云杉木材共振板的振动特性与钢琴声学品质评价的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢琴音板的质量在很大程度上决定了钢琴声学品质,在生产中,钢琴音板的选材主要依赖于技师的主观评判,这种方式不但效率低,而且科学依据不足,误差大,无法满足在大批量生产的条件下,以最适当的材料制作最多、最高品质钢琴音板的要求。
     为能建立钢琴音板的客观选材方法和实现对钢琴共振板振动特性的客观评价,以4种适合制作乐器音板的云杉属木材(俄罗斯远东红皮云杉、东北长白鱼鳞云杉、西藏林芝云杉及美国西加云杉)为研究对象,进行了从共振板素材、共振板,到音板,直至钢琴产品的声学特性的追踪研究。
     采用综合坐标法、综合评分法对共振板素材的综合振动性能进行区分,根据区分结果,每树种均选出区分度大的两组共振板素材(分别为第1组与第2组素材,对应为第1块与第2块共振板,对应为第1号与第2号钢琴),用以制备钢琴共振板;基于钢琴共振板的振动理论,分析了共振板的振动特性;将共振板制成钢琴后,采用主观评价、客观评价、生理心理指标评价方法对钢琴的声学品质进行评价;在综合分析共振板振动特性、钢琴声学品质之间的关系的基础上,建立钢琴共振板振动特性的客观评价方法以及钢琴共振板用木材的客观选取方法。
     本文的主要研究内容和结果如下:
     (1)在实际尺寸木材振动特性检测的探索性研究基础上,对实际尺寸的钢琴共振板用木材振动特性进行检测,并采用综合分析的方法,实现对俄罗斯远东红皮云杉、东北长白鱼鳞云杉、西藏林芝云杉及美国西加云杉树种的试验样本进行振动特性的综合评价与区分,对每个树种均挑选出两组综合振动特性区分明显的共振板素材。
     (2)将素材拼板胶合,形成共振板。分析了钢琴共振板基本振动理论,得出钢琴共振板自由振动的频率方程。根据自由振动的频率方程计算得出钢琴共振板x方向与y方向的弹性模量(MOE_x,MOE_y),并用纵波传播速度方程计算得出钢琴共振板x方向与y方向的纵波传播速度(V_(Lx),V_(Ly)),通过比较发现:同树种的两块共振板,无论是x方向,还是y方向,第2块共振板的弹性模量值、纵波传播速度基本要比第1块的大;所有的共振板,y方向的弹性模量(MOE_y)、纵波传播速度(V_(Ly))均要大于x方向(MOE_x,V_(Lx))。对共振板裁边后剩余的边角试件(45°斜纹理试件)进行力学性能分析,得出与共振板整板弹性模量值的分析结果较为一致的结论。
     (3)在共振板上粘贴肋木,形成音板。通过肋木对钢琴共振板声传播速度影响的分析,结果表明肋木可显著提高共振板横纹理方向的振动传播响应速率。比较音板不同方向之间及同树种内两块音板的对应方向的振动响应时间发现,顺纹理方向的振动响应时间与横纹理方向之间相差不大,这主要是肋木起到了很好的增加横纹理方向振动传播速度的作用。
     (4)利用上述4个树种各2组音板制作了8台钢琴。采用主观评价、客观评价方法对8台钢琴的声学品质进行评价,主观评价人员为从事钢琴演奏与教学工作多年的专家,客观评价的指标主要包括钢琴的音强、音长、动态范围及音色等。评价的结果表明:同树种的两台钢琴,第2号的钢琴声学品质客观评价指标值、音质主观评价项目得分基本都优于第1号。可认为,同树种的第2号钢琴声学品质优于第1号钢琴。
     (5)以没有音乐专业背景的大学生群体为研究对象,以心率、血压、皮肤温度及呼吸几项指标为变量,分析了不同钢琴对受验者生理的影响。结果表明:与正常静息状态比较,听赏钢琴曲后,引起受验者的生理信号相应改变,表现为交感神经活动张力降低,迷走神经活动水平上升,自主神经活动状态发生改变,但尚未失去均衡性,综合表现为自主神经系统活动性降低,受验者精神处于松驰状态;比较受验者听赏同树种内两台钢琴演奏的曲子对受验者的生理影响可以表明,受验者听赏第2号钢琴时,交感神经活动张力比听赏第1号钢琴有所降低,而迷走神经活动水平上升,受验者精神处于更为放松的状态。
     (6)从共振板弹性模量(MOE_x,MOE_y)、纵波传播速度(V_(Lx),V_(Ly))、共振板边部斜纹理试件弹性模量(MOE_(45x),MOE_(45y)及音板的振动响应时间(顺纹理振动响应时间T_L,横纹理振动响应时间T_R)4个方面分析了共振板的振动特性与钢琴声学品质的主观评价得分(总项平均得分、总体音质得分及计权得分)、客观评价指标(强奏音强值、弱奏音强值、音长、音色)之间的关系。共振板y方向弹性模量(MOE_y)、纵波传播速度(V_(Ly))、共振板边部斜纹理试件弹性模量(MOE_(45y))与主观评价得分、客观评价指标之间的相关关系大于x方向,其原因可能与音板上的琴弦排列与音板的y方向接近平行,或与y方向的夹角小于x方向的结构特点有关;主、客观评价指标与音板横纹理方向振动响应时间之间的相关性高于顺纹理方向的振动响应时间。因此,通过提高共振板弹性模量、纵波传播速度,尤其是y方向,可提高钢琴的声学品质;若能降低音板的横纹理方向的振动响应时间,以减小与顺纹理方向的声振动传播速度的差异,使整个音板在最短的时间内均匀振动起来,也可提高钢琴的声学品质。
     (7)通过综合分析得出钢琴共振板的振动性能客观评价方法:测量钢琴共振板,或者直接测量钢琴共振板边部斜纹理试件的弹性模量值,主要是y方向弹性模量值;测量钢琴共振板的纵波传播速度,或者测量音板的振动响应时间,主要是y方向的纵波传播速度,或者横纹理方向的振动响应时间。
     (8)通过综合分析得出钢琴音板用木材的客观选取方法:采用综合坐标法、综合评分法的综合分析方法对钢琴音板用木材的综合振动性能进行计算,参与计算的振动性能指标需要包括纵向的振动性能指标与横向或斜纹理方向的振动性能指标。
The piano acoustical quality is decided by the soundboard to a great extent. In the producing, the technician evaluates and chooses the wood for piano soundboard subjectively for the moment. It is inefficient, large error, and insufficiency of the scientific foundation. It does not satisfy the requirement to produce the excellent piano soundboard in the condition of volume-produce.
     In order to establish the objective selection method of wood selection for piano soundboard and objective evaluation method of vibration property of piano resonance board, track-study of vibration properties from the wood used for resonance board 1) of Picea glehnii, Picea jezoensis, Picea likiangensis var. linzhiensis, and Picea sitchensis, resonance board 2), to soundboard 3), until the acoustical quality of piano were studied.
     The comprehensive vibration properties of the samples of every species were analyzed and differentiated respectively by the comprehensive coordinate method and comprehensive marking method. According to the results of differentiation, two groups of samples used for producing the resonance boards in every species were selected respectively, and the distinction between the both groups was obvious (the No.1 and No.2 groups of samples respectively, correspond to the No.1 and No.2 piece of resonance board, correspond to the No.1 and No.2 piano). The vibration properties of resonance board were analyzed base on the vibration theory of thin plate. After the pianos were producing, the acoustical qualities of pianos were evaluated by the subjective method, objective method, and psycho-physiological index method. On the basis of the comprehensive analysis of the correlation between vibration properties of the resonance board and the acoustical quality of pianos, the objective evaluation method of the resonance board of piano and the objective selection method of wood used for soundboard were established.
     The main research contents and results were summarized as follows:
     (1) On the basis of studying exploringly on the vibration properties measurement of full - size wood samples, the vibration properties of full-size wood used for resonance board of piano were measured. The comprehensive vibration properties of samples of Picea glehnii, Picea jezoensis, Picea likiangensis var. linzhiensis, and Picea sitchensis were analyzed and differentiated by comprehensive analysis methods. And finally, two groups of samples were selected for producing the resonance board of piano, and that the distinction of vibration properties between the No.1 groups and the No.2 groups was obvious in every species.
     (2) The samples of wood used for resonance board were glued to resonance board. The foundation theory of vibration of piano resonance board was analyzed, and the frequency equation of free vibration was acquired. The MOE, velocity of longitudinal wave of resonance board on the x (MOE_x, VL_(Lx)) and y (MOE_y, V_(Ly)) direction were computed by the frequency equation and longitudinal wave transmittal equation. The results were: the MOE_x, MOE_y, VL_x, V_(Ly) of the No.2 piece of resonance board (correspond to the No.2 group of wood samples) are larger than the No.1 (correspond to the No.1 group of wood samples) in every species; for all resonance boards, the MOE_y, V_(Ly) are larger than MOE_x, V_(Lx). The mechanical, properties of the 45°grain samples in the edge of the resonance board were analyzed, and the results were same to the resonance board.
     (3) The soundboard is the resonance board that the ribs were glued on it. The influence of ribs on the sound transmit velocity of piano resonance board was analyzed. The result shows that the ribs can enhance the sound transmit velocity on the radius direction of resonance board. The response time of vibration on the radius direction is near to that on the longitudinal direction. That is because the ribs enhance the sound transmittal velocity on radius direction of resonance board.
     (4) The acoustical quality of the pianos was evaluated by the subjective and objective method. The experts of subjective evaluation were engaged in piano performance and education many years. The indexes of objective evaluation were loudness, sound length, dynamic range, and tone. The results of evaluation were: the acoustical quality of the No.2 piano was more excellent than the No.1 piano in the same species.
     (5) The influence of the piano music on psycho-physiological reaction (the main indexes are Heart Rate Variability, Blood Pressure Variability, Skin Temperature, and Respiration Frequency) of the subjects who are undergraduate without the background of musical training were analyzed. Compared with the resting state, the subjects' physiological reaction was changed when they enjoyed the piano music. The subjects' sympathetic nerves activity decreased, and the parasympathetic nerves activity increased, but the equilibrium was not broke. The synthetical presentation was that the activity of autonomic nervous system was weakening, and the subjects were more comfortable than they were resting. Then the differentiation of the influence of two pianos music of the same species on the subjects' physiological reaction was analyzed. The results show: when the subjects were enjoying the music of the No.2 piano the sympathetic nerves activity of the subjects decreased, the parasympathetic nerves activity increased, and they were more comfortable than that the No.1 piano of the same species.
     (6) The correlation between the vibration properties of resonance board (MOE_x, MOE_y, V_(Lx), V_(Ly)), MOE of the 45°grain sample in the edge of the resonance board (MOE_(45x), MOE_(45y)), response time of vibration of soundboard (T_L—time of longitudinal direction, T_R—time of radius direction) and the score of subjective evaluation, indexes of objective evaluation of piano acoustical quality were analyzed. The correlation between subjective evaluation score, objective evaluation indexes and the vibration properties in the y-direction of resonance board were more significant than that in the x-direction. That may be related to the strings array frame. Because the strings axis in high and intermediate frequency region is near parallel to y-direction and the angle between strings axis and y-direction in low frequency region is smaller than that between strings axis and x-direction of the soundboard. The correlation between subjective evaluation score, objective evaluation indexes and the response time of vibration of soundboard in the radius direction were more significant than that in the longitudinal direction of wood. So, the acoustical quality of piano is improved with the MOE (MOE_x, MOE_y), velocity of longitudinal wave of resonance board (V_(Lx), V_(Ly)) increased, especially in the y-direction. If the discrepancy between T_L and T_R is abated with T_R reduced, the piano acoustical quality is improved.
     (7) The objective evaluation method of wood used for piano resonance board is: the MOE of the resonance board or the 45°grain sample in the edge of the resonance board is measured, especially the y-direction(MOE_y, MOE_(45y)); And the velocity of longitudinal wave transmittal, or response time of vibration of soundboard is measured, especially the y-direction velocity (V_(Ly)) or the response time of vibration in the radius direction of the soundboard (T_R).
     (8) The objective selection method of wood used for piano soundboard is: the comprehensive vibration properties of wood used for piano soundboard are computed by comprehensive coordinate method and comprehensive marking method, and the indexes include wood longitudinal and radius (or 45°direction of grain) vibration properties.
引文
[1] 解芳.对中国乐器工业发展战略的思考——从珠江钢琴崛起的角度分析.开发研究,2006,(6):114-115
    [2] 丰元凯.2006年中国乐器行业状况述评.演艺设备与科技,2007,(1):61-63
    [3] 丰元凯.2003年中国乐器进出口行情.演艺设备与科技,2004,(2):95
    [4] 丰元凯.2005年中国乐器生产经营状况.演艺设备与科技,2006,(3):59-61
    [5] 丰元凯.乐器行业“十一五”发展规划.演艺设备与科技,2006,(5):69-73
    [6] 林峰清.谈钢琴的声学品质.苏州科技学院学报,2004,21(3):133-134
    [7] 李源哲,李先泽,汪溪泉等.几种木材声学性质的测定.林业科学,1962,7(1):59-66
    [8] 张辅刚.木管乐器用材防裂防变形处理.中国木材,1992,2(15):38-39
    [9] 张辅刚.简述乐器用木材.中国木材,1990,5(6):36-37
    [10] 张辅刚.木材的声学性质.中国木材,1990,6(7):32-34
    [11] 张辅刚.民族乐器用材(一).中国木材,1991,5(12):43-45
    [12] 张辅刚.民族乐器用材(二).中国木材,1991,6(13):36-38
    [13] 张辅刚.乐器用原木的选择.中国木材,1991,1(8):30
    [14] 张辅刚.木材颜色、花纹纹理在乐器中的应用.中国木材,1992,3(16):28-29
    [15] 张辅刚.潮湿木材对声学性能的影响.中国木材,1992,4(17):44
    [16] 张辅刚.乐器用材的自然干燥.中国木材,1992,1(14):44
    [17] 张辅刚.木管乐器.中国木材,1991,4(11):43-44
    [18] 张辅刚.音板用材的锯切方法及技术条件.中国木材,1991,1(8):28-29
    [19] 程生宝,韩继贤.钢琴的木料选制.内蒙古民族大学学报,2006,12(1):117-118
    [20] 李坚,江泽慧,刘一星等.中国木材研究.哈尔滨:东北林业大学出版社.1995:333-353
    [21] 刘一星,沈隽,刘镇波等.罢杉(Picea)属木材振勤特性关研究(Ⅰ)一年轮幅,晚材率振动特性— —及影响—.日本木材学会大会,2001,67
    [22] 刘一星,沈隽,于海鹏等.云杉(Picea)属木材振动特性关研究(Ⅱ)—结晶化度,倾角振动特性— —及影响—.日本木材学会大会,2001,68
    [23] 刘一星,沈隽,刘镇波等.结晶度对云杉属木材声振动特性参数的影响.东北林业大学学报,2001,29(2):4-6
    [24] 沈隽,刘一星,田站礼等.云杉属木材密度与声振动特性参数之间关系的研究,华中农业大学学报,2001,20(2):181-184
    [25] 刘一星,沈隽,田站礼等.云杉属木材生长轮宽度、晚材率与声振动性能参数之间关系的研究.林业科学,2001,37(6):86-91
    [26] 沈隽,刘一星,刘镇波等.纤丝角云杉属木材对云杉属木材声振动特性参数的影响.东北林业大学学报,2002,30(5):50-52
    [27] 沈隽,刘一星.木材声振动特性的研究与进展.世界林业研究,2001,14(1):30-36
    [28] 沈隽.云杉属木材构造特征与振动特性参数关系的研究.哈尔滨:东北林业大学,2001:97-110
    [29] 沈隽,刘一星,刘明.云杉属木材晚材率变异系数与声振动特性参数.福建林学院学报,2005,25(3):225-228
    [30] Shen Jun. Relationships between longitudinal and radial Picea genera sound vibration parameters. Front. For. China, 2006,1(4): 431-437
    [31] 马丽娜.木材构造与声振动性质的关系研究.安徽农业大学(硕士学位论文),2005:84-85
    [32] Norimoto M.. Structure and properties of wood used for musical instruments I. Mokuzai Gakkaishi, 1982,28(7): 407-413
    [33] Ono T., Norimoto M.. Study on Young's modulus and internal friction of wood in relation to the evaluation of wood for musical instruments. Jpn. J. Appl. Phys, 1983,22: 611-614
    [34] Norimoto M., Tanaka F., Ohgama T., et al. Specific dynamic Young's modulus and internal friction of wood in the longitudinal direction. Wood Res. Techn. Notes, 1986,22: 53-65
    [35] Tonosaki M., Okano T., Asano I.. Vibrational Properties of Sitka Spurce with Longitudinal vibration and Flexural Vibration. Mokuzai Gakkaishi, 1983,29(9): 547-552
    [36] Tonosaki M., Okano T., Evaluation of Acoustical Properties of Wood by Plate-Vibration Tests. Mokuzai Gakkaishi, 1985,31(8): 627-632
    [37] Tonosaki M., Okano T., Ohta M.. Vibration of a Violin Resonance Board I. Nodal patterns and dynamic loss of resonance. Mokuzai Gakkaishi, 1987,33(7): 552-557
    [38] Sobue N.. Instantaneous Measurement of Elastic Constants by Analysis of the Tap Tone of Wood: Application to Flexural Vibration of Beams. Mokuzai Gakkaishi, 1986,32(4): 274-279
    [39] Sobue N., Measurement of Young's Modulus by the Transient Longitudinal Vibration of Wooden Beams Using a Fast Fourier Transformation Spectrum Analyzer. Mokuzai Gakkaishi, 1986,32(9): 744-747
    [40] Sobue N., Simultaneous Determination of Young's Modulus and Shear Modulus of Structural Lumber by Complex Vibrations of Bending and Twisting. Mokuzai Gakkaishi, 1988,34(8): 652-657
    [41] Sobue N., Kitazumi M., Identification of Power Spectrum Peaks of Vibrating Completely-Free Wood Plates and Moduli of Elasticity Measurements. Mokuzai Gakkaishi, 1991,37(1): 9-15
    [42] 青木务.木琴听觉和物理性质的关联性研究.木材工业,1991,46(9):407-411
    [43] 河村进,增田稔,中村隆幸.周波数及减衰木材打音与影响.Mokuzai Gakkaishi,1997,43(2):993-1001
    [44] 小幡谷英一,则元京.木管乐器—用苇(Arundo donax L.)材振动特性含水率关系.Mokuzai Gakkaishi,1995,41(3):289-292
    [45] Sugiyama M., Matsunaga M., Minato K., et al. Physical and mechanical properties of pernambuco used for violin bows. Mokuzai Gakkaishi, 1994,40: 905-910
    [46] Matsunaga M., Sugiyama M., Minato K., et al, Physical and mechanical properties required for violin bow materials. Holzforschung, 1996,50: 511-517
    [47] Carlsson P., Tinnsten M.. Optimization of a Violin Top with a Combined Laminate Theory and Honeycomb Model of Wood. Holzforschung, 2003,57(1): 101-105
    [48] Haines D. W., Leban J. M., Herbe C.. Determination of Young's modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Science and Technology, 1996,30:253-263
    [49] Kubojima Y., Yoshihara H., Ohta M., et al. Examination of the Method of Measuring the Shear Modulus of Wood Based on the Timoshenko's Theory of Bending. Mokuzai Gakkaishi, 1996,42(12): 1170-1176
    [50] Kubojima Y., Yoshihara H., Ohta M., et al. Accuracy of the Shear Modulus of Wood Obtained by Timoshenko's Theory of Bending. Mokuzai Gakkaishi, 1997,43(5): 439-443
    [51] Kubojima Y., Okano T., Ohta M.. Effect of Annual Ring Widths on Structural and Vibrational Properties of Wood. Mokuzai Gakkaishi, 1997,43(8): 634-641
    [52] Kubojima Y., Okano T., Ohta M., Vibrational properties of sitka spruce heat - treated in nitrogen gas. J. Wood Sci., 1998,44: 73-77
    [53] Obataya E., Ono T., Norimoto M., Vibrational properties of wood along the grain. Journal of Materials Science, 2000,35: 2993-3001
    [54] Treu, A., Hapla, F.. Study on the quality of spruce and fir resonance wood. Allgemeine Forst- und Jagdzeitung. J.D. Sauerlander's Verlag, Frankfurt am Main, 2000, 171 (12): 215-222
    [55] Rujinirun C., Phinyocheep P., Prachyabrued W. et al. Chemical treatment of wood for musical instruments Part Ⅰ: acoustically important properties of wood for the Ranad (Thai traditional xylophone). Wood Sci. Technol., 2005,39:77-85
    [56] Ono T., Mliyakoshi S., Watanabe U.. Acoustic characteristics of unidirectionally fiberreinforced polyurethane foam composites for musical instrument soundboards. Acoust. Sci. & Tech., 2002,23(3): 135-142
    [57] Ono T., Isomura D.. Acoustic characteristics of carbon fiber-reinforced synthetic wood for musical instrument soundboards. Acoust. Sci. & Tech., 2004,25(6): 475-477
    [58] 刘宝利,韩二中.钢琴音板振动的实验模态分析.乐器,1991,(2):8-10
    [59] 刘宝利,韩二中.钢琴音板振动的实验模态分析(续).乐器,1991,(3):8-12
    [60] 刘宝利.钢琴音板振动的有限元分析.乐器,1992,(2):1-4
    [61] 孙朝平.钢琴音板之我见.乐器,2004,(9):8-9
    [62] Sobue N., Takemura T.. Poisson's Ratios in Dynamic Viscoelasticity of Wood as Twodimensional Materials. Mokuzai Gakkaishi, 1979,25(4): 258-283
    [63] Tonosaki M., Okano T., Asano I.. Measurement of Plate Vibration as a Testing Method of Wood for Musical Instruments. Mokuzai Gakkaishi, 1985,31(3): 152-156
    [64] Nakao T., Okano T., Asano I., Vibrational Properties of a Wooden Plate. Mokuzai Gakkaishi, 1985,31(10): 793-800
    [65] Nakao T.. Experimental Study of Torsional vibration of Wooden Bars by Plate Theories. Mokuzai Gakkaishi, 1996,42(1): 10-15
    [66] Caldersmith G. W., Rossing T. D.. Ring Modes, X-Modes and Poisson Coupling. Catgut Acoustic Soc Newsl, 1983,12-14
    [67] Caldersmith G. W.. Vibration of Othotropic Rectangular Plates. Acoustica, 1984,56:144-152
    [68] McIntyre M. E., Woodhouse J.. Overview 66. On Measuring the Elastic and Damping Constants of Orthotropic Sheet Materials. Acta Metall, 1988, 36(6): 1397-1416
    [69] Schumacher R. T.. Compliances of Wood for Violin Top Plates. J. Acoust Soc Am., 1988, 84: 1233-1235
    [70] Molin N. E., Janson E. V.. Transient Wave Propagation in Wooden Plates for Musical Instruments. J. Acoust Soc Am., 1989, 85: 2179-2184
    [71] 姜力.钢琴的选购与保养.乐器,2005,(8):8-9
    [72] 陆文秋,潘立超,包紫薇.乐器中的分谐波现象.乐器,1994,(1):1-5
    [73] 田泽林.略论乐器的声学参数.乐器,1983,(5)
    [74] Bonny, H. L.. Music Listening for intensive coronary care units: A pilot project. Music Therapy, 1983,3(1): 4-16
    [75] Geden, E. A., M. Lower, S. Beattie, et al. Effects of Music and Imagery on Physiologic and Self-report of Analogued Labor Pain. Nursing Research, 1989, 38(1): 37-41
    [76] Malcom, G. L. Effect of Rhythm on Heart Rate of Musicians. Master's Thesis. University of Kansa, 1981
    [77] Wilson. C. V., L.S. Aiken. The Effect of Intensity Levels upon Physiological and Subjective Affective Response to Rock Music. Journal of Music Therapy, 1977,14(2): 60-76
    [78] Ries, H. A.. GSR and Breathing Amplitude Related to Emotional Reactions to Music. Psychonomic Science; 1969,14(2): 62
    [79] Davis, C. A.. The Effects of Music and Basic Relaxation Instruction on Pain and Anxiety of Women Undergoing in-office Gynecological Procedures. Journal of Music Therapy, 1992,29(4):202-216
    [80] Kneutgen, J.. Eine Musickform Ihre Boilogische Funktion: Uber Die Wirktmgsweise Der Weigenlieder. Zeitschrift fur Experimentelle und Angewandte Psychologic, 1970,(17): 245-265
    [81] Hoffman, J.. Management of Essential Hypertension Through Relaxation Training with Sound. University of Kansas (Master's Thesis). 1980
    [82] Updike, P. A., D. M. Charles. Music Rx: Physiological and Emotional Responses to Taped Music Programs of Preoperative Patients Awaiting Plastic Surgery. Annals of Plastic Surgery, 1987,19(1): 29-33
    [83] Stadum, K. Music as an Adjunct to Temperature Biofeedback in the Reduction of Music Performance Anxiety. Texas Women's University (Master's Thesis). 1981
    [84] Kibler, V. E., M. S. Riber. The Effect of Progressive Muscle Relaxation and Music on Stress as Measured by Finger Temperature Response. Journal of Clinical Psychology, 1983,39: 213-215
    [85] Zimmerman, L. M., M. A. Pierson, J. Marker. Effects of Music on Patient Anxiety in Coronary Care Units. Heart-Lung, 1988,17: 560-566
    [86] 赵慧琴.音乐功能的生理心理层面透析.河南师范大学学报,2002,29(5):109
    [87] 康健民.人体生理节律与音乐节律.中国音乐,2003,(3):104-105
    [88] 余铀,高永祥,叶海青.校园音乐对大学生心理生理指标的影响.中国卫生程学,2003,2(1):30-31
    [89] 王慧萍,李卫红,赵月英.音乐对非全身麻醉病人术中生理和心理的影响.护理研究,2005,19(12):2747-748
    [90] 高杨,王效平,工忠桂.音乐疗法在急性牙髓炎病人治疗过程中对血压、心率的影响.护理研究,2006,20(9C):2496-2497
    [91] 潘扬,卓德华,陈无庄等.正常人血压变异性分析方法及生理意义.监床中老年保健,2002,5(3):178-181
    [92] Yingcheng Hu, Tetsuya Nakao, Takahisa Nakai, et al. Vibrational properties of wood plastic plywood. Journal of Wood Science, 2005,51(1): 13-17.
    [93] 胡英成.木质复合材料的动态特性与无损检测.哈尔滨:东北林业大学出版社,2004:25
    [94] 李坚.木材科学(第二版).北京:高等教育出版社,2002:263
    [95] 刘一星.木质资源材料学.北京:中国林业出版社,2004:162-165
    [96] D.K.H.Chna, D.Li. Key Factors in Bid Reasoning Model. Journal of Construction Engineering and Management, 2000,124(5): 349-357
    [97] 杨文斌,张显权,刘金福.应用层次分析法选择木材干燥窑.林业科学,2002,38(2): 169-172
    [98] 黄启堂,游水生,黄榕辉,等.应用层次分析法评价木质藤本观赏植物资源.福建林学院学报,1997,(4):331-334
    [99] 丁以中,Jennifer S.Shang.管理科学——运用Spreadsheet建模和求解.北京:清华大学出版社,2003:331-333
    [100] Pearson F. G. O., Webster C.. Timber used in the musical instrument Industry. Forest Products Laboratory, Ministry of Technology. London.
    [101] 黄克智等编著.板壳理论.北京:清华大学出版社,1987:1
    [102] Jozsef Bodig, Benjamin A. Jayne. Mechanics of wood and wood composites. Van Nostrand Reinhold Company Inc. 1982:87-99
    [103] Voichita Bucur. Acoustics of Wood. 2nd Ed. Springer-Verlag Berlin Heidelberg. 2006:40-48
    [104] 成祥生.应用板壳理论.济南:山东科学技术出版社,1989:214-217
    [105] 王克林,刘俊卿,赵冬.平板的弯曲、振动和屈曲.北京:冶金工业出版社,2006:
    [106] Nobuo SOBUE, Akio KATOH. Simultaneous Determination of Orthotropic Elastic Constants of Standard Full-Size Plywoods by Vibration Method. Mokuzai Gakkaishi, 1992, 31(10): 895-902
    [107] Hearmon R.F.S.. An Introduction to Applied Anisotropic Elasticity. Oxfor Univ. Press, 1961,90-109
    [108] Nakao T., Okano T., Asano I.. Vibrational properties of a wooden plate. Mokuzai Gakkaishi, 1985, 31(10): 793-800
    [109] Thomas D. Rossing, Neville H. Fletcher. Principles of Vibration and Sound. 2nd ed. Springer-Verlag New York, Inc. 2004: 71-72
    [110] J. Ilic. Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker. Holz als Roh-und Werkstoff, 2001, 169-175
    [111] 中国主要树种的木材物理力学性质.中国林业科学研究院木材研究所材性研究室.研究报告,森(61),1963:56
    [112] Klaus Wogram. The strings and the Soundboard. Five Lectures on the Acoustics of the Piano. Ed. By Anders Askenfelt, 2000
    [113] J. Berthaut, M.N. Ichchou, L.Jézéquel. Piano soundboard: structural behavior, numerical and experimental study in the modal range. Applied Acoustics, 2003,64:1113-1136
    [114] Giordano. Simple model of a piano soundboard. The Journal of the Acoustical Society of America, 1997,102(2): 1159-1168
    [115] 马伟.钢琴选购保养维修知识问答.北京:北京体育大学出版社,2004:113-116
    [116] 金先彬.论钢琴的音色(一).乐器,2002,(1):38-39
    [117] 韩宝强.音的历程——现在音乐声学导论.北京:中国文联出版社,2003:3-14
    [118] 王宏参.声音质量主观评价.北京:中国广播电视出版社,2003:124-126
    [119] GB/T16463-1996“中华人民共和国国家标准广播节目声音质量主观评价方法和技术指标要求”
    [120] 韩宝强.关于“音”的性质的讨论.中国音乐学,2002,(3):27-36
    [121] 刘沛,任恺译.音乐心理学手册.长沙:湖南文艺出版社,2006:366-409
    [122] Task Force of The European Society of Cardiology and The North American Society of Pacing and Electro physiology, Heart rate variability—Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 1996, (17): 354-381
    [123] Federico Lombardi. Clinical implications of present physiological understanding of HRV components. Cardiac Electro physiology Review, 2002, 6: 245-249
    [124] 胡大一,郭成军,李瑞杰.心率变异性—测量标准,生理释义与临床应用——续一:心率变异性的生理研究.中国医疗器械信息,1998,4(1):29-32
    [125] 胡大一,郭成军,李瑞杰.心率变异性—测量标准,生理释义与临床应用——续二:心率变异性的生理研究.中国医疗器械信息,1998,4(2):15-18
    [126] 胡大一,郭成军,李瑞杰.心率变异性—测量标准,生理释义与临床应用——续三:心率变异性的生理研究.中国医疗器械信息,1998,4(3):26-28
    [127] 黄永麟,曲秀芬.心率变异性的临床应用评价.中华心律失常学杂志,1999,3(1):71-74
    [128] 许广实,吴洁,王云,等.心率变异指数法的临床应用价值.中日友好医院学报,1995,9(3):141-143
    [129] 中华心血管病杂志编委会心率变异性对策专题组.心率变异性检测临床应用的建议.中华心血管病杂志,1998,26:252
    [130] 于海鹏,刘一星,肖向红,等.基于心率变异指标研究木材良好接触感的生理机制.东北林业大学学报,2005,33(2):29-31
    [131] 孙京霞,白延强.心率变异分析方法的研究进展.航人医学与医学工程,2001,14(3):230-234
    [132] 刘仁光,刘爱纯,袁荣玺.心率变异的临床应用和分析方法.中国实验诊断学,1999,3(3):133-135
    [133] 刘晓芳,叶志前.心率变异性的分析方法和应用.国外医学生物医学工程分册,2001,24(1):42-48
    [134] 廖旺才,杨福生,胡广书.心率变异性非线性信息处理的现状与展望.国外生物医学工程分册,1995,18(6):311-316
    [135] Awdah Al-Hazimi, Nabil Al-Ama, Ahmad Syiamic et.al. Time-domain Analysis of Heart Rate Variability in Diabetic Patients with and without Autonomic Neuropathy. Annals of Saudi Medicine, 2002, 22(5): 400-403
    [136] 吕晓琪,蒋大宗,心率波动信号的谱分析及其应用.生物医学工程学杂志,1993, 10(3):212-217
    [137] 张荣,王兴邦,郑军,张立藩.心率变异性谱分析方法的比较研究.航天医学与医学工程,1994,7(1):49-55
    [138] 明东,田锡惠,杨春梅,丁北生,万柏坤.心率变异(HRV)信号的谱分析方法研究.北京生物医学工程,2001,20(4):252-255
    [139] 楚东雨,宁新宝.心率变异性的自回归模型功率谱分析.数据采集与处理,2000,15(2):259-262
    [140] Goseki Y., Matsubara T., Takahashi N., et al. Heart Rate Variability before the Occurrence of Silent Myocardial Ischenia during Ambulatory Monitoring. Am J. Cardiol, 1994,73(12): 845-849.
    [141] 卢山.基于时频分析的心率变异性研究.重庆大学(硕士学位论文),2004:11
    [142] 王庭槐.生理学.北京:高等教育出版社,2004:102-106
    [143] Mancia G., Grassi G.. Mechanisms and clinical implications of blood pressure variability. J. Cardiovase Pharmacol, 2000,35(4): 15-19
    [144] Kikuya M., Hozawa A., Ohokuho T., et al. Prognostic significance of blood pressure and heart rate variabilities: the ohasama study. Hypertension, 2000, 36(5): 901-906
    [145] 许玉德.动物生理学引论.厦门:厦门大学出版社,2000:70-71
    [146] 卓德华,唐丽萍,张维忠.血压变异性研究进展.中国循环杂志,1999,14(6):380-381
    [147] 汤池,杨国胜,席汤.无创连续血压测量方法的研究进展.医疗卫生装备,2004,(10):25-27
    [148] Penaz J. Photoelectric measurement of blood pressure, volume and flow in the finger. Digest of the 10th International Conference on Medical Engineering, Dresden, Germany: 1973, 104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700