新型高强度和高塑性孪晶诱发塑性钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孪晶诱发塑性(Twinning Induced Plasticity-简写TWIP)钢表现出高的抗拉强度(650~1100MPa),高的应变硬化率和极高的伸长率(19%~90%),可满足汽车轻量化的需求。本文研究了9种不同成分的TWIP钢的显微组织及在不同应变速率下的拉伸应变行为。动态拉伸试验在气动式间接杆杆型冲击拉伸试验机上进行,采用LOM、XRD、SEM和TEM等手段分析形变孪晶形态、大小和转变量随成分、应变速率以及应变量的演化规律。通过研究孪晶与周围基体中位错密度和亚结构的变化,分析了TWIP效应对材料强度和应变硬化行为的影响,同时分析了TWIP钢的断裂行为以及热轧、冷轧、退火、拉伸等状态下的织构演变情况。研究成果可为汽车工业的轻量化及防冲撞设计提供借鉴。
     论文主要内容包括:
     1、结合已有Fe-Mn相图的研究结果和热力学计算,确定了5种低碳TWIP钢和4种中碳TWIP钢。采用金相、X射线衍射法、透射电子显微分析对九种不同成分TWIP钢变形前后的组织进行观察。讨论了热处理工艺和合金元素对TWIP钢显微组织形貌和不同组织体积分数的影响。结果表明,1#钢的金相组织由奥氏体和第二相组成,变形过程中不产生形变孪晶;其余几种钢随着锰含量的增加,组织为全奥氏体,且变形过程中产生大量形变孪晶。
     2、对九种TWIP钢在10-5~103s-1应变速率范围的室温拉伸性能进行了研究。结果表明,静态拉伸时,随着应变速率的升高,1#~5#材料的屈服强度增大,1#钢和2#钢抗拉强度下降,3#~5#钢抗拉强度变化不大;1#钢的均匀延伸率和断裂延伸率增大,2#~5#钢的均匀延伸率和断裂延伸率下降。z1#~z4#钢的屈服强度相差不大,抗拉强度略微下降,z1#~z4#钢的均匀延伸率、断裂延伸率和强塑积随应变速率的升高而下降;而与静态拉伸条件下相比,动态拉伸时,随着应变速率增加,2#~5#钢的屈服强度和抗拉强度增大,均匀延伸率变化不大,断裂延伸率有所上升。1#~5#钢均体现出显著的应变速率敏感性。动态拉伸条件下的屈服强度和抗拉强度要高,z1#~z4#钢的总延伸率较静态拉伸条件下都有所下降。
     3、利用XRD分析了奥氏体的转变量随应变和应变速率的变化规律。结果发现,1#钢和2#钢变形过程中发生了马氏体相变,而3#钢变形过程中没有发生马氏体相变。奥氏体转变量随应变速率的增加而减小,随应变量的增加而增加。
     4、分析研究了应变硬化指数n值随应变速率和应变的变化规律。结果表明:试验钢在拉伸过程中的应变硬化表现为阶段性多n值行为。1#钢的n值随应变呈抛物线关系,遵循关系式:n=aε2+bε+c;其它钢的n值与应变呈对数关系,遵循关系式: n=alnε+b。其应变硬化机制有两种:0.4%~3%左右应变区间为位错强化阶段,10%~50%左右应变区间为孪晶强化阶段。在此两个区间内n值皆为定值,而在4%~10%应变区间n值呈不断上升趋势。奥氏体的应变诱发相变和变形过程中产生的形变孪晶显著影响TWIP钢的应变硬化能力。
     5、采用SEM检测了TWIP钢动态拉伸后的组织形态。结果发现,TWIP钢具有典型的延性断裂断口特征,其变形和断裂过程为微孔洞的形核、长大和聚合。含有第二相的TWIP钢(如1#钢)的断裂机制为:第二相和奥氏体相界面聚合力的减弱促使微孔形核,形变过程中产生的应力集中使微孔长大、聚合直至发生断裂。全奥氏体的TWIP钢(如5#钢)断裂机制为:形变过程中位错的运动受孪晶界的阻碍,形变孪晶与位错的交互作用使微孔形核于孪晶界处,应力集中使微孔长大、聚合直至材料发生断裂。
     6、TWIP钢的变形机制主要为孪晶变形机制,其次为位错变形机制。在孪晶变形机制下,随着应变的增加、孪晶含量的增多,铜型织构转到其孪晶取向的位置CuT{552}<115>,在经过滑移机制作用下,CuT{552}<115>转变为G织构,原有的及新形成的G织构转变为B织构。织构转变后的强度随着应变率的不同而有所不同。
Deformation twins,martensite phase transformation and mechanical propertieshad been investigated. For steels with higher stacking fault energy,twinning is themain deformation mechanism. TWIP(Twinning Induced Plasticity)steels exhibit hightensile strength (650~1100MPa), extremely large elongation rate(19%~90%). Themicrostructures, mechanical properties and fracture behaviors of nine differentcomposition TWIP steels were investigated. Tensile tests were carried out at differentstrain rates, and the tensile strain behaviors under various strain rates of nine differentcomposition TWIP steels were investigated. The dynamic tensile tests were carriedout on the pneumatic indirect bar-bar tensile impact tester. The formation of twins andmartensite were analyzed by optical microscopy, XRD, SEM and TEM. Thecontribution of the dissertation lies in providing theoretical basis for lighting weightand anti-crashing of automobiles.
     The primary coverage of the dissertation includes:
     (1) The components of five kinds of low carbon TWIP steel and four kinds ofmedium carbon TWIP steel are determined based the research results of Fe-Mn phasediagram and the thermodynamic calculation. The microstructures of nine differentMn-content TWIP steels before and after deformation are investigated bymetallography, XRD and TEM. The effects of heat treatment and alloy elements onthe morphology and volume fraction of each phase are analyzed. The results showthat the microstructure of steel1#is composed of austenite and second-phase. Withthe increasing of manganese content, the microstructure of the TWIP steels changes toaustenite totally and deformation twins occurs during deformation.
     (2) The tensile tests are carried out on nine TWIP steels in the strain rate range of10-5~103s-1. The results indicate that the yield strength increases and tensile strengthof steel1#and steel2#decreases, while those of steels3#~5#, z1#~z4#change little,and the uniform elongation rate and total elongation rate of steel1#increase, while these of other steels decrease with the strain rate. During dynamic tensile stage, thetensile strength, yield strength and total elongation increase, while the uniformelongation rate hardly changes with the strain rate, showing that the TWIP steels aresensitive to strain rate.
     (3) The volume fraction of austenite after deformation as a function of strain andstrain rate is investigated by XRD. The results show that martensite transformationoccurred in steel1#and steel2#, but not in steel3#. The volume fraction oftransformed austenite decreases with the strain rate, while it increases with the strain.
     (4) The strain-hardening exponent n as a function of strain and strain rate isdetermined. It shows that the n value varied during tensile deformation. The n valueof steel1#obeys a parabolic relation: n=aε2+bε+c. While the n value of fullaustenite TWIP steels obeys a logarithmic relation: n=alnε+b. In the strain rangeof0.4%~4%, the full austenite TWIP steels are strengthened by dislocation piling,but in the range of10%~50%, these steels are strengthened by twinning. In these twostages, the n value keeps constant. However, the n value increases continuously in thestrain range of4%~10%. Strain induced martensite transformation and formation oftwins during deformation significantly influence the strain-hardening behavior of theTWIP steels.
     (5) The microstructure of the TWIP steels after dynamic tension test wascharacterized by SEM. The fractograph of the TWIP steels exhibits a typical ductilefracture pattern. Due to the presence of second phases, nucleation of micro-voids insteel1#occurred at the weak spot in the material, i.e. the austenite/second phaseinterface. However, due to the interaction of dislocations and twins, the nucleation ofmicro-voids in the full austenite steel5#occurred at boundaries of deformation twinsas well as the interface between deformation twins and dislocations. No matter whatthe mechanism is, the nucleation is followed by the growth and coalescence of themicro-voids in all samples.
     (6) In present work, the dominating deformation mechanism of the TWIP steels is twinning, also accompanied by dislocation mechanism. For the twinningmechanism, the content of twins increases with strain, and Cu{112}<111> orientationrotates its orientation to the twinned position CuT {552}<115>. Meanwhile, underthe continuous action of the dislocation mechanism, the CuT {552}<115> rotates toG{011}<100> orientation, and the G{011}<100> rotates to B{011}<211>. After therotation, the intensities of textures vary with the strain.
引文
[1] ULSAB Advance vehicle concepts, Technical transfer dispatch [J]. ISIJ, Brussels, May2001.
    [2] M.D.Meyer, D.Vanderschueren, B.C.De Cooman. The Influence of the Substitution of Si by Alon the Properties of Cold Rolled C-Mn-Si TRIP Steels [J]. ISIJ International,1999,39(8):813-822.
    [3] Li Lin, De Cooman B.C., Wollants P., et al. Effect of Aluminum and Silicon on TransformationInduced Plasticity of the TRIP Steel[J]. J. Mater. Sci. Technol.,2004,20(2):135-138.
    [4] O.Grassel,G.Frommeyer,C.Derder et al. Transformation and mechanical properties ofFe–Mn–Si–Al TRIP-steels[J],Phys IV France.1997, C5:383.
    [5]Georg Frommeyer, Udo BRüX, Peter Neumann. Supra-Ductile and High-StrengthManganese-TRIP/TWIP Steels for High Energy Absorption Purposes [J]. ISIJ International,2003,3(43):438-446.
    [6] Aleksy A. Konieczny. An Overview of Formability, Technological and Microstructural Aspectsof the Automotive TRIP Steels [J]. Processing and Fabrication of Advanced Materials XI.2003,15:345-359.
    [7]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002.
    [1] Aernoudt, E.; Van Houtte, P.&Leffers, T. Deformation and Textures of Metals at Large Strain[J]. Materials Science and Technology.1997(6):89-136.
    [2] I. Karaman, H. Sehitoglu, Y. I. Chumlyakov and H. J. Maier. The deformation oflow-stacking-fault-energy austenitic steels [J].JOM Journal of the Minerals, Metals andMaterials Society,2002,Vol54, Number7:31-37.
    [3] P. Rosakis, H. Tsai. On the role of shear instability in the modelling of crystaltwinning[J].Mechanics of Materials, Volume17, Issues2-3, March1994, Pages245-259.
    [4] A.L. Stevens, L.E. Pope.Observations of secondary slip in impact-loaded aluminum singlecrystals[J].Scripta Metallurgica, Volume5, Issue11, November1971, Pages981-985.
    [5] Roger Le Hazif, Jean-Paul Poirer.Cross-slip on {110} planes in aluminum single crystalscompressed along100axis[J]. Acta Metallurgica, Volume23, Issue7, July1975, Pages865-871.
    [6] Pichaud, B.&Minaxi, F.{110}(110) slip in copper slightly deformed at room temperature [J].Scripts Metallurgica.1980,14,1171-1174.
    [7] Bhatt, R.T.; Thrower, P.A.&Bitler W.R. Observation of {212}<110>slip system in facecentered cubic austenitic stainless steel. Scripts Metallurgica.1976(10),19-24.
    [8]J.C. Fisher. On the strength of solid solution alloys[J].Acta Metallurgica, Volume2, Issue1,January1954, Pages9-10.
    [9] Hirth, J.P.&Lothe, J.(1968) Theory of dislocations. New-York: McGraw-Hill.
    [10] M. E. Kassner. Taylor hardening in five-power-law creep of metals and Class M alloys[J].Acta Materialia, Volume52, Issue1,5January2004, Pages1-9.
    [11] M.N. Shiekhelsouk, V. Favier, K. Inal, M. Cherkaoui.Modelling the behaviour ofpolycrystalline austenitic steel with twinning-induced plasticity effect[J]..International Journalof Plasticity, Volume25, Issue1, January2009, Pages105-133.
    [12] Kocks, U.F.&Mecking H. Physics and phenomenology of strain hardening: the FCC case [J].Progress in Materials Science.48,2003.171-273.
    [13] J.W. Christian.Kinetics of Martensitic Transformations [J].The Theory of Transformations inMetals and Alloys,2002, Pages1062-1075.
    [14] Cottrell A H. Twinning and diffusionless transformations in metals [J].Journal of theMechanics and Physics of Solids,1955(2).
    [15] Mahajan, S.&Williams, D.F. Deformation twinning in metals and alloys[J]. InternationalMetallurgical Reviews.1973(18),43-61.
    [16] J.A.Venables, Deformation Twinning in fcc Metals. In: R.E. ReedHill. Metallurgical SocietyConferences25, march.77-116.
    [17] N.R. Tao, K. Lu. Nanoscale structural refinement via deformation twinning in face-centeredcubic metals[J]. Scripta Materialia, Volume60, Issue12, June2009, Pages1039-1043
    [18] R.L.Fullman. Measurement of Particle Size in Opaque Bodies [J]. Transaciton AIME,Hournal of Metals, pp447-452,Mar.1953.
    [19] P. J. Ferreira, P. Müllner.A thermodynamic model for the stacking-fault energy [J].ActaMaterialia, Volume46, Issue13,10August1998, Pages4479-4484.
    [20]Kalidindi, S.R.; Salem, A.A.&Doherty, R.D. Role of deformation twinning on strainhardening in cubic and hexagonal polycrystalline metals [J].Advanced Engineering Materials.5(4),229-232.
    [21]Y.K. Lee, C.S. Choi, Driving force forγ→εa martensitic transformation and stackingfault energy ofγin Fe-Mn binary alloys [J]. Metallurgical and Materials Transaction3A.31A,355-360.
    [22]Surya R. Kalidindi. Modeling anisotropic strain hardening and deformation textures in lowstacking fault energy fcc metals [J]. International Journal of Plasticity, Volume17, Issue6, July2001, Pages837-860
    [23] I. Karaman, H. Sehitoglu, Y. I. Chumlyakov and H. J. Maier. The deformation oflow-stacking-fault-energy austenitic steels [J].Journal of the Minerals, Metals and MaterialsSociety,2002,Vol54, Number7:31-37.
    [24] N.R. Tao, K. Lu. Nanoscale structural refinement via deformation twinning in face-centeredcubic metals [J]. Scripta Materialia, Volume60, Issue12, June2009, Pages1039-1043
    [25] M.A.Meyers, O.Vahringer, V.A. Lubarda, The onset of twinning in metals: a constitutivedescription [J]. Acta Materialia.2001,49,4025-4039.
    [26] Adler, P.H.; Olson, G.B.&Owen. W.S. Strain hardening of hadfield manganese steels [J].Metallurgical Transactions A.19867A,1725-1737.
    [27] Jianfeng Wan, Shipu Chen and Zuyao Xu. Electronic structure of FCC phase in Fe Mn Sibased shape memory alloys and its stability [J].Science in China Series E: TechnologicalSciences, Volume44,2001Number5.
    [28] G.B. Olson, M. A. Cohen, General mechanismation [J]. Metallurgical Transactions A.(1976)7A,1897-1904.
    [29] Noskva N I, Pavlov V A. Stacking fault in nickel solid solution [J]. Physics Metal andMetallography,1962,14:86~89.
    [30]李建忱,蒋青等.合金元素对铁锰硅系形状记忆合金层错能的影响.功能材料,1999,30(2).
    [31] Ericsson T. Acta Metall,1966;14:1073.
    [32] R. E. Schramm and R. P. Reed. Stacking fault energies of seven commercial austeniticstainless steels[J]. Metall. Trans.1975,6A:1345~1351.
    [33] Hertzberg R W.工程材料的变形与断裂[M].北京:机械工业出版社.1982,94.
    [34] McEvily A J Jr. Johenson T L. The role of cross slip in brittle fracture and fatigue[J]. TheInter J of Fracture Mechanics,1967,3:45.
    [35] Hirth, J.P.&Lothe, J. Theory of dislocations. New-York: McGraw-Hill.1968.
    [36] Karaman, I.; Sehitoglu, H.&Gall. K. On the deformation mechanisms in single crystalHadfield manganese steels. Scripta Materialia.38(6),1009-1015.
    [37] Copley, S.M.&Kear, B.H. The dependence of the width of a dissociated dislocation ondislocation velocity [J]. Acta Metallurgica.1968.16,227-231.
    [38] M.A. Meyers, O. V hringer, and V.A. Lubarda. The Onset of Twinning in Metals:Constitutive Description [J]. Acta Mat.,49(2001):4025-4039.
    [39] Bruex, U.; Frommeyer, G.; Gr assel, O.; Meyer, L.W.&Weise A. Development andcharacterization of high strength Fe-Mn-(A1,Si) TRIP/TWIP steels[C]. In: De Cooman, B.C.International Conference on TRIP-Steele,19-21june2002, Ghent, Belgium. Aachen: GRIPS.91-95.
    [40] R. E. Reed-Hill.Physical metallurgy principles [M]. New York, London, Van Nostrand,1964.630pages.85.B.L. Mordike.Journal of Nuclear Materials, Volume17, Issue1, August-September1965:96.
    [41] V. Randle.Mechanism of twinning-induced grain boundary engineering in low stacking-faultenergy materials[J].Acta Materialia, Volume47, Issues15-16, November1999, Pages4187-4196.
    [42] H.C. Choi, T.K.Ha, H.C.Shin, Y.W.Chang, The formation kinetics of deformation twin anddeformation inducedε-martensite in an austenitic Fe-C-Mn steel [J]. Scripta Materialia,1999.40(10),1171-1177.
    [43] S. Allain, J.-P. Chateau, D. Dahmoun, O. Bouaziz.Modeling of mechanical twinning in ahigh manganese content austenitic steel [J].Materials Science and Engineering A, Volumes387-389,15December2004, Pages272-276.
    [44] Niewczaz, M.&Saada, G. Twinning nucleation in Cu-8at%Al single crystals [J].Philsophical Magazine A.8(1),167-191.
    [45] Ibrahim Karaman, H. Sehitoglu, Y. I. Chumlyakov, H. J. Maier, I. V. Kireeva. Extrinsicstacking faults and twinning in hadfield manganese steel single crystals[J].Scripta Materialia,Volume44, Issue2,2February2001, Pages337-343.
    [46] I. Karaman, H. Sehitoglu, Y. I. Chumlyakov and H. J. Maier. The deformation oflow-stacking-fault-energy austenitic steels [J]. Journal of the Minerals, Metals and MaterialsSociety,.
    [47] S.Takaki, T.Furuya, Y.Tokunaga, Effect of Si and AI additions on the low temperaturetoughness and fracture mode of Fe-27Mn alloys [J]. ISIJ International.(1990)30,632-638.
    [48] Gr assel, O.; Frommeyer, G.; Derder, D.&Hofmann, H. Phase transformation andmechanical properties of Fe-Mn-Si-A1TRIP-steels [J]. Journal de Physic IV France7. C5,383-388.
    [49]俞德刚,谈育煦.钢的组织强度学[M].上海:上海科技出版社,1983.
    [50] Bouaziz O, Guelton N. Modelling of TWIP effects on work-hardening [J]. Materials Scienceand engineering A,2001,:246-249.
    [51] E.R.W Jones, E.A Fell.The interpretation of roll textures of face-centred cubic metals [J].Acta Metallurgica, Volume5, Issue12, December1957, Pages689-691.
    [52]Sang Heon Lee, Dong Nyung Lee.Analysis of deformation textures of asymmetrically rolledsteel sheets [J].International Journal of Mechanical Sciences, Volume43, Issue9, September2001, Pages1997-2015.
    [53] B. Radhakrishnan, G.B. Sarma Coupled simulations of texture evolution duringdeformation and recrystallization of fcc and bcc metals [J]. Materials Science and Engineering:A, Volume494, Issues1-2,25October2008, Pages73-79.
    [54] R.E. Bolmaro, A. Roatta, A.L. Fourty, J.W. Signorelli.Recrystallization textures in fccmaterials: A simulation based on micromechanical modeling data [J]. Scripta Materialia,Volume53, Issue2, July2005, Pages147-152.
    [55] I. Samajdar, R. D. Doherty. Cube recrystallization texture in warm deformed aluminum:understanding and prediction [J].Acta Materialia, Volume46, Issue9,22May1998, Pages3145-3158.
    [56] Dong Nyung Lee. Strain energy release maximization model for evolution of recrystallizationtextures [J].International Journal of Mechanical Sciences, Volume42, Issue8, August2000,Pages1645-1678.
    [57] Smallman RE, Green D. The dependence of rolling texture on stacking fault energy [J]. ActaMetall1964,12:145.
    [58] Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena.[J]. Oxford:Elsevier Science;1995.
    [59] Vercammen S, Blanpain B, De Cooman BC, Wollants P. Cold rolling behaviour of anaustenitic Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning [J]. ActaMater.2004;52:2005.
    [60] Weidner A, Klimanek P. Shear banding and texture development in cold-rolled α-brass[J].Scripta Mater1998;38:851.
    [1]R. Umino, X.J. Liu, Y. Sutou, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida. ExperimentalDetermination and Thermodynamic Calculation of Phase Equilibria in the Fe-Mn-Al System[J].Journal of Phase Equilibria and Diffusion Vol.27(No.1),2006:54-62.
    [2] Jeffrey William Edington. Practical Electron Microscopy in Materials Science[M]. VanNostrand Reinhold Co.,1976.
    [3] GB/T228-2002金属材料室温拉伸试验方法.2002.
    [4]毛为民,张新明,晶体材料织构定量分析.1994:冶金工业出版社.59-94.
    [5]粱志德,徐家桢,王福,织构材料的三维取向分析技术-ODF分析.1986:东北工学院出版社.
    [1] C. Donadille, R. Valle, P.Devin, R.Penelle. Development of texture and microstructure duringcold-rolling and annealing of FCC alloys: example of an austenitic stainless steel [J]. ActaMetallrugica,1989.37(6),1547-1571.
    [2] Vercammen S, Blanpain B, De Cooman BC, Wollants P. Cold rolling behaviour of an austeniticFe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning [J]. ActaMater.2004;52:2005.
    [3]徐祖耀.马氏体相变与马氏体[M].科学出版社,1999: P54.
    [4]韦习成,李麟,符仁钰. Si-Mn系TRIP钢高速冲击拉伸时相变过程的应变率相关性[J].特殊钢.2002,增刊.10-13.
    [5] R.E.Schramm,R.P.Reed. Staching Fault Energies of Seven Commercial Austenitic StainlessSteels Mat[J]. Trans,1975,6A: P1345.
    [6]戎咏华,孟庆平,何刚,徐祖耀. Fe-Mn合金层错能嵌入原子法计算[J].上海交通大学学报,2003,2(37): P171-174.
    [7]孙广平.铁锰硅铬镍形状记忆合金的组织性能及制造管接头工艺性研究[D].吉林工业大学.2000,6:P28.
    [8] Broek D. Elementary engineering fracture mechanics [M].3ed., Nordhoff International Pub.1984.
    [9]张栋钟培道等.机械失效的实用分析[M].北京:国防工业出版社,1997,2.
    [1] Reed-Hill R E. The inhomogeneity of plastic deformation[M]. Ohio:ASM, MetalsPark,1971.285-286.
    [2]张旺峰,朱金华,曹春晓.奥氏体锰钢高应变速率孪生诱导塑性[J].机械工程材料.2005,第29卷第3期.
    [3]罗治平,陶佑卿.低层错能钢中ε马氏体的X射线分析[J].物理测试.1995(5):P57.
    [4] B.X. Huang,X.D. Wang, Y.H. Rong, L. Wang, L. Jin. Mechanical behavior and martensitictransformation of an Fe–Mn–Si–Al–Nb alloy[J]. Materials Science and Engineering.2006,A438-440:P306-311.
    [5] A.S. Hamada, L.P. Karjalainen, M.C. Somani. The influence of aluminum on hot deformationbehavior and tensile properties of high-Mn TWIP steels[J]. Materials Science and Engineering.2007(467): P114-124.
    [6] R.W.Cahn. Plastic deformation of alpha-uranium twinning and slip[J]. Acta Met,1953,1:P49-70.
    [7] J. Friedel. Dislocations[M]. Pergamon Press, Oxford, UK,1964: P178.
    [1]韦习成,李麟,符仁钰. Si-Mn系TRIP钢高速冲击拉伸时相变过程的应变率相关性[J].特殊钢.2002,增刊.10-13.
    [2] Tang changguo, Zhu jinhua. Effect of Strain Rate on Strain Hardening Exponent of SomeMetallic Materials[J]. Acta Metallurgica Sinica,1994,17(3):183-186.
    [3]黄明志,骆竞唏,贺保平.金属硬化曲线的阶段性和最大均匀应变[J].金属学报,1983,19(4): A291-299.
    [4] G. K. Young, J. K. Han. Low Temperature Mechanical Behavior of Microalloyed andControlled-Rolled Fe-Mn-Al-C-X Alloy[J].Metall.Trans.A.1985,16A:1689-1693.
    [5] G. K. Young, Y. L. Cha. The flow Equation and Its Necking Criterion in Austenitic CryogenicFe-Mn-Al-X Steels[J].Metall.Trans.A.1987,19A:1625-1631.
    [6] P. H. Adler, G. B. Olson and W. S. Owen. Strain Hardening of Hadfield Manganese Steel[J].Metall.Trans.A.1986,17:1725.
    [7] A. Soussan, S. Degallaix. Work-hardening behavior of nitrogen alloyed austenitic stainlesssteels[J].Mater.Sci.and Eng.A.1991,A142:169-176.
    [8] T. S. Shun, C. M. Wan and J. G. Byrne. A study of work hardening in austenitic Fe-Mn-C andFe-Mn-Al alloys[J].Acta.Metall.Mater.1992,40(12):3407-3412.
    [9]戴天成,刘东升等.高锰奥氏体钢的双n行为[J].沈阳工业大学学报.1994,16(4):68-71.
    [10]王滨,王位等.高锰奥氏体钢变形硬化特性的计算机辅助测定[J].理化检验-物理分册.1997,33(11):17-19.
    [11] C. H. White and R. W. Honeycombe. Structural changes during the deformation ofHigh-purity iron-manganese-carbon alloys [J]. Journal of the Iron and Steel Institute.1962,200:457-466.
    [12] Y. N. Dastur and W. C. Leslie. Mechanism of work hardening in Hadfield manganese steel[J]. Metall. Trans.1981,12A:749-759.
    [13] D.C. Ludwigson. Modified Stress-Strain Relation for FCC Metals and Alloys [J]. Metall.Trans.1971,2(10):2925-2828.
    [14]周维贤.描述钢板硬化曲线的一个新数模[J].材料科学进展,1989,3:325.
    [15] TIAN X, ZHANG Y S. Mathematical Description for Flow Curves of Some Stable AusteniticSteels [J]. Mater. Sci. Eng,1994, A174:L1.
    [16] Olson G B, Cohen,M.A. General Mechanism of Matensitic Nucleation: Part1. GeneralConcepts and the FCC-HCP Transformation[J]. Metal Trans,1976,7A: P1897.
    [17] Remy L. Kinetics of F.C.C Deformation Twinning and Its Relationship to Stress-StrainBehaviour[J]. Acta. Metall.1978,25:443.
    [1] A.W.Sleedwyk.1/2<111>screw dislocations and nucleation of {112}<111> twins in the bcclattic[J]. Phil,Mag,1963,8: P1467-1486.
    [2] S. Allain, J.-P. Chateau, D. Dahmounb, O. Bouaziz. Modeling of mechanical twinning in ahigh manganese content austenitic steel[J]. Materials Science and Engineering,2004,A387–389: P272–276.
    [3] Venables, J.A. Deformation Twinning in fcc Material[M]. In: R.E. Reed-Hill. MetallurgicalSociety Conferences.1963,3(25): P77-116.
    [4] Meyers M A, Vohringer O, Lubarda V A. The onset of twinning in metals: a constitutivedescription[J]. Acta mater.2001,14(49): P4025-4039.
    [5] Steven Vercammen. Processing and tensile behaviour of TWIP steels: Microstucture andtextural analysis[D].2004,11: P22
    [1] Wenk, H.R. Preferred orientation in deformed metals and rocks: an introduction to moderntexture analysis [M]. Orlando: Academic Press.1985.
    [2] Hirsch,J&Lucke,K. Mechanism of deformation and development of rolling textures inpolycrystalline fcc metals: the influence of slip inhomogeneities and twinning [J]. ActaMetallurgica.1988,36(11),2905-2927.
    [3] Leffers,t.&Jensen,D.J. Recrystallisation mechanisms and the origin of cube texture in copper[J]. Acta Metallurgica.1988.30,1929-1939.
    [4] Donadille,C.; Valle,R.; Dervin,P.&Penlle,R. Development of texture and microstructureduring cold-rolling and annealing of FCC alloys: example of an austenitic stainless steel [J].Acta Metallurgica,1989.37(6),1547-1571.
    [5] Leffers, T. The Brass-Type Texture once again[C]. In: Liang,; Zou, L.&Chu, Y. Textures ofmaterials: ICOTOM11, Xian, China,1996(9):299-306.
    [6] J.Savoie, Y. Zhou, J.J.Jonas, S.R.Macewen. Textures induced by tension and deep drawing inAluminum sheets [J]. Acta Materialia.1996.44(2):587-605.
    [7] H.R.Wenk. Preferred orientation in deformed metals and rocks: an introcuction to moderntexture analysi. Orlando: Academic Press.1985.
    [8] Chin, G.Y.; Mammel, W.L.;&Dolan, M.T. Taylor’ theory of texture for axisymmetric flow inbody-centered cubic metals [J]. Transactions of the metallurgical society of AIME.1967.239,1854-1855.
    [9] Cho,J.-H.; Park, S.-J; Choi,S,-H.; Oh K.H. Effect of texture on uniaxial tension in AA3003Sheet with inhomogeneous texture[C]. In: Spunar, J.A. Textures of materials: ICOTOM12part2,9-13august1999, Montreal. Canada,587-592.
    [10] El-Danaf E, Kalidindi S R, Doherty R D, Necker C. Deformation texture transition in brass:critical role of micro-scale shear bands [J]. Acta mater.2000.48:2665-2673.
    [11] Vercannen S, Blanpain B, Decooman B C, et al. Cold rolling behavior of an austeniticFe-30Mn-3Si-Al TWIP-steel: the importance of deformation twining[J]. Acta Material,2004.52:2005-2012.
    [12] Ravi Kumar B, Mahato B, Bandyopadhay N R, Bhattacharya D K. Influence ofstrain-induced phase transformation on the surface crystallographic texture incold-rolled-and-aged austenitic stainless steel [J]. Metallurgical and Materials Transactions A,2005(36A):3165-3174.
    [13] A.T.English, G.Y.Chin, On the variation of wire texture with stacking fault energy in fccmetals and alloys [J]. Acta Metallurgica.1965.13:1013-1026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700