稻瘟菌诱导性水稻OsFd和OsFNR基因的cDNA克隆与诱导表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对受病原物诱导的植物基因的研究有助于我们进一步了解植物—病原物互作机理,并可以将这些防卫相关基因应用到植物抗病基因工程中。本研究开展了受稻瘟菌侵染诱导表达的水稻OsFd和OsFNR的cDNA克隆与诱导表达工作;并进行了OsFd和OsFNR的水稻转化和原核表达。
    植物Fd(Ferredoxin,铁氧还蛋白)和FNR(Ferredoxin- NADP+ Reductase,铁氧还蛋白-NADP+还原酶) 都是多基因家族,在植物体中可分为光合作用与非光合作用两个类型。光合型的位于植物叶绿体内,其作用是将来自于光合系统I的电子传递给NADP+,生成NADPH。非光合Fd和FNR,主要分布在根和成熟果实等非光合器官中,可能参与亚硝酸还原酶,亚硫酸盐还原酶,谷氨酸合成酶等的还原作用。
    本文以从非亲和性稻瘟菌小种131侵染的、水稻品种爱知旭的稻叶中获得的、2个cDNA片段20A03和21C01作探针,筛选非亲和性稻瘟菌侵染的水稻稻叶cDNA文库,获得了相应的全长cDNA克隆OsFd、OsFNR。
    OsFd是新发现的水稻Fd基因,其cDNA全长为848bp,完整的ORF为459bp,推定的蛋白产物有153个氨基酸,分子量16KD。该基因的cDNA序列及其推定的氨基酸序列与玉米FdIII基因同源性最高,分别为83%和81%。
    Northern杂交分析表明:非亲和性稻瘟菌小种131能在6小时内强烈诱导OsFd转录,亲和性稻瘟菌小种在48小时内开始诱导OsFd转录;在SA(水杨酸)喷洒的稻叶中,OsFd基因转录物在处理后6个小时内明显地诱导积累,而且在处理后的6个小时至72个小时范围内,OsFd转录物的积累量逐渐增加。与水稻基因组序列的同源性分析表明:OsFd在水稻基因组的第三条染色体上,只有一个拷贝,有一个内含子。
    OsFNR基因全长1495bp,开放阅读框为1137bp(103-1238bp)。该基因编码378个氨基酸、分子量为41.6KD的蛋白。 BLAST序列同源性分析表明,该基因cDNA序列与水稻胚中的FNR同源,后者仅有电子登记,但没有进一步的研究报道。
    Northern杂交分析表明,在亲和性稻瘟菌007小种处理中,在接种后的60小时内
    
    
    OsFNR被诱导转录;在131接种的处理中,接种6小时内OsFNR就大量转录积累,一直到接种后的72小时OsFNR转录物积累的水平持续不减弱;在SA处理下,6个小时内已经有转录物积累,而且在取样的72个小时范围内,OsFNR基因转录物的积累量逐渐增加。水稻基因组序列分析结果表明OsFNR在水稻基因组的第七条染色体上,只有一个拷贝,有6个内含子。
    通过与发表的植物Fd、FNR的同源性分析,推断OsFd和OsFNR属于非光合类型。根据OsFd、OsFNR受稻瘟菌诱导表达动态特征:受亲和性稻瘟菌诱导转录在48小时后,时间晚、表达量低;受非亲和性稻瘟菌浸染6小时内就高水平转录积累,直到72小时水平不降低,另外受SA诱导在6小时内就高水平转录积累,直到72小时水平持续升高,SA被证明是许多防御基因表达和植物表现系统获得抗性所必需的。综合以上分析,推断OsFd和OsFNR都与水稻抗稻瘟病的防卫反应密切相关;它们是催化同一氧化还原反应的相邻的两个电子供体,这个氧化还原反应可能是水稻抗稻瘟病的防卫反应的关键组成部分。
    为证明OsFd和OsFNR的生化特性,构建了它们的重组原核表达载体pGEX-4T-3/OsFd和pGEX-4T-3/OsFNR,并分别诱导其在大肠杆菌中表达,均诱导出大小与期望相符的特异蛋白,初步证明OsFd和OsFNR的推定蛋白产物是正确的。
    为进一步证明OsFd和OsFNR在水稻抗稻瘟病中的作用,构建了它们的sense和hairpin表达载体:pCAMBIA1301/OsFd-sense、pCAMBIA1301/OsFd-hairpin、 pCAMBIA1301/OsFNR-sense 、pCAMBIA1301/OsFNR-hairpin,并通过农杆菌介导法将这四种表达载体分别转入水稻品种爱知旭中,分别获得83、110、43和121株转基因水稻。为抗病性检测等进一步的研究打下基础。
    此外,克隆四个水稻乙醛酸循环酶基因:OsICL(异柠檬酸裂解酶)、OsCS(柠檬酸合成酶)、OsMS(苹果酸合成酶)和OsMDH(苹果酸脱氢酶)。通过分析水稻乙醛酸循环的标志酶OsICL在稻瘟菌侵染条件下的转录积累动态,认为乙醛酸循环受亲和性稻瘟菌侵染的诱导。
The functional identification and expressing characterization of plant genes that are induced during interaction with pathogen will be a great help to reveal the mechanism of plant-pathogen interaction; Isolation of these genes may provide a good choice for engineering plant disease resistance.
    In this study, two differential displayed fragments, 21A03 and 21C01, were isolated from rice leaves (cv. Aichiasahi) infected by an incompatible race 131 of Magnaporthe grisea and used as probes to screen the cDNA library, which was constructed using mRNA from the p131 pathogen infected leaves. By this screening, two kinds of full length cDNA clones were obtained, of which, one is a Fd (ferredoxin) gene named as OsFd and the other is FNR (ferredoxin NADP+ oxidoreductase) gene named as OsFNR.
    The cDNA sequence of OsFd is 848bp and contains one intact open reading frame. The cDNA sequence shares 83% identity with that of maize FdIII from maize. It encodes a protein of 153 amino acid residues. The deduced amino acid sequence shares 81% identity with that of maize FdIII. OsFd transcript in rice leaves can be induced by compatible and incompatible blast fungus infection and SA. Genomic Rice genome contained one copy sequence homologous to OsFd gene.
    The size of nucleotide sequence of OsFNR is 1495bp, contained one open reading frame encoding 378 amino acid residues. Sequence analysis indicated that the cDNA sequence of OsFNR is identical to that of FNR from rice embryo. Northern blotting showed that OsFNR transcript in rice leaves can be induced by incompatible blast fungus infection and SA, suggesting that the OsFNR induction be involved in the defense of rice to M. grisea.
    Homologous analysis to Rice Genome Database suggests that OsFNR exists as one copy in rice genome.
    In order to further analyze the biochemical characteristics of OsFd and OsFNR the prokaryotic expressing recombination vectors pGEX-4T-3/OsFd and pGEX-4T-3/OsFNR
    
    
    were constructed and transformed into BL21 (DE3), respectively. The optimum expressing conditions for the both were approached, SDS-PAGE analysis showed that the products of recombinants OsFd and OsFNR were both specific.
    To clarify if OsFd and OsFNR are required for resistance in rice to blast, two types of rice expressing vectors (sense and hairpin) of OsFd and OsFNR were constructed and cloned into binary pCAMBIA 1301, and then transformed into rice by Agrobacterium tumefaciens-mediated transformation (cv. Aichiasahi), respectively. T0 transgenic rice lines of the four rice expressing vectors were obtained. There are 83, 110 ,43, 121 lines in transformation of sense and hairpin expressing vectors of OsFd and OsFNR , respectively.
    In conclusion, OsFd and OsFNR participate in the process of rice resistance to blast.
    On the other hand, we cloned the four genes from the glyoxylate cycle in rice. They are ICL( isocitrate lyase), CS(citrate synthase),MDH(malate dehydrogenase), MS(malate synthase) genes and they are named as OsICL,. OsCS ,OsMDH and OsMS, respectively. OsICL transcript in rice leaves can be induced by comapatible blast fungi infection.
引文
Akashi T, Matsumura T, Ideguchi T, Iwakiri K, Kawakatsu T, Taniguchi I, Hase T.1999. Comparison of the electrostatic binding sites on the surface of ferredoxin for two ferredoxin-dependent enzymes, ferredoxin-NADP+ reductase and sulfite reductase. J Biol Chem 274: 29399-29405 .
    Akashi T, Matsumura T, Taniguchi I, Hase T.1997. Mutational analysis of the redox properties of the [2Fe-2S] cluster in plant ferredoxins. J Inorg Chem 67: 255
    Aliverti A, Ferioli C, Spinola M, Raimondi D, Zanetti G, Finnerty C, Faber R, Karplus PA .1999. Structural and functional properties of corn root ferredoxin-NADP+ reductase. In S Ghisla, P Kroneck, P Macheroux, H Sund, eds, Flavins and Flavoproteins, Proceedings of the Thirteenth International Symposium. Rudolf Weber, Berlin, pp 265-268
    Aliverti, A., Bruns, C.M., Pandini, V.E., Karplus, P.A., Vanoni, M.A., Curti, B. & Zanetti, G. .1995. Involvement of serine 96 in the catalytic mechanism of ferredoxin-NADP+ reductase: structure-function relationship as studied by site-directed mutagenesis and X-ray crystallography. Biochemistry 34, 8371–8379.
    Aliverti, A., Corrado, M.E. & Zanetti, G. .1994. Involvement of lysine-88 of spinach ferredoxin-NADP+ reductase in the interaction with ferredoxin. FEBS Lett. 343, 247–250.
    Aliverti, A., Deng, Z., Ravasi, D., Piubelli, L., Karplus, P.A. & Zanetti, G. 1998. Probing the function of the invariant glutamyl residue 312 in spinach ferredoxin-NADP+ reductase. J. Biol. Chem. 273, 34008–34015.
    Aliverti, A., Faber, R., Finnerty, C.M., Ferioli, C., Pandini, V., Negri, A., Karplus, P.A. & Zanetti, G. 2001.Biochemical and crystallographic characterization of ferredoxin-NADP+ reductase from nonphotosynthetic tissues. Biochemistry 40, 14501–14508.
    Aliverti, A., Lübberstedt, T., Zanetti, G., Herrmann, R.G. & Curti, B. 1991. Probing the role of Lysine 116 and Lysine 224 in the spinach ferredoxin-NADP+ reductase by site-directed mutagenesis. J. Biol. Chem. 266, 17760–17763.
    
    Aliverti, A., Piubelli, L., Zanetti, G., Lübberstedt, T., Herrmann, R.G. & Curti, B. 1993. The role of cysteine residues of spinach ferredoxin-NADP+ reductase as assessed by site-directed mutagenesis. Biochemistry 32, 6374–6380.
    Alonso JM, Chamarro J, Granell A .1995. A non-photosynthetic ferredoxin gene is induced by ethylene in citrus organs. Plant Mol Biol 29: 1211-1221.
    Amon DI. 1988. The discovery of ferredoxins : the photosynthetic path. Trends Biochem Sci 13: 30-33.
    Aoki H, Doyama N, Ida S.1994. Sequence of a cDNA encoding rice (Oryza sativa L.) leaf ferredoxin NADP+ reductase. Plant Physiol 104: 1473-1474.
    Aoki H,Tanaka K, 1995. The genomic organization of the gene encoding a nitrate-inducible ferredoxin-NADP- oxidoreductase from rice roots. Biochim Biophys Acta 1229:389-392.
    Aoki, H., Kumada, H.O. 1996. Plant gene register: Cloning and nucleotede sequence of a cDNA encoding rice embryo ferredoxin-NADP+ oxidoreductase. Plant Physiology, 112, 1399.
    Aoki,H. and Ida,S. 1994. Nucleotide sequence of a rice root ferredoxin-NADP+ reductase cDNA and its induction by nitrate . Biochim. Biophys. Acta 1183 (3), 553-556 .
    Arakaki, A.K., Ceccarelli, E.A. & Carrillo, N. (1997) Plant-type ferredoxin-NADP+ reductases: a basal structural framework and a multiplicity of functions. FASEB J. 11, 133–140.
    Arakaki, A.K., Orellano, E.G., Calcaterra, N.B., Ottado, J. & Ceccarelli, E.A. 2001. Involvement of the flavin si-face tyrosine on the structure and function of ferredoxin-NADP+ reductases. J. Biol. Chem. 276, 44419–44426.
    Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K. Current Protocols in Molecular Biology. Volume 1. John Wiley & Sons, Inc. 1997.
    Avron, M. & Jagendorf, A.T. (1956) A TPNH diaphorase from chloroplasts. Arch. Biochem. Biophys. 65, 475–490.
    Backhausen JE, Emmerlich A, Holtgrefe S, Horton P, Rogers JM. 1998. Transgenic potato plants with altered expression levels of chloroplast NADP-malate dehydrogenase: interactions between photosynthetic electron transport and malate metabolism in leaves
    
    
    and in isolated intact chloroplasts. Planta 207: 104-114
    Backhausen JE, Kitzmann C, Horton P, Scheibe R. 2000. Electron acceptors in isolated intact spinach chloroplass act hierarchally to prevent overreduction and competition for electrons. Photosynth Res 64: 1-13
    Backhausen JE, Kitzmann C, Scheibe R. 1994. Competition between electron acceptors in photosynthesis: regulation of the malate valve during CO2 fixation and nitrite reduction. Photosynth Res 42: 75-86
    Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar S P. 1997. Signaling in Plant-Microbe Interaction. Science, 276: 726-733.
    Bano-Maqbool, S., Christou, P., 1999, Multiple traits of agronomic importance in transgenic indica rice plants:analysis of transgene integration patterns, expression levels and stability, Mol. Breeding 5, 471-480.
    Bano-Maqbool, S., Husnain, T., Riazuddin, S. 1998. Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties Basmati 370 and M7 using the novel endotoxin cry2A Bacillus thuringiensis gene, Mol. Breeding 4:501-507.
    Batie CJ, Kamin H 1981. The relation of pH and oxidation-reduction potential to the association state of the ferredoxin ferredoxin:NADP+ reductase complex. J Biol Chem 256: 7756-7763.
    Batie, C.J. & Kamin, H. 1984. Electron transfer by ferredoxin-NADP+ reductase. Rapid-reaction evidence for participation of a ternary complex. J. Biol. Chem. 259, 11976–11985.
    Batie, C.J. & Kamin, H. 1986. Association of ferredoxin-NADP+ reductase with NADP(H). Specificity and oxidation-reduction properties. J. Biol. Chem. 261, 11214–11223.
    Becker WM, Leaver CJ, Weir EM, Riezman H.1978. Regulation of glyoxysomal enzymes during germination of cucumber. I.developmental changes in cotyledonary protein, RNA, and enzyme activities during germination. Plant Physiol 62: 542-549
    Beckman KB and Ingram DS.1994. The inhibition of the hypersensitive response of potato tuber tissues by cytokinins: similarities between senescence and plant defence responses. Physiol. Mol. Plant. Pathol., 45: 229-246.
    
    Beevers H .1979. Microbodies in higher plants. Annu Rev Plant Physiol 30: 159-197
    Bendall DS, Manasse RS. 1995. Cyclic photophosphorylation and electron ransport. Biophys Acta 1229: 23-38.
    Bianchi, V., Hagg?rd-Ljungquist, E., Pontis, E. & Reichard, P. 1995. Interruption of the ferredoxin (flavodoxin) NADP+ oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat. J. Bacteriol. 177, 4528–4531.
    Bowler, C. & Chua, N.H. 1994. Emerging themes of plant signal transduction. Plant Cell 6, 1529–1541.
    Bowsher CG, Boulton EL, Rose J, Nayagam S, Emes MJ.1992. Reductant for glutamate synthase is generated by the oxidative pentose phosphate pathway in non-photosynthetic root plastids. Plant J 2: 893-898.
    Bowsher CG, Dunbar B, Emes MJ .1993..The purification and properties of ferredoxin-NADP+-oxidoreductase from roots of Pisum sativum L. Protein Expr Purif 4: 512-518.
    Bowsher CG, Hucklesby DP, Emes MJ .1989. Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum L. Planta 177: 359-366.
    Bowsher CG, Knight JS .1996. The isolation of a pea root ferredoxin-NADP+ oxidoreductase (FNR) cDNA (accession no. X99419) (PGR 96-073). Plant Physiol 112: 861.
    Broglie K, Chet I, Holliday M, et al. .1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 254:1194-1107.
    Brouquisse R, Weigel P, Rhodes D, Yocum CF, Hanson AD.1989.Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplas stroma. Plant Physiol 90: 322-329
    Bruce, B.D. .2001. The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochim. Biophys. Acta 1541, 2–21.
    Bruns, C.M. & Karplus, P.A. .1995. Refined crystal structure of spinach ferredoxin-NADP+ oxidoreductase at 1.7 ? resolution: oxidized, reduced and 2'-phospho-5'-AMP bound states. J. Mol. Biol. 247, 1125–1145.
    
    Buchanan, B.B. 1994. Thioredoxin: a multifunctional regulatory protein with a bright future in technology and medicine. Arch. Biochem. Biophys. 314,257-260.
    Calcaterra, N.B., Pico, G.A., Orellano, E.G., Ottado, J., Carrillo, N. & Ceccarelli, E.A. 1995. Contribution of the FAD binding site residue tyrosine 308 to the stability of pea ferredoxin-NADP+ oxidoreductase. Biochemistry 34, 12842–12848.
    Calcaterra, N.B., Picó, G.A., Orellano, E.G., Ottado, J., Carrillo, N. & Ceccarelli, E.A. 1995. Contribution of the FAD binding site residue tyrosine 308 to the stability of pea ferredoxin-NADP+ oxidoreductase. Biochemistry 34, 12842–12848.
    Carrillo, N. & Vallejos, R.H. 1987. Ferredoxin-NADP+ reductase. In The Light Reactions. Topics in Photosynthesis (Barber, J., ed.), Vol. 8, pp. 527–560. Elsevier, Amsterdam, the Netherlands.
    Carrillo, N. 1998. Partition of ferredoxin-NADP+ oxidoreductase between photosynthesis and antioxidant metabolism. In Photosynthesis: Mechanisms and Effects (Garab, G., ed.), Vol. 3, pp. 1511–1516. Kluwer, Dordrecht, the Netherlands.
    Casaus, J.L., Navarro, J.A., Hervás, M., Lostao, A., De la Rosa, M.A., Gómez-Moreno, C., Sancho, J. & Medina, M..2002. Anabaena sp. PCC 7119 flavodoxin as electron carrier from photosystem I to ferredoxin-NADP+ reductase. Role of Trp(57) and Tyr(94). J. Biol. Chem. 277, 22338–22344.
    Ceccarelli, E.A., Ottado, J., Krapp, A.R. & Carrillo, N. .1996. Import of a Recombinant Flavoprotein Precursor Containing Noncovalently Bound FAD Into Isolated Chloroplasts. In Flavins and flavoproteins (Stevenson, K.J., Massey, U. & Williams, C.H. Jr, eds), pp. 941–944. University of. Calgary Press, Calgary, Canada.
    Ceccarelli, E.A., Viale, A.M., Krapp, A.R. & Carrillo, N. 1991. Expression, assembly, and processing of an active plant ferredoxin-NADP+ oxidoreductase and its precursor protein in Escherichia coli. J. Biol. Chem. 266, 14283–14287.
    Chauwin, J.F., Oster, G. & Glick, B.S. 1998. Strong precursor–pore interactions constrain models for mitochondrial protein import. Biophys. J. 74, 1732–1743.
    Chen ZH, Walker RP, Acheson RM, Tecsi LI, Wingler A, Lea PJ, Leegood RC.2000. Are isocitrate lyase and phosphoenolpyruvate carboxykinase involved in gluconeogenesis during senescence of barley leaves and cucumber cotyledons? Plant Cell Physiol.
    
    
    41:960-967.
    Chen, Y.P. & Yoch, D.C..1989. Isolation, characterization and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b. J. Bacteriol. 171, 5012–5016.
    Cheng, X., Sardana, R., Kaplan, H.1998. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA 95:2767-2772.
    Chomezynski P. and Sacchi N. 1987 Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162:156-159.
    Christou, P., 1997. Rice transformation: bombardment, Plant Mol. Biol. 35, 35-47.
    Comai, L., Dietrich, R.A., Maslyar, D.J., Baden, C.S., and Harada, J.J.1989.Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L. Plant Cell 1,293-300.
    Comai,L., Baden,C.S. and Harada,J.J. 1989. Deduced sequence of a malate synthase polypeptide encoded by a subclass of the gene family. J. Biol. Chem. 264 (5), 2778-2782.
    Correll, C.C., Ludwig, M.L., Bruns, C.M. & Karplus, P.A. 1993. Structural prototypes for an extended family of flavoprotein reductases. Comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin. Protein Sci. 2, 2112–2133.
    Creighton, T.E. 1979. Electrophoretic analysis of the unfolding of proteins by urea. J. Mol. Biol. 129, 235–264.
    Dabney-Smith, C., van Den Wijngaard, P.W., Treece, Y., Vredenberg, W.J. & Bruce, B.D. 1999. The C terminus of a chloroplast precursor modulates its interaction with the translocation apparatus and PIRAC. J. Biol. Chem. 274, 32351–32359.
    Dahlin, C., Sundqvist, C. & Timko, M.P. 1995. The in vitro assembly of the NADPH-protochlorophyllide oxidoreductase in pea chloroplasts. Plant Mol. Biol. 29, 317–330.
    Dai, S., Schwendtmayer, C. 2000. Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science. 287, 655-658.
    
    Daniela V. Rial, Verónica A. Lombardo, Eduardo A. Ceccarelli and Jorgelina Ottado. 2002. The import of ferredoxin–NADP+ reductase precursor into chloroplasts is modulated by the region between the transit peptide and the mature core of the protein. Eur. J. Biochem. 269, 5431-5439.
    Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK. 1999. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizotonia solani causing sheath blight disease. Theor. Appl. Genet., 98:1138-1145.
    De Bellis, L., and Nishimura, M.1991. Development of enzymes of the glyoxylate cycle during senescence of pumpkin cotyledons. Plant Cell Physiol.32, 555-561.
    De Bellis, L., Picciarelli, P., Pistelli, L.,and Alpl, A..1990. Localisation of glyoxylate cycle marker enzymes in peroxisomes of senescent leaves and green cotyledons. Planta 180,435-439.
    De Boer HA, Hui SA .1990. Sequences within ribosome binding site affecting messenger RNA translatability and method to direct ribosomes to single messenger RNA species. Methods Enzymol 185: 103-114 .
    De Pascalis AR, Jelesarov I, Ackermann F, Koppenol WH, Hirasawa M, Knaff DB, Bosshard HR.1993. Binding of ferredoxin to ferredoxin:NADP+ oxidoreductase: the role of carboxyl group, electrostatic surface potential, and molecular dipole moment. Protein Sci 2: 1126-1135.
    Delaney TP, Uknes S, Vernooij B, et al. 1994. A central role of salicylic acid in disease resistance. Science, 266: 1247-1250.
    Della-Cioppa, G. & Kishore, G.M. 1986. Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate. EMBO J. 7, 1299–1305.
    Deng, Z., Aliverti, A., Zanetti, G., Arakaki, A.K., Ottado, J., Orellano, E.G., Calcaterra, N.B., Ceccarelli, E.A., Carrillo, N. & Karplus, P.A. 1999. A productive NADP+ binding mode of ferredoxin-NADP+ reductase revealed by protein engineering and crystallographic studies. Nat. Struct. Biol. 6, 847–853.
    Deng, Z., Aliverti, A., Zanetti, G., Arakaki, A.K., Ottado, J., Orellano, E.G., Calcaterra, N.B., Ceccarelli, E.A., Carrillo, N. & Karplus, P.A. 1999. A productive NADP+ binding
    
    
    mode of ferredoxin-NADP+ reductase revealed by protein engineering and crystallographic studies. Nat. Struct. Biol. 6, 847–853.
    Dorowski, A., Hofmann, A., Steeghorn, C., Boicu, M. & Huber, R. 2001. Crystal structure of paprika ferredoxin-NADP+ reductase. Implications for the electron transfer pathway. J. Biol. Chem. 276, 9253–9263.
    Durner,J.Shah,J.and Klessig,D.F.1997. Salicylic acid and disease resistance in plants.Trends Plant Sci.2:266-274.
    Eilers, M. & Schatz, G. 1986. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322, 228–232.
    Elliott RC, Dickey LF, White MJ, Thompson WF. 1989. Cis-acting elements for light regulation of pea ferredoxin 1 gene expression are located within transcribed sequences. Plant Cell 1: 691-698
    Emes MJ, Neuhaus HE.1997. Metabolism and transport in non-photosynthetic plastids. J Exp Bot 48: 1995-2005.
    Ettinger WF, Harada JJ.1990. Translational and post-translational processes affect differentiallyu the accumulation of isocitrate lyase and malate synthase proteins and enzyme activities in embryos and seedlings of brassica napus, arch Biochem Biophys 281: 139-143
    Faro, M., Hurley, J.K., Medina, M., Tollin, G. & Gómez-Moreno, C. 2002. Flavin photochemistry in the analysis of electron transfer reactions: role of charged and hydrophobic residues at the carboxyl terminus of ferredoxin-NADP+ reductase in the interaction with its substrates. Bioelectrochemistry 56, 19–21.
    Fernandez, M.D. & Lamppa, G.K. 1991. Acyl carrier protein import into chloroplasts. Both the precursor and mature forms are substrates for phosphopantetheine attachment by a soluble chloroplast holo-acyl carrier protein synthase. J. Biol. Chem. 266, 7220–7226.
    Foyer CH, Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133: 21-25
    Fu X., Duc, L.T., 2000. Linear transgene constructs lacking vector backbone sequences generate low-number transgenic plants with simple integration patterns, Transgenic Res.,9, 11-19.
    
    Fu, X., Kohli, A.,Twyman, R.M. 2000. Alternative silencing effects involve distinct types of non-spreading cytosine methylation at a three-gene single-copy transgenic locus in rice. Mil. Gen. Genet. 263:106-118.
    Gadda, G., Aliverti, A., Ronchi, S. & Zanetti, G. 1990. Structure–function relationship in spinach ferredoxin-NADP+ reductase as studied by limited proteolysis. J. Biol. Chem. 265, 11955–11959.
    Gaffney T, Friedrich L, Vernooij B, et al. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261: 754-756.
    Gahakwa, D., Bano Maqbool, S., Fu, X. 2001. Transgenic rice as a system to study the stability of transgene expression: multiple heterologous transgenes show similar behaviour in diverse genetic backgrounds. Theor. Appl. Genet. 101: 388-399.
    Gaume, B., Klaus, C., Ungermann, C., Guiard, B., Neupert, W. & Brunner, M. 1998. Unfolding of preproteins upon import into mitochondria. EMBO J. 17, 6497–6507.
    Gerhart B, beevers H .1970. developmental studies on glyoxysomes from castor bean endosperm. J cell Biol 40: 94-102
    Glick, B.S. 1995.Can Hsp70 proteins act as force-generating motors? Cell 80, 11–14.
    Goldenberg, D.P. & Creighton, T.E. 1984. Gel electrophoresis in studies of protein conformation and folding. Anal. Biochem. 138, 1–18.
    Gómez-Moreno, C. & Bes, M.T. 1994. Structural requirements for the electron transfer between a flavoprotein and viologens. Biochim. Biophys. Acta 1187, 236–240.
    Graham, I.A., Leaver, C.J., and Smith, S.M..1992. Induction of malate synthase gene expression in senescent and detached organs of cucumber. Plant Cell 4, 349-357.
    Graham,I.A., Smith,L.M., Brown,J.W., Leaver,C.J. and Smith,S.M. 1989.The malate synthase gene of cucumber.Plant Mol. Biol. 13 (6), 673-684 .
    Green LS, Yee BC, Buchanan BB, Kamide K, Sanada Y, Wada K .1991. Ferredoxin and ferredoxin-NADP reductase from photosynthetic and non-photosynthetic tissues of tomato. Plant Physiol .96: 1207-1213.
    Gruez, A., Pignol, D., Zeghouf, M., Covès, J., Fontecave, M., Ferrer, J.L. & Fontecilla-Camps, J.C. 2000. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. J. Mol. Biol. 299,
    
    
    199–212.
    Guera, A., America, T., van Waas, M. & Weisbeek, P.J. 1993. A strong protein unfolding activity is associated with the binding of precursor chloroplast proteins to chloroplast envelopes. Plant Mol. Biol. 23, 309–324.
    Gut, H., and Matile, P..1988. Apparent induction of key enzymes of the glyoxylic acid cycle in senescent barley leaves. Planta 176,540-550.
    Hain R, Reif HJ. et al. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 361: 153-156.
    Hajirezaei, M.R., Peisker, M., Tschiersch, H., Palatnik, J.F., Valle, E.M., Carrillo, N. & Sonnewald, U. 2002. Small changes in the activity of chloroplast NADP+-dependent ferredoxin reductase lead to impaired plant growth and restrict photosynthetic capacity of transgenic tobacco plants. Plant J. 29, 281–293.
    Hanukoglu, I. & Gutfinger, T. 1989. cDNA sequence of adrenodoxin reductase. Identification of NADP+-binding sites in oxidoreductases. Eur. J. Biochem. 180, 479–484.
    Hase T, Kimata Y, Yonekura K, Matsumara T, Sakakibara H. 1991. Molecular cloing and defferential espression of the maize ferredoxin gene family. Plant Physiol 96: 77-83
    Hase T, Kimata Y, Yonekura K, Matsumura T, Sakakibara H.1991a. Molecular cloning and differential expression of the maize ferredoxin gene family. Plant Physiol 96: 77-83
    Hase T, Mizutani S, Mukohata Y. 1991b. Expression of maize ferredoxin cDNA in Escherichia coli: comparison of photosynthetic and non-photosynthetic ferredoxin isoproteins and their chimeric molecule. Plant Physiol 97: 1395-1401. .
    Hinnah, S.C., Hill, K., Wagner, R., Schlicher, T. & Soll, J. 1997. Reconstitution of a chloroplast protein import channel. EMBO J. 16, 7351–7360.
    Hinnah, S.C., Wagner, R., Sveshnikova, N., Harrer, R. & Soll, J. 2002. The chloroplast protein import channel toc75: pore properties and interaction with transit peptides. Biophys. J. 83, 899–911.
    Huang AHC, Trelease RN, Moore TSJ.1983. Plant Peroxisomes. Academic Press, New York
    Huang, S., Murphy, S. & Matouschek, A. 2000. Effect of the protein import machinery at the mitochondrial surface on precursor stability. Proc. Natl Acad. Sci. USA 97,
    
    
    12991–12996.
    Hurley JK, Hazzard JT, Martinez-Julvez M, Medina M, Gomez-Moreno C, Tollin G. 1999. Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin:NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials. Protein Sci 8: 1614-1622.
    Hurley, J.K., Fillat, M.F., Gómez-Moreno, C. & Tollin, G. 1996. Electrostatic and hydrophobic interactions during complex formation and electron transfer in the ferredoxin/ferredoxin-NADP+ reductase system from Anabaena. J. Am. Chem. Soc. 118, 5526–5531.
    Hurley, J.K., Hazzard, J.T., Martinez-Julvez, M., Medina, M., Gomez-Moreno, C. & Tollin, G. 1999. Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin: NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials. Protein Sci. 8, 1614–1622.
    Hurley, J.K., Morales, R., Martínez-Júlvez, M., Brodie, T.M., Medina, M., Gómez-Moreno, C. & Tollin, G. 2002. Structure–function relationships in Anabaena ferredoxin/ferredoxin:NADP+ reductase electron transfer: insights from site-directed mutagenesis, transient absorption spectroscopy and X-ray crystallography. Biochim. Biophys. Acta 1554, 5–21.
    Ivey, R.A. III, Subramanian, C. & Bruce, B.D. 2000. Identification of a Hsp70 recognition domain within the Rubisco small subunit transit peptide. Plant Physiol. 122, 1289–1300.
    Jabs T, Tsch?pe M, Colling C, Hahlbrock K, and Scheel D. Elicitor-stimulated ion fluxes and O2 -from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA. 1997, 94: 4800-4805.
    Jackson-Constan, D., Akita, M. & Keegstra, K. 2001. Molecular chaperones involved in chloroplast protein import. Biochim. Biophys. Acta 1541, 102–113.
    James Z. Zhang, Debbie L, Laudencia-Chingcuanco, Lucio Comai. 1994.Isocutrate lyase and malate synthase genes from Brassica napus L. are active in pollen
    
    Jarvis, P. & Soll, J. 2001 Toc, Tic, and chloroplast protein import. Biochim. Biophys. Acta 1541, 64–79.
    Jelesarov, I., De Pascalis, A.R., Koppenol, W.H., Hirasawa, M., Knaff, D.B. & Bosshard, H.R. 1993. Ferredoxin binding site on ferredoxin-NADP+ reductase. Differential chemical modification of free and ferredoxin-bound enzyme. Eur. J. Biochem. 216, 57–66.
    Jia Y, Mcadams S A, Bryan G T, Hershey H P, Valent B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19:4004-4014.
    Jin T, Huppe HC, Turpin DH.1998. In vitro reconstitution of electron transport from glucose-6-phosphate and NADPH to nitrite. Plant Physiol 117: 303-309 .
    Jin T, Morigasaki S, Wada K.1994. Purification and characterization of two ferredoxin-NADP+ oxidoreductase isoforms from the first foliage leaves of mung bean (Vigna radiate) seedlings. Plant Physiol 106: 697-702.
    Jungermann, K., Kirchniawy, H., Katz, N. & Thauer, R.K. .1974. NADH, a physiological electron donor in clostridial nitrogen fixation. FEMS Microbiol. Lett. 43, 203–206.
    Kamide K, Sakai H, Aoki K, Sanada Y, Sanada Y, wada K, Green LS, Yee BC, Buchanan BB. 1995. Amino acid sequences of heterotrophic and photosynthetic ferredoxins from the tomato plant (Lycopersicon esculentum Mill.) PhotosynthRes 46: 301-308.
    Kaminaka,H., Morita,S., Masumura,T. and Tanaka,K. 1998.Molecular cloning and characterization of a cDNA (accession No.D85763) encoding glyoxysomal malate dehydrogenase from rice (Oryza sativa L.) . Plant Physiol. 118, 329
    Kaminaka,H., Morita,S., Masumura,T. and Tanaka,K.. 1998.Molecular cloning and characterization of a cDNA (accession No.D85763) encoding glyoxysomal malate dehydrogenase from rice (Oryza sativa L.).Plant Physiol. 118, 329.
    Kaminaka,H., Morita,S., Masumura,T. and Tanaka,K.1998.Molecular cloning and characterization of a cDNA (accession No. D85763) encoding glyoxysomal malate dehydrogenase from rice (Oryza sativa L.). Plant Physiol. 118, 329.
    Karplus PA, Daniels M, Herriott JR.1991. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 252: 60-66
    
    Karplus PA, Walsh KA, Herriott JR .1984. Amino acid sequence of spinach ferredoxin: NADP+ oxidoreductase. Biochemistry 23: 6576-6583.
    Karplus, P.A. & Bruns, C.M. 1994. Structure–function relations for ferredoxin reductase. J. Bioenerg. Biomembr. 26, 89–99.
    Karplus, P.A., Daniels, M.J. & Herriott, J.R.1991.Atomic Structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251, 60–66.
    Kato,A., Hayashi,M., Mori,H. and Nishimura,M. 1995.Molecular characterization of a glyoxysomal citrate synthase that is synthesized as a precursor of higher molecular mass in pumpkin.Plant Mol. Biol. 27 (2), 377-390.
    Keegstra, K. & Cline, K. 1999.Protein import and routing systems of chloroplasts. Plant Cell 11, 557–570.
    Kim J, Mafield SP.1997. Protein disulphide isomerase as a regulator of chloroplast translationa activation. Science 278: 1954-1957
    Kimata Y, Hase T. 1989 Localization of ferredoxin isoproteins in mesophyll and bundle sheath cells in maize leaf. Plant Physiol 89: 1193-1197.
    Kimata-Ariga Y, Matsumura T, Kada S, Fujimeto H, Fujita Y, Endo T, Mano J, Sato T, Hase T. 2000. Differential electron flow around photosystem I by two c4-photosynthetic-cell-specific ferredoxins. EMBO J 19: 5041-5050
    Klessig DF, Durner J, Chen Z, et al. 1996. Studies of the salicylic acid signal transduction pathway. In Biology of Plant-Microbe Interactions. Stacey G, Mullin B and Gresshoff PM, eds, pp33-38.
    Kl?ti A., Potrykus I. 1999. Rice improvement by genetic transformation. Molecular biology of rice (edited by Shimanota Ko),:283~301.
    Knaff DB,Hirasawa M.1991. Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta 1056: 93-125
    Knaff DB.1996. Ferredoxin and ferredoxin-dependent enzymes. In DR Ort, CF Yochem, eds, Oxygenic Photosynthesis: The Light Reactions. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 333-361
    Kohli, A., Gahakwa, D., Vain, P.. 1999.Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene
    
    
    silencing, Planta 208.
    Kohli, A., Griffiths, S, Palacios, N., Twyman R. M., 1999. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology-mediated recombination.Plant J. 17.
    Kohli, A., Leech, M., Vain P.. 1998. Transgenic organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hotspots, Proc, Natl. Acad. Sci. USA 95, 7203-7207.
    Kranendonk, M., Commandeur, J.N., Laires, A., Rueff, J. & Vermeulen, N.P. 1997. Characterization of enzyme activities and cofactors involved in bioactivation and bioinactivation of chemical carcinogens in the tester strains Escherichia coli K12 MX100 and Salmonella typhimurium LT2 MA100. Mutagenesis 12, 245–254.
    Krapp, A.R., Rodriguez, R.E., Poli, H.O., Paladini, D.H., Palatnik, J.F. & Carrillo, N. 2002. The flavoenzyme ferredoxin (flavodoxin)-NADP(H) reductase modulates NADP(H) homeostasis during the soxRS response of Escherichia coli. J. Bacteriol. 184, 1474–1480.
    Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y, Hase T.2001.Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nature structural biology. 8(2):117-121.
    Lacour, T. & Dumas, B. 1996. A gene encoding a yeast equivalent to mammalian NADPH-adrenodoxin oxidoreductases. Gene 174, 289–292.
    Lamb C, Dixon RA. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Phsiol. Plant Mol. Biol. 48:251-275.
    Landolt R, Matile P .1990. Glyoxysome-like microbodies in senescent spinach leaves. Plant Sci 72: 159-163
    Laura Pistelle, Barbara Nieri, Steven M. smith, amedeo alpi, Luigi De Bellis. 1996. Glyoxylate cycle enzyme activities are induced in senescent pumpkin fruits. Plant Science 119: 23-29
    Leegood RC .1996. Primary photosynthate production: physiology and metabolism. In E Zamske, A Schaffer, eds, Photoassimilate Distribuion in Plants and Crops: Source-Sink Relationships. Marcel Dekker Inc., New York, pp 21-14
    Liebermeister, W., Rapoport, T.A. & Heinrich, R. 2001.Ratcheting in post-translational
    
    
    protein translocation: a mathematical model. J. Mol. Biol. 305, 643–656.
    Link G. 2001. Redox regulation of photosyntic genes. In EM Aro, B Andersson, eds, Regulation of Photosynthesis, Kluwer, Dordrecht, The Netherlands, PP 85-107
    Lu, G., Campbell, W.H., Schneider, G. & Ljundquist, Y. 1994. Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 ? resolution. Relationship to other flavoprotein reductases. Structure 2, 809–821.
    Lucio Comai, Robert A. dietrch, Daniel J. Maslyer, Catherine S. Baden, and John J. Harada.1989. Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L. The Plant Cell. Vol. 1 293-300
    Mano,S., Hayashi,M., Kondo,M. and Nishimura,M. 1996. cDNA cloning and expression of a gene for isocitrate lyase in pumpkin cotyledons.Plant Cell Physiol. 37 (7), 941-948.
    Martinez-Julvez M, Medina M, Hurley JK, Hafezi R, Brodie TB, Tollin G, Gomez-Moreno G .1998. Lys75 of Anabaena ferredoxin-NADP+ reductase is a critical residue for binding ferredoxin and flavodoxin during electron transfer. Biochemistry 37: 13604-13613 .
    Martínez-Júlvez, M., Hermoso, J., Hurley, J.K., Mayoral, T., Sanz-Aparicio, J., Tollin, G., Gómez-Moreno, C. & Medina, M. 1998. Role of Arg100 and Arg264 from Anabaena ferredoxin-NADP+ reductase for optimal NADP+ binding and electron transfer. Biochemistry 37, 17680–17691.
    Martínez-Júlvez, M., Medina, M. & Gómez-Moreno, C. 1999. Ferredoxin-NADP+ reductase uses the same site for the interaction with ferredoxin and flavodoxin. J. Biol. Inorg. Chem. 4, 568–578.
    Martínez-Júlvez, M., Nogués, I., Faro, M., Hurley, J.K., Brodie, T.B., Mayoral, T., Sanz-Aparicio, J., Hermoso, J., Stankovich, M.T., Medina, M., Tollin, G. & Gómez-Moreno, C. 2001. Role of a cluster of hydrophobic residues near the FAD cofactor in Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal complex formation and electron transfer to ferredoxin. J. Biol. Chem. 276, 27498–27510.
    Matouschek, A., Azem, A., Ratliff, K., Glick, B.S., Schmid, K. & Schatz, G. 1997. Active unfolding of precursor proteins during mitochondrial protein import. EMBO J. 16,
    
    
    6727–6736..
    Matsumura T, Kimata-Ariga Y, Sakakibara H, Sugijama T, Murata H, Takao T, Shimonishi Y, Hase T.1999. Complementary DNA cloning and characterization of ferredoxin localized in bundle-sheath cells of maize leaves. Plant Physiol 119:481-488
    Matsumura T, Sakakibara H, Nakano R, Kimata Y, Sugiyama T, Hase T.1997. A nitrate-inducible ferredoxin in maize roots: genomic organization and differential expression of two non-photosynthetic ferredoxin isoproteins. Plant Physiol 114: 653-660 .
    McGee JD, Hamer JE and Hodges TK.2001. Charaterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Molecular Plant-Microbe Interactions, 14(7): 877-886.
    Medina, M., Martínez-Júlvez, M., Hurley, J.K., Tollin, G. & Gómez-Moreno, C. 1998. Involvement of Glutamic 301 in the catalytic mechanism of ferredoxin-NADP+ reductase from Anabaena PCC 7119. Biochemistry 37, 2715–2728.
    Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM and Peterman TK. .1993. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 101: 441-450
    Miyake C, Asada K. 1994. Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach hylakoids. Plant Cell Physiol 35: 539-549.
    Morales, R., Charon, M.H., Kachalova, G., Serre, L., Medina, M., Gómez-Moreno, C. & Frey, M. 2000. A redox–dependent interaction between two electron-transfer partners involved in photosynthesis. EMBO Reports 1, 271–276.
    Morigasaki S, Takada K, Sanada Y Wada K, Yee BE, Shin S, Buchanan BB.1990. Novel forms of ferredoxin and ferredoxin-NADP+ reductase from spinach roots. Arch Biochem Biophys 283: 75-80.
    Morigasaki S, Takata K, Suzuki T, Wada K .1990b. Purification and characterization of a ferredoxin-NADP+ oxidoreductase-like enzyme from radish root tissues. Plant Physiol 93: 896-901.
    Mould, R.M., Kapazoglou, A. & Gray, J.C. 2001. Assembly of cytochrome f into the cytochrome bf complex in isolated pea chloroplasts. Eur. J. Biochem. 268, 792–799.
    
    Muller MJ, Brodschelm W et al. 1993. Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc. Natl. Sci. USA 90:7 494-7496.
    Nakano,R., Matsumura,T., Sakakibara,H., Sugiyama,T. and Hase,T. 1997. Cloning of maize ferredoxin III gene: presence of a unique repetitive nucleotide sequence within an intron found in the 5'-untranslated region. Plant Cell Physiol. 38 (10), 1167-1170.
    Nestor Carrillo and Eduardo A. ceccarelli.2003. Review article. Open questions in ferredoxin-NADP+ reductase catalytic mechanism.Eur. J. Biochem. 270, 1900-1915.
    Neupert, W., Hartl, F.U., Craig, E.A. & Pfanner, N. 1990. How do polypeptides cross the mitochondrial membranes? Cell 63, 447–450.
    Nishimura M, Yamaguchi J, Mori H, Akazawa T, Yokota S .1986. Immunocytochemical analysis shows that glyoxysomes are derectly transformed to leaf peroxisomes during greening of pumpkin cotyledons. Plant Physiol 80:313-316
    Ohme-Takagi M, and Shinshi H .1995. Ethylene-inducible DNA-binding proteins that interact with an ethylene-responsive element. Plant Cell, 7: 173-182.
    Ohmori,K., Doyama,N. and Ida,S.1996. Molecular cloning of a rice leaf ferredoxin cDNA. Plant Physiol. 111, 348 .
    Oji Y, Watanabe M, Wakiuchi N, Okamoto S .1985.Nitrite reduction in barley root plastids: dependence on NADPH coupled with glucose-6-phosphate and 6-phosphogluconate dehydrogenase, and possible involvement of an electron carrier and a diaphorase. Planta 165: 85-99.
    Olsen LJ, Harada JJ.1991. Biogenisis of peroxisomes in higher plants. In AHC Huang, L Taiz, eds, Molecular Approaches to Compartmentation and Metabolic Regulation. American Society of plant Physiologists, Rochville,MD,pp129-137
    Onda Y, Matsumura T, Kimata-Ariga Y, Sakakibara H, Sugiyama T, Hase T .2000. Differential interaction of maize root ferredoxin: NADP+ reductase from spinach roots. Arch Biochem Biophys 283: 75-80
    Onda, Y., Matsumura, T., Kimata-Ariga, Y., Sakakibara, H., Sugiyama, T. & Hase, T. 2000. Differential interaction of maize root ferredoxin-NADP+ oxidoreductase with photosynthetic and non-photosynthetic ferredoxin isoproteins. Plant Physiol. 123,
    
    
    1037–1045.
    Orellano, E.G., Calcaterra, N.B., Carrillo, N. & Ceccarelli, E.A. .1993.Probing the role of the carboxyl terminal region of plant ferredoxin-NADP+ reductase by site-directed mutagenesis and deletion analysis. J. Biol. Chem. 268, 19267–19273.
    Ottado, J. & Ceccarelli, E.A. 1998. A fully active FAD-containing precursor remains folded up to its translocation across the chloroplast membranes. Eur. J. Biochem. 253, 132–138.
    Peng Y.L. and Shishiyama J. Temporal sequence of cytological events in rice leaves afected with Pyriculria oryzae. Can. J. Bot. 1988, 66: 730-735.
    Peng YL. 1994. A molecular strategy to manipulate rice blast disease resistance. In: Intergtrated Resource Management for Sustainable Agriculture (ed. by Shi Y.C. and Cheng X.) Beijing Agricul. Uni. Press P. 450-453 .
    Penninckx IAMA, Eggermont K, Terras FRG, et al. 1996. Pathogen-induced systemic activation of a plant defension gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell, 8: 2309-2323.
    Pfanner, N. & Meijer, M. (1995) Protein sorting. Pulling in the proteins. Curr. Biol. 5, 132–135.
    Pilon, M. & Schekman, R. (1999) Protein translocation: how Hsp70 pulls it off. Cell 97, 679–682..
    Pilon, M., Wienk, H., Sips, W., de Swaaf, M., Talboom, I., van't Hof, R., Korte-Kool, G., Demel, R., Weisbeek, P. & de Kruijff, B. (1995) Functional domains of the ferredoxin transit sequence involved in chloroplast import. J. Biol. Chem. 270, 3882–3893..
    Pinnaduwage, P. & Bruce, B.D. (1996) In vitro interaction between a chloroplast transit peptide and chloroplast outer envelope lipids is sequence-specific and lipid class- dependent. J. Biol. Chem. 271, 32907–32915.
    Pistelli, L., De Bellis, L., and Alpi, A. 1991. Peroxisomal enzyme Activities in attached senescing leaves. Planta 184, 151-153.
    Polle A. 1996. Mechler reaction:friend or foe in photosynthesis. Bot Acta 109: 84-89
    Rao, K.V., Rathore, K.S., Hodges, T.K. 1998. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J. 15: 469-477.
    
    Rassow, J., Hartl, F.U., Guiard, B., Pfanner, N. & Neupert, W. (1990) Polypeptides traverse the mitochondrial envelope in an extended state. FEBS Lett. 275, 190–194.
    Razquin, P., Fillat, M.F., Schmitz, S., Stricker, O., B?hme, H., Gómez-Moreno, C. & Peleato, M.L. (1996) Expression of ferredoxin-NADP+ reductase in heterocysts from Anabaena sp. Biochem. J. 316, 157–160.
    Reinbothe, S., Reinbothe, C., Runge, S. & Apel, K. (1995) Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH:protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. J. Cell Biol. 129, 299–308..
    Reymond P, and Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin. Plant Biol., 1: 404-411.
    Reynolds,S.J. and Smith,S.M. 1995. The isocitrate lyase gene of cucumber: isolation, characterisation and expression in cotyledons following seed germination.Plant Mol. Biol. 27 (3), 487-497.
    Rial, D.V., Arakaki, A.K. & Ceccarelli, E.A. (2000) Interaction of the targeting sequence of chloroplast precursors with Hsp70 molecular chaperones. Eur. J. Biochem. 267, 6239–6248..
    Ritchie, S.W., Redinbaugh, M.G., Shiraishi, N., Vrba, J. & Campbell, W.H. (1994) Identification of a maize root transcript expressed in the primary response to nitrate: characterization of a cDNA with homology to ferredoxin-NADP+ oxidoreductase. Plant Mol. Biol. 26, 679–690.
    Ruey-Hua Lee, chung-Hua Wang, Lin-Tzu Huang and Shu-Chen Grace Chen.2001. Short communication: Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. Journal of experimental Botany, 52:1117-1121
    Runquist M, Kruger NJ .1999. Control of gluconeogenesis by isocitrate lyase in endosperm of germinating castor bean seedlings.Plant journal. 19(4):423-431
    Ryals J, Lawton K A, Delaney TP, Friedrich L, Kessmann H, Neuenschwander U, Uknes S, Vernooij B, and Weymann K.. Signal transduction in systemic acquired resistance. Proc. Natl. Acad. Sci. USA, 1995, 92:4202-4205.
    Ryan CA. (1990) Protease inhibitors in plants: genes for improving defenses against
    
    
    insects and pathogens. Annu. Rev. Phytopathology, 28: 425-449
    Rylott EL, Hooks MA, Graham IA.2001. Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana. Biochem Soc Trans, 29(Pt2):283-287
    Sakakibara H, Fujii K, Sugiyama T (1995) Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol 36: 789-797 .
    Sakakibara H, Watanabe M, Hase T, Sugiyama T (1991) Molecular cloning and characterization of complementary DNA encoding for ferredoxin-dependent glutamate synthase in maize leaf. J Biol Chem 266: 2028-2035 .
    Sauter C.1986. Microbody transition in greening watermelon cotyledons. Double-immunocytochemical labeling of isocitrate lyase and hydroxypyruvate reductase. Planta 167: 491-503
    Scheibe R. 1991. Redox-modulation of chloroplast enzymes. Plant Physiol 96:1-3
    Scheller HV. 1996. In vitro cyclic electron transport in barley thylakoids follows two independent pathways. Plant Physiol 110: 187-194
    Schreier, P.H., Reiss, B. & Kuntz, M. (1988) Subcellular targeting of proteins in vivo and in vitro. In Plant Molecular Biology Manual (Gelvin, S.B., Schilperoort, R.A. & Verma, D.P.S., eds), pp. 1–22. Kluwer Academic Press, Dordrecht, the Netherlands.
    Selitrennikoff CP. (2001) Antifungal protein. Applied and environmental microbiology, 67(7): 2883-2894.
    Serra, E.C., Krapp, A.R., Ottado, J., Feldman, M.F., Ceccarelli, E.A. & Carrillo, N. (1995) The precursor of pea ferredoxin-NADP+ reductase synthesized in Escherichia coli contains bound FAD and is transported into chloroplasts. J. Biol. Chem. 270, 19930–19935.
    Shah J, and Klessig DF (1996) Identification of a salicylic acid- responsive element in the promoter of the tobacco pathogenesis-related β-1,3-glucanase gene, PR-2d. Plant J., 10: 1089-1101.
    Shah, M.M. & Spain, J.C. (1996) Elimination of nitrite from the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) catalyzed by ferredoxin NADP+ oxidoreductase from spinach. Biochim. Biophys. Res. Commun. 220, 563–568.
    Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids.
    
    
    Annu Rev Plant Physiol Plant Mol Biol 49: 611-614.
    Shin, M. & Arnon, D.I.. 1965. Enzymic mechanisms of pyridine nucleotide reduction in chloroplasts. J. Biol. Chem. 240, 1405–1411
    Smith AT, Sanders SA, Thorneley RNF, Burke JF, Bray RC (1992) Characterization of a haem active-site mutant of horseradish peroxidase, Phe41-Val with altered reactivity towards hydrogen peroxide and reducing substrates. Eur J Biochem 207: 507-519 .
    Smith, J.M., Smith, W.H. & Knaff, D.B. (1981) Electrochemical titration of a ferredoxin-ferredoxin-NADP+ reductase complex. Biochim. Biophys. Acta 635, 405–411.
    Song, W. Y., Wang,G. L., Chen, L.L.1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21,Science 270:1804-1806.
    Sudhakar, D., Duc, L.T.. 1998. An efficient rice transformation system utilizing mature seed-derived explants and a portable, inexpensive particle bombardment device, Transgenic Res. 7 , 289-194.
    Sudhakar, D., Fu,X., Stoger, E. 1998. Expression and immunolocalization of the snowdrop lectin insecticidal protein GNA, in transgenic rice plants, Transgenic Res. 7:371-378.
    Summermatter K, Sticher L and Metraux JP. (1995) Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiol., 108: 1379-1385.
    Suzuki A, Oaks A, Jacquot J-P, Vidal J, Gadal P (1985) An electron transport system in maize roots for reaction of glutamate synthase and nitrite reductase: physiological and immunochemical properties of the electron carrier and pyridine nucleotide reductase. Plant Physiol 78: 374-378 .
    Swapan K and Subbaratuam M. (1999) Pathogenesis-related proteins in plants. CRC Press.
    Tang K, Sun X, Hu, Q, Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. Oryzae (2001). Plant Sci, 160 (5): 1035-1042.
    Tang X Y, Frederick R D, Zhou J, Halterman D A. Jia Y L and Martin G B. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science , 1996,274: 2060-2063.
    
    Thomma BPHJ, Eggermont K, Penninckx IRAMA. et al. (1998) Separate jasmonate-dependent and salicylate-dependent defense pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl.Acad.Sci. USA, 95: 15107-15111.
    Titus DE, Becker WM.1985. Investigation of the glyoxysome peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J Cell Biol 101:1288-1299
    Trelease, R.N, Becker WM, Bruber PJ, Newcomb EH.1971.. Microbodies (glyoxysomes and peroxisomes) in cucumber cotyledons. Correlative biochemical and ultrastructural study in light- and dark-grown seedlings. Plant Physiol 48: 461-475
    Trelease, R.N, Doman DC. 1984. Mobilization of oil and wax reserves. In DR Murray, ed, Seed Physiology, Vol 2: Germination and Reserve Mobilization. Academic Press, Marrickville, Australia, pp 202-245
    Turley, R.B., and Trelease, R.N. 1990. Development and regulation of three glyoxysomal enzymes during cotton seed maturation and growth. Plant Mol.Biol.14, 137-146.
    Turley,R.B., Choe,S.M. and Trelease,R.N. 1990. Characterization of a cDNA clone encoding the complete amino acid sequence of cotton isocitrate lyase. Biochim. Biophys. Acta 1049,223-226.
    Uknes S, Mauch-Mani B, Moyer M. et al. (1992) Acquied resistance in Arabidopsis. Plant Cell, 4: 645-656.
    Uknes S, Winter AM, Delaney et al. (1993) Biological induction of systemic acquired resistance in Arabidopsis. Mol. Plant-Microbe Interact., 6: 692-698.
    Ullmann, G.M., Hauswald, M., Jensen, A. & Knapp, E.W. (2000) Structural alignment of ferredoxin and flavodoxin based on electrostatic potentials: implications for their interactions with photosystem I and ferredoxin-NADP+ reductase. Proteins 38, 301–309.
    Vain P., Worland B., Clarke M.C., et al. Expression of an engineered cysteine proteinase inhibitor (oryzacystatin-I Delta D86) for nematode resistance in transgenic rice plants. Theor. Appl. Genet. 1998, 96(2):266~271.
    Van Thor, J.J., Jeanjean, R., Havaux, M., Sjollema, K.A., Joset, F., Hellingwerf, K.J. & Matthijs, H.C.P. (2001) Salt shock-inducible photosystem I cyclic electron transfer in
    
    
    Synechocystis PCC6803 relies on binding of ferredoxin-NADP+ reductase to the thylakoid membrane via its CpcD phycobilisome-linker homologous N-terminal domain. Biochim. Biophys. Acta 1457, 129–144.
    Van’t Hof, R., van Klompenburg, W., Pilon, M., Kozubek, A., Korte-Kool, G., Demel, R.A., Weisbeek, P.J. & de Kruijff, B. (1993) The transit sequence mediates the specific interaction of the precursor of ferredoxin with chloroplast envelope membrane lipids. J. Biol. Chem. 268, 4037–4042..
    Vollmer, M., Thomsen, N., Wiek, S. & Seeber, F. (2001) Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J. Biol. Chem. 276, 5483–5490.
    von Heijne, G., Steppuhn, J. & Herrmann, R.G. (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180, 535–545.
    Wada K, Ond M, Matsubara H .1989. Amino acid sequences of ferredoxin isoproteins from radish roos. J Biochem 105: 619-625
    Wada K, Onda M, Matsubara H (1986) Ferredoxin isolated from plant non-photosynthetic tissues: purification and characterization. Plant Cell Physiol 27: 407-415.
    Walker, D., Chaddock, A.M., Chaddock, J.A., Roberts, L.M., Lord, J.M. & Robinson, C. (1996) Ricin A chain fused to a chloroplast-targeting signal is unfolded on the chloroplast surface prior to import across the envelope membranes. J. Biol. Chem. 271, 4082–4085.
    Wang, M., Roberts, D.L., Paschke, R., Shea, T.M., Masters, R.S. & Kim, J.J. (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase. Prototype for FMN- and FAD-containing enzymes. Proc. Natl Acad. Sci. USA 94, 8411–8416
    Wang,G. L., Song, W. Y., Ruan, D.L. 1996. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. Oryzae isolates in transgenic plants, Mol. Plant-Microbe Interact. 9:850-855.
    Wang,Zheng-Yi, Christopher R.Thornton, Michael J. Kershaw. 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant athogenic fungus Magnaporthe grisea. Molecular Microbiology. 47(6), 1601-1612.
    
    Weir, E.M., Riezman, H., Grienenberger, J.M., Becker, W.M., and Leaver, C.J. 1980. Regulation of glyoxysomal enzymes during germinaton of cucumber: Temporal changes in translatable mRNAs for isocitrate lysae and malate synthase. Eur. J. Biochem. 112, 469-477.
    Yao, Y., Tamura, T., Wada, K., Matsubara, H. & Kodo, K. (1984) Spirulina ferredoxin-NADP+ reductase. The complete amino acid sequence. J. Biochem. (Tokyo) 95, 1513–1516.
    Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T, Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and non-photosynthetic organs of maize. Plant Physiol 122: 887-894 .
    Zanetti G, Morelli D, Ronchi S, Negri A, Aliverti A, Curti B (1988) Structural studies on the interaction between ferredoxin and ferredoxin:NADP+ reductase. Biochemistry 27: 3753-3759.
    Zanetti, G. & Forti, G. (1966) Studies on the triphosphopyridine nucleotide-cytochrome f reductase of chloroplats. J. Biol. Chem. 241, 279–285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700