思规.精细有机化学品技术手册[M].北京:科学出版社,1991:1132-1133.
    [213]Laskar D D,Prajapaati D.Sandhu J S.Cadmium iodide catalyzed and efficient syn-thesis of acetals under microwave irradiation [J]. Chem. Lett.,1999,332(8):1283-1284.
    [214]职慧珍,罗军,马伟.新型PEG双子温控离子液体中的缩醛反应[J].高等学校化学学报,2008,29(10):2007-2010.
    [215]Velusamy S, Punniyamurthy T.Cobalt(Ⅱ)-catalyzedchemoselective synthesis of acet-als from aldehydes[J].Tetrahedron Lett.,2004,45(25):4917-4920.
    [216]Amarajothi D, Mercedes A, Hermenegildo G. Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol[J].Adv. Synth. Catal. 2010,352,3022-3030.
    [217]Ran Y, Tongshou J, Shengxun S,etal.A Highly Efficient and Chemoselective Method for Acetalization of Carbonyl Compounds Catalyzed by Solid Superacid [J].Synth. Comm.,2003,12(33):2103-2108.
    [218]Yuying D, Fuli T. Br(?)nsted Acidic Ionic Liquids as Efficient and Recyclable Catalysts for Protection of Carbonyls to Acetals and Ketals Under Mild Conditions [J]. Synth. Comm.,2005,20(35):2703-2708.
    [219]Mansilla, Horacio,Afonso, Maria M. Iron(Ⅲ) Tosylate in the Preparation of Dimethyl and Diethyl Acetals from Ketones and β-Keto Enol Ethers from Cyclic β-Diketones', Synth. Comm.,2008,15(38):2607-2618.
    [220]Habib F, Nasser I, Hamid R S.2,4,4,6-Tetrabromo-2,5-cyclohexadienone (TABCO) as a Versatile,Efficient, and Chemoselective Catalyst for the Acetalization and Transacetalization of Carbonyl Compounds, the Preparation ofAcetonides from epo-xides and Acylals (1,1-Diacetates) from Aldehydes[J]. Bull. Chem. Soc. Jpn.,2002, 75,2195-2205.
    [221]Andrew S.Molecular orbital theory for organic chemistry[M],New York:John Wiley & Sons,1961:173.
    [222]Hattori. A., Tada, H. High Photocatalytic Activity of F-Doped TiO2 Film on Glass. Journal of Sol-Gel Science and Technology.2001,22.47-52.
    [223]张前程,张凤宝,张国亮.苯在TiO2上的气相光催化氧化反应历程.催化学报2004,25,39-43.
    [224]周晓谦,周文淮.纳米二氧化钛的光催化特性及应用进展.辽宁化工2002,31,448-451.
    [225]Yoneyama, H., Torimoto, T. Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations. Catalysis Today 2000,58,133-140.
    [226]Takei, G., Kitamori. T., Kim, H. B. Photocatalytic redox-combined synthesis of 1-pipecolinic acid with a titania-modified microchannel chip. Catal. Commun. 2005.6,357-360.
    [227]Lindstrom, H., Wootton, R., Iles, A. High Surface Area Titania Photocatalytic Microfluidic Reactors. AIChE 2007,53 695-702.
    [228]Lu, H., Schmidtb, M. A., Jensen, K. F. Photochemical reactions and on-line UV detection in microfabricated reactors. Lab on a Chip 2001,1,22-28.
    [229]Matsushita, Y., Ohba, N., Kunada, S., et al. Photocatalytic reactions in microreactors. Chemical Engineering Journal 2008,135S, S303-S308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700