聚天冬氨酸衍生物的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚天冬氨酸(PASP)是一种可生物降解的环保型阻垢分散剂,但在阻垢分散和缓蚀性能上与其它类型阻垢分散剂还有一定的差距,使其应用受到了很大限制。为此,本文对聚天冬氨酸进行改性,在聚天冬氨酸的侧链上引入功能性基团来提高阻垢分散和缓蚀性能,旨在研制绿色环保型工业循环冷却水处理药剂。
     以提高阻垢分散性能为目标,利用天冬氨酸热缩聚产物聚琥珀酰亚胺(PSI)和天冬氨酸(ASP)、2-氨基乙磺酸(SEA)分别合成了两种聚天冬氨酸衍生物——羧酸基聚天冬氨酸衍生物( PASP-ASP )和同时含羧酸基和磺酸基聚天冬氨酸衍生物(PASP-SEA-ASP),利用氨基酸等电点的性质以及氨基酸与茚三酮溶液的颜色反应,对合成的聚天冬氨酸衍生物进行了分离和提纯,并对其接枝率进行了测定,红外光谱法和元素分析法表征了两种聚天冬氨酸衍生物的结构。考察了不同原料摩尔比、不同反应温度和不同反应时间条件对产物接枝率的影响,优化出了聚天冬氨酸衍生物的适宜合成条件,反应机理为亲核加成-消除反应。
     研究了产物接枝率和阻垢性能、分散性能、缓蚀性能之间的关系,确定了不同基团在阻垢分散和缓蚀过程中各自所起的作用,结果表明:聚天冬氨酸分子结构中羧酸基的引入有助于阻垢性能和缓蚀性能的提高,而磺酸基的引入可大大提高分散性能,但阻垢性能降低。考察了不同用量、水温、水质硬度及时间等条件下对碳酸钙的阻垢性能,确定了阻垢率和缓蚀率随之变化的定量关系。
     通过动态模拟试验,研究了聚天冬氨酸衍生物的动态污垢热阻和动态阻垢率,静态和动态实验结果表明:在低加药量的情况下,分子结构中同时引入具有较好阻垢性能和分散性能的功能基团的聚天冬氨酸衍生物的动态污垢热阻小,加药量为0.5 mg·L~(-1)时,PASP-SEA-ASP的动态阻垢率达到了99.35 %;在高加药量的情况下,分子结构中仅引入具有较好阻垢性能的功能基团的聚天冬氨酸衍生物的动态污垢热阻小,加药量为1.5 mg·L~(-1)时,PASP-ASP的动态阻垢率达到了96.13 %以上。因为在加药量较小时,药剂中的磺酸基起到了分散作用,使得碳酸钙晶体不粘附于加热棒上,只是分散于水中,加大药剂含量时,磺酸基的比例也增加,使得羧酸基螯合Ca2+的作用减弱,形成的CaCO_3沉淀也增多,过多的CaCO_3沉淀粘附于加热棒上,动态阻垢率减小。
     利用扫描电子显微镜和红外光谱仪等技术对碳酸钙晶体进行了观察和分析,结合静态和动态的阻垢分散试验,当加入聚天冬氨酸衍生物后碳酸钙的形貌为球形的球霰石结构时,表现出优良的分散性能,当加入聚天冬氨酸衍生物后碳酸钙的形貌为类球形的球霰石结构时,表现出优良的阻垢性能。利用电化学阻抗测试系统和扫描电子显微镜对缓蚀机理进行了分析,电极吸附聚天冬氨酸衍生物后表面致密、有序性高,非极性基团-R一端在金属表面定向排列,形成疏水薄膜,阻止和腐蚀反应有关的电荷或物质转移,减缓了金属的腐蚀速率。
Polyaspartic acid (PASP) is a kind of biodegradable environmentally friendly scale inhibition dispersing agents. Its performance of dispersion, scale and corrosion inhibition, however, is worse than the other scale inhibition dispersing agents. So it is important to improve its performance of dispersion, scale and corrosion inhibition by research on modified PASP. In this paper, functional groups are introduced in the side chain of PASP in order to develop an environmentally friendly and high-efficient water treatment chemical use in industrial circulating cooling water system.
     For the purpose of increasing scale inhibition rate, two polyaspartic acid derivatives (PASP-ASP and PASP-SEA-ASP) were prepared from polysuccinimide (PSI) that was thermal condensation polymer of aspartic acid (ASP), taurine (SEA) and ASP. The polyaspartic acid derivatives were separated and purified made use of property of isoelectric point of amino acid and color reaction of amino acid and ninhydrin, and their grafting ratios were mensurated. The structure of polyaspartic acid derivatives were characterized by means of FTIR and elemental analyzer. The effect of the synthesis conditions, such as mole ratio of materials, reaction temperature and reaction time, on the grafting ratios of polyaspartic acid derivatives were studied, and the suitable synthetic reaction conditions were optimized. The mechanism of reaction was nucleophilic addition-elimination reaction.
     The relationships between the performance of scale inhibition, dispersion, corrosion inhibition and grafting ratios of polyaspartic acid derivatives were studied, Their respective action of different group on process of dispersion, scale and corrosion inhibition were researched. The results showed that the carboxylic acid group was introduced in molecular structure of PASP helped improvement of scale inhibition performance and corrosion inhibition performance, and the sulfonic acid group was introduced helped improvement of dispersive performance, but worsen performance of scale inhibition. In addition, the scale inhibition performance of polyaspartic acid derivatives on calcium carbonate was investigated under the conditions of different dosages, water temperature, water hardness and experiment time, and then the quantitative relationship between the scale and corrosion inhibition rate and the factors above mentioned was determined.
     The dynamic dirtiness resistance and the dynamic scale inhibition rate of polyaspartic acid derivatives were investigated by dynamic experiments. Both the static and dynamic experiments showed that the dynamic dirtiness resistance of polyaspartic acid derivative that functional groups of possess scale inhibition and dispersion performance were introduced in molecular structure of PASP synchronously was less under less dosage, and the dynamic scale inhibition rate could reach 99.35 % under PASP-SEA-ASP 0.5 mg·L~(-1); And the dynamic dirtiness resistance of polyaspartic acid derivative that functional groups of possess scale inhibition performance was introduced in molecular structure of PASP only was less under bigger dosage, and the dynamic scale inhibition rate can reach 96.13 % under PASP -ASP 1.5 mg·L~(-1). Because sulfonic acid group take dispersive effect that made the calcium carbonate crystallite not to adhere to heating stick and to disperse in water under less dosage. The proportion of sulfonic acid group was bigger that made function of chelating Ca2+ ion of carboxylic acid group was weaken and then the formed CaCO_3 deposition was more, so overmany CaCO_3 deposition should adhere to heating stick and the dynamic scale inhibition rate could minish when dosage was bigger.
     The calcium carbonate crystal samples were characterized by SEM and FTIR techniques and the results of the static and dynamic experiments showed that the crystal form of calcium carbonate was global vaterite after polyaspartic acid derivative was added that possessed excellent dispersive performance, and the crystal form of calcium carbonate was similar global vaterite after polyaspartic acid derivative was added that possessed excellent scale inhibition performance. The mechanism of corrosion inhibition was studied by EIS and SEM techniques and the results showed that the face of electrode that absorbed polyaspartic acid derivative was dense and high ordered, and nonpolar group that was–R was directional arranged on the surface of metal and hydrophobe membrane was formed, and that prevent from transfer of charge or matter that was relevant to corrosive reaction. Then that slowed corrosion rate of metal down.
引文
[1]陆柱,蔡兰坤,陈中兴,等.水处理药剂[M].北京:化学工业出版社,2002. 20
    [2]盖军.油田用水溶性聚合物阻垢剂[J].工业水处理,1996,16 (5): 7-9
    [3]华栋.提高循环水处理剂的水平[J].精细石油化工,1998,(3): 31-32
    [4] Cuisia D G, Hwa C M. Method of inhibition scale [P]. US, 4048066. 1977
    [5] Godlewski I T, Schuck J J, Libutti B L. Polymers for use in water treatment [P]. US, 4029577. 1977
    [6] Masler W F, Amjad Z. Scale inhibition in water systems [P]. US, 4566973. 1986
    [7] Kawai R, kurata H, Shimizu Y, et al. Biodegradable water-soluble polymer [P]. US, 5811032. 1982
    [8] Tang J, Davis R V. Use of biodegradable polymers in prevention scale build-up [P]. US, 5858244. 1999
    [9] Tahara H, Ito H, Takagi M, et al. Biodegradable hydrophilic crosslinked polymer, process for producing it, and uses there of [P]. US, 5298570. 1994
    [10] Tomida M, Yoshikawa M, Nakato T. Aspartic acid copolymer and process for producing the same [P]. US, 5854378. 1998
    [11] Young P R. Method for treating polymer-containing waters to allow use as cooling tower makeup [P]. US, 5486295. 1996
    [12] Anastas P T, Williamson T C. Green chemistry: Designing chemistry for the environment. Washington D C: American Chemical Society, ACS Symoposium Series 626th, 1996
    [13]纪彩虹.绿色化学—21世纪的新科学[J].甘肃教育学院学报,2003,17 (4): 50-54
    [14]刘刚,许胜先.绿色化学研究的新进展[J].江西科技师范学院学报,2003,(5): 12-14
    [15] Anastas P T, Warner T C. Green chemistry: Theory and practice. London: Oxford Science Publications, 1998
    [16]闵恩泽,吴魏.绿色化学与化工[M].北京:化学工业出版社,2000. 9-22
    [17] Trost B M. The atom economy- a search for synthetic [J]. Science, 1991, 254: 1471-1478
    [18] Riley D P. In: Anastas P T, Farris C A, eds. Benigen by Design: Alternative synthetic pathways for pollution prevention. Washington D C: American Chemical Society, ACS Symposium Series 577th, 1994. 122
    [19] Manzen L E. In: Anastas P T, Farris C A, eds. Benigen by design: Alternative synthetic pathways for pollution prevention. Washington D C: American Chemical Society, ACS Symposium Series 577th, 1994. 144
    [20]王延吉,赵新强.绿色催化过程与工艺[M].北京:化学工业出版社,2002. 18-28
    [21]魏刚,周庆,熊蓉春.水处理中的绿色化学与绿色技术[J].现代化工,2002,22 (12): 43-45
    [22]陆柱.绿色化学及技术在水处理的应用[C]. 1999年全国水处理、节水节能、环保精细化学品学术交流会,上海,1999,12-17
    [23]熊蓉春,董雪玲,魏刚.绿色化学与21世纪水处理剂发展战略[J].环境工程,2000,18 (2): 22-24
    [24]江红,王连军,江莞.绿色化学概念在水处理剂材料中的应用及发展状况[J].无机材料学报,2003,18 (5): 998-1004
    [25]张建强,严莲荷,王瑛.高分子水处理剂的绿色化研究进展[J].江苏化工,2002,30 (4): 27-30
    [26]徐晓东.绿色水处理剂的研究及应用进展[J].石油化工腐蚀与防护,2001,18 (3): 47-49
    [27]何高荣,曾莺,鲍其鼐.论含磷聚合物的结构与性能[J].工业水处理,1996,16 (1): 4-6
    [28] Patel S, Nicol A J. Developing a cooling water inhibitor with multifunctional deposit control properties [J]. Material Performance, 1996, 35 (6): 41-47
    [29] Geiger G E. Improve corrosion and deposition control in alkaline cooling water systems [J]. Hydrocarbon Processing, 1996,75 (1): 93-98
    [30] Beech M. Clean cooling water [J]. Chemical Engineering, 1995, 586: 20
    [31]杨巍.冷却水处理剂的“绿色化”进展[J].工业水处理,2000 (增刊): 9-13
    [32]熊蓉春,魏刚,周娣,等.绿色阻垢剂聚环氧琥珀酸的合成[J].工业水处理,1999, 19 (3): 11-13
    [33]靳晓霞.“绿色环保”型水处理剂聚天冬氨酸国内外发展现状[J].工业水处理,2000 (增刊): 14-16
    [34]高利军,王宗廷,草润生.绿色水处理剂聚天冬氨酸的研究进展[J].工业水处理,2002,22 (12): 9-12
    [35] Ouchi T, Shiratani M, Jinno M, et al. Synthesis of poly [(glycolic acid)-alt- (L-aspartic acid] and its biodegradation behavior in vitro [J]. Macromol Chem Rapid Commun, 1993, 14 (12): 825-831
    [36] Hayashi T, Iwatsuki M. Biodegradation of copoly (L-aspartic acid/L-glutamic acid) in vitro [J]. Biopolymers, 1990, 29 (3): 549-557
    [37] Low K C, Wheeler A P, Koskan L P. Green chemistry applied to corrosion and scale inhibitors [J]. Adv Chem Ser, 1996, 248 (Hydrophilic Polymers): 99-111
    [38] Robert J R, Kim C L, James E Shannon. Green chemistry applied to corrosion and scale inhibitors [J]. Material Performance, 1997, 20 (4): 52-57
    [39] Koskan L P. Polyaspartic acid as a calcium sulfate and a barium sulfate inhibitor [P]. US, 5116513. 1991
    [40] Tomida M, Nakaota T, Matsunami S, et al. Convenient synthesis of high molecular weight poly (succinimide) by acid-catalysed polycondensation of L-aspartic acid [J]. Polymer, 1997, 38 (18): 4733-4736.
    [41]王朝阳,任碧野,童真.可生物降解材料聚天冬氨酸的研究进展[J].高分子通报,2002,(5): 29-34
    [42] TANG J S, DAVIS R V. Use of Biodegradable Polymers in Preventing Scale Build–up [P]. US, 5776875. 1998
    [43] TANG J S, FU S L, EMMONS D H. Biodegradable Modified Polyaspartic Polymers for Corrosion and Scale Control [P]. US, 6022401. 2000
    [44] ROSS R J, LOW K C, SHANNON J E. Polyaspartate scale inhibitors-biodegradable alternatives to polyacrylates [J]. Materials Performance, 1997, 36 (4): 53-57
    [45] ODA Y. Modified poly aspartic acids, their manufacture, and uses asmetal corrosion inhibitors and scale inhibitorsin water [P]. JP, 2001081188. 2001
    [46] Uhr Hernanm, Heuer Lutz, et al. Sulfonic acid group-containing polyaspartic acid derivatives, use thereof and preparation thereof [P]. DE, 4429976. 1996
    [47] Wood Louis L, Calton Gary J. Copolymers of polyamino acids as tartar barrier agents [P]. US, 5266305. 1993
    [48] Donachy Julic E, Steven Sikes C. Thermal polycondensation synthesis of biomimetic serine-containing derivatives of polyaspartate: Potent inhibitors of calcium carbonate and phosphate crystallization [J]. Polym Sci Part A: Polym Chem, 1994, 32 (4): 789-795
    [49]张玉玲,黄君礼,程志辉,等. Asp-Glu共聚物分子量的控制及其对阻垢性能的影响[J].高校化学工程学报,2006,20 (5): 804-808
    [50] Ouchi T, Nozakj T, Ishikawa A, et al. J Polym Sci Part A, 1997, 35: 377
    [51] Wang D, Feng X D. Synthesis of poly (glycolic-alt-L-aspartic acid) from a morpholine-2,5-dione derivative [J]. Macromolecules, 1997, 30 (19): 5688-5692
    [52] Ouchi T, Hamada A, Ohya Y. Biodegradable microspheres having reactive groups prepared from L-lactic acid-depsipeptide copolymers [J]. Macromol Chem Phys, 1999, 200 (2): 436-441
    [53] Yokoyama M, Inoue S, Kataoka K, et al. Makromol Chem, 1989, 190: 2041
    [54] Won C-Y, Chu C-C, Lee J D. Novel biodegradable copolymers containing pendant amine functional groups based on aspartic acid and poly (ethylene glycol) [J]. Polymer, 1998, 39 (25): 6677-6681
    [55] Caldwell G, Neuse W E, Perlwitz A G. Water-soluble polyamides as potential drug carriers [J]. J Appl Polym Sci, 1997, 66: 911-919
    [56] Toyoji Kakuchi, Minako Shibata, Shigeyuki Matsuami, et al. Synthesis and characterization of poly (succin-imide-co-6-minocaproic acid) by acid-catttalyzed polycondensation of L-aspartic acid and 6-aminocaproic acid [J]. J of Polymer Scince, 1997, 35: 285-289
    [57] Masayuki Tomida, Takeshi Nakato, Mayumi Kuramochi, et al. Novel method of synthesizing poly (succin-imide) and its copolymeric derivatives by acid-catalysed polycondensation of L-aspartic acid [J]. Polymer, 1996, 37 (19): 4435-4437
    [58]楼伟建,汤谷平.天冬氨酸-氨基乙酸共聚材料的合成、表征及降解[J].中国生物医学工程学报,2000,19 (3): 288-293
    [59]汤谷平,朱亚尔,谢小江等.天冬氨酸-谷氨酸共聚物的合成、表征及性质研究[J].生物医学工程学杂志,2001,18 (3): 337-341
    [60]廖志银,汤谷平.天冬氨酸-氨基丁酸共聚材料的合成、表征及体外降解[J].生物医学工程学杂志,2003,20 (3): 392-397
    [61] Lehmann Klaus, Jelitte Ruediger, Knebel Joachim. Polyaspartic acid derivatives as a coating for pharmaceutical forms and foodstuffs [P]. EP, 0406623. 1991
    [62] Katoh Toshi, Nagatomo Akinori, Tamatani Hiroaki, et al. Polyaspartic acid derivatives and process for preparing the same [P]. EP, 0685504. 1995
    [63] Hermann Uhr, Lutz Heuter, Torsten Groth, et al. Sulfonic acid group-containing polyaspartic acid derivatives, use thereof and preparation thereof [P].US, 5726280. 1998
    [64] Neri P, Antoni G, Benvenuti F, et al. Synthesis of alpha beta-poly ((2-hydroxyethyl)-DL-Aspartamide). A new plasma expander [J]. J Med Chem, 1973, 16 (18): 893-897
    [65] Sikes C S, Wheeler A P. Inhibition of inorganic or biological CaCO3 deposition by polyamino acid derivatives [P]. US, 4534881. 1985
    [66] Sikes C S, Wheeler A P. Inhibition of mineral deposition by polyanionic/hydrophobic peptides and deribatives thereof having a clustered block copolymer structure [P]. US, 4868287. 1989
    [67] Fujimoto Yasuo, Teranishi Masayuki. Polyaminosaeure-derivate, verfahren zu ihrer herstellung, ihre verwendung als tenside sowie diese verbindungen enthal tende waschmittel und kosmetika [P]. DE, 2253190. 1973
    [68] Du Vosel Annick, Francalanci Franco, Maggiorotti Paola. Polyamioacids as builders for detergentformulations [P]. EP, 0454126. 1991
    [69] Ganput L Jain, Alok R Ray. Syntheses and characterization of random copolymers of aspartic acid with lactic acid and glycolic acid [J]. Makromol.Chem, 1981, 182 (10): 2557-2561
    [70]高利军,郭宁,牟庆平,等.聚天冬氨酸衍生物的合成及性能研究[J].石油化工,2003,32 (9): 792-795
    [71]闫美芳,刘振法,张利辉,等.聚天冬氨酸接枝共聚物的合成及其性能的研究[J].河北省科学院学报,2006,23 (4): 67-69
    [72]梁志群,李景宁,黄南哲,等.聚天冬氨酸衍生物及其复配物的阻垢性能研究[J].工业水处理,2006,26 (8): 23-25
    [73]闫美芳.聚天冬氨酸接枝共聚物的合成及性能研究:[硕士论文].天津:河北工业大学,2007. 35-37
    [74]王吉龙,王亭,郦和生,等.含膦酰基聚天冬氨酸的阻垢性能研究[J].工业水处理,2004,24 (9): 22-24
    [75]李江华,于萍,罗运柏.聚天冬氨酸衍生物的合成及阻垢性能研究[J].工业水处理,2006,26 (5): 21-23
    [76]张建刚,张丽,丁庆伟,等.水处理阻垢剂聚天冬氨酸的改性研究[J].辽宁化工,2005,34 (1): 20-21
    [77] Oda Y. Modified poly aspartic acids, their manufacture, and uses asmetal corrosion inhibitors and scale inhibitorsin water [P]. JP, 2001081188. 2001
    [78] Oda Y. Manufacture of modified poly aspartic acids useful as biodegradable scale inhibitors for removal of metalions in water [P]. JP, 2000344887. 2000
    [79] Nakato T, Tomida M, Suwa M, et al. Preparation and characterization of dodecylamine-modified poly (aspartic acid) as a biodegradable water-soluble polymeric material [J]. Polym Bull, 2000, 44 (4): 385-391
    [80] Compton R G, Daly P J. The dissolution/precipition kinetics of calcium carbonate: an assessment of various kinetics equations using a rotating disk electrode [J]. Journal of Colloid and Interface Science, 1987, 115: 493
    [81] Morgenthaler L N, Khaib Z I, French R N, et al. Chemical simulate for scale problems in oil and gasp roduction [J]. Material Performance, 1991. 37
    [82] Geiger G E. Imrove corrosion and deposition control in alkaline cooling water systems [J]. Hydrocarbon Processing, 1996: 93
    [83] Patel S, Nicol A J. Developing a cooling water inhibitor with multifunctional deposit control properties[J]. Material Performance, 1996. 41
    [84] SUITOR J W, MARNER W J,RITTER R B.The history and status of research in fouling of heatexchanger in cooling water service [J]. The Canadian Journal of Chemical Engineering, 1977, 55: 374-376
    [85]郑邦乾,朱清泉.高分子阻垢剂及其阻垢机理[J].油田化学,1984,(2): 181-184
    [86]汪祖模.水质稳定剂[M].上海:华东化工学院出版社,1991
    [87] GILL J S, ANDERSON C D, VARSANIK R G. Mechanism of scale inhibition by phosphonstes [A]. Engineers Society of Western Pennsylvania. 44th Annual Meeting International Water Conference [C]. Pittaburgy, Pa (USA), 1983, 26-34
    [88]张贵才,葛际江,孙铭勤,等.从防垢剂对碳酸钙晶形分布影响的角度研究防垢机理[J].中国科学B辑化学,2006,36 (5): 433-438
    [89]曹英霞,杨坚,李杰.阻垢剂HEDP和PBTCA阻垢机理探讨[J].同济大学学报,2004,32 (4): 556-560
    [90]王成立,顾明,夏明珠,等.聚合物阻垢剂阻垢机理的分子动力学研究[J].精细化工,2004,21: 146-148
    [91]王永丽,黄少斌.聚天冬氨酸的阻垢机理[J].广东化工,2006,33 (8): 17-19
    [92]李江华,于萍,陈平,等.聚天冬氨酸衍生物对碳酸钙结晶过程的影响及阻垢机理探讨[J].工业用水与废水,2006,37 (6): 75-77
    [93]汪祖模,蔡兰坤.有机膦酸羧酸型水质稳定剂的研究[J].华东化工学院学报,1989,15 (5): 607-613
    [94]张曙光,雷武,陈卓,等.极限碳酸盐硬度法评定阻垢剂的阻垢性能[J].工业水处理,2004,24 (4): 27-30
    [95]郑书忠.循环冷却水水质及水处理剂标准应用指南[M].北京:化学工业出版社,2003. 140-142
    [96]全国化学标准技术委员会水处理剂分会编.循环冷却水水质及水处理剂标准应用指南[M].北京:化学工业出版社,2003. 136-156
    [97]化学工业标准汇编:水处理剂,HG/T 2159-91,水处理剂缓蚀性能的测定旋转挂片法.北京:中国标准出版社,1996. 129-133
    [98]魏刚,许亚男.阻垢剂的可生物降解性研究[J].北京化工大学学报,2001,28 (1): 59-62
    [99]黄远星,雷中方.聚天门冬氨酸类阻垢剂的生物降解性评定方法[J].复旦学报(自然科学版),2003,42 (6): 1053-1057
    [100]梁志群,李景宁,智霞.改性聚天冬氨酸的合成及阻垢性能研究[J].工业水处理,2008,28 (8):38-40
    [101] Jing G L, Zhao H, Wang X Y. Performance study on scale inhibitor of biodegradable PASP [J]. Polymeric Materials Science and Engineering, 2007, 23 (3): 235-237
    [102]崔荣静,谷宁,李春梅.硫酸溶液中聚天冬氨酸对碳钢的吸附缓蚀性能[J].电化学,2005,11 (3): 294-297
    [103]李春梅,谷宁.酸性体系中聚天冬氨酸对碳钢的缓蚀作用初探[J].腐蚀与防护,2007,28 (1): 20-22
    [104] Hiraishi Tomohiro, Kenji Tabata, Yoshiharu Doi. Microbial and enzymatic hydrolysis of polyaspartic acid [J]. RIKEN Review, 2001, 12 (42): 81-84
    [105]王睿,沈自求,丁洁.阻垢剂协同效应的研究[J].石油化工,1999,28 (9): 615-617
    [106]艾仕云,张洁,沈骎,等. 1-羟基丙叉-1,1-二膦酸缓蚀、阻垢作用与机理研究[J].华东师范大学学报(自然科学版),2000,(2): 59-64
    [107] Reddy M M, Nancollas G H. The crystallization of calcium carbonate [J]. J Crystal Growth, 1971, 36 (2): 166-172
    [108] Xyla A G, Mikroyannidis J, Koutsoukos P G. The inhibition of calcium carbonate recipitation in aqueous media by organophosphorus compounds [J]. Colloid and Interface Science, 1992, 153 (4): 537-551
    [109] Kralj D, Brecevic L, Nielsen A E. Vaterite growth and dissolution in aqueous solutionⅠ: kinetics of crystal growth [J]. J Crystal Growth, 1990, 104: 793-800
    [110] Qingfeng Yang, Yangqiao Liu, Anzhong Gu, et al. Investigation of Calcium Carbonate Scaling inhibition and scale morphology by AFM [J]. Journal of colloid and interface science, 2001, 240 (2): 608-621
    [111]龚洵洁,李宇春,彭珂如,等.钼酸盐缓蚀剂在自来水中的缓蚀机理研究[J].中国腐蚀与防护学报,2001,13 (4): 208-210
    [112]崔荣静.硫酸体系中聚天冬氨酸对碳钢缓蚀作用的研究:[硕士论文].石家庄:河北师范大学,2003. 37-38
    [113]何新快,陈白珍,张钦发.缓蚀剂的研究现状与展望[J].材料保护,2003,36 (8): 1-3
    [114]吴伟明,杨萍,杜海燕,等.绿色缓蚀剂氨基酸在抑制金属腐蚀方面的应用[J].表面技术,2006,35 (6): 51-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700